Comparison between High-PUFA and Low-PUFA Fats on Lipid Peroxidation and LDL Oxidation

Abstract

This study was conducted to determine the effects of a low polyunsaturated fatty acid (PUFA) 21 diet versus a high-PUFA diet on lipid peroxidation and on low density and very low density lipoprotein (LDL + VLDL) oxidation in vivo. Rats were fed 10% beef tallow (BT) or 10% soybean oil (SO) diet for 21 weeks. Lipid peroxidation was measured by assessing urinary 24 excretions of secondary lipid peroxidation products, by HPLC and by measuring thiobarbituric acid reactive substances (TBARS) in liver tissue. Plasma LDL + VLDL in vivo oxidation was measured by conjugated diene concentration and TBARS; ex vivo resistance to copper-induced oxidation was also assessed. Total urinary aldehydes, twelve individual urinary aldehydes, and TBARS in the liver were significantly lower in the BT group compared to the SO group. Plasma LDL + VLDL was significantly more resistant to copper-induced ex vivo oxidation to the BT group compared to the SO group. However, in vivo plasma LDL + VLDL oxidation levels measured as conjugated dienes and by TBARS were not significantly different. In general, the low-PUFA BT diet appears to have a protective effect on in vivo lipid peroxidation compared to the high-PUFA diet, but not on in vivo plasma LDL + VLDL oxidation.

Share and Cite:

C. Seppanen, H. Cho and A. Csallany, "Comparison between High-PUFA and Low-PUFA Fats on Lipid Peroxidation and LDL Oxidation," Food and Nutrition Sciences, Vol. 4 No. 5, 2013, pp. 572-579. doi: 10.4236/fns.2013.45074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. H. Cheeseman, “Mechanisms and Effects of Lipid Peroxidation,” Molecular Aspects of Medicine, Vol. 14, No. 3, 1993, pp. 191-197.
[2] B. Halliwell and J. M. C. Gutteridge, “Lipid Peroxidation a Radical Chain Reaction,” In: B. Halliwell and J. M. C. Gutteridge, Eds., Free Radicals in Biology and Medicine, 2nd Edition, Oxford University Press, Oxford, 1985, pp. 188-276. doi:10.1016/0098-2997(93)90005-X
[3] J. Kanner, J. B. German and J. E. Kinsella, “Initiation of Lipid Peroxidation in Biological Systems,” Critical Reviews in Food Science and Nutrition, Vol. 25, No. 4, 1987, pp. 317-364. doi:10.1080/10408398709527457
[4] J. Terao, “Reactions of Lipid Hydroperoxides,” In: C. Vigo-Pelfrey, Ed., Membrane Lipid Peroxidation, CRC Press, Boca Raton, 1990, pp. 219-238.
[5] C. Rice-Evans and R. Burdon, “Free Radial-Lipid Interactions and Their Pathological Consequences,” Progress in Lipid Research, Vol. 32, No. 1, 1993, pp. 71-110. doi:10.1016/0163-7827(93)90006-I
[6] K. Yagi, “Lipid Peroxides and Human Diseases,” Chemistry and Physics of Lipids, Vol. 45, No. 2-4, 1987, pp. 337-351. doi:10.1016/0009-3084(87)90071-5
[7] C. Meisinger, J. Baumert, N. Khuseyinova, H. Loewel and W. Koenig, “Plasma Oxidized Low-Density Lipoprotein, a Strong Predictor for Acute Coronary Heart Disease Events in Apparently Healthy, Middle-Aged Men from the General Population,” Circulation, Vol. 112, 2005, pp. 651-657. doi:10.1161/CIRCULATIONAHA.104.529297
[8] K. Shimida, H. Mokuno, E. Matsunaga, T. Miyazaki, K. Sumiyoshi, K. Miyauchi and H. Daida, “Circulating Oxidized Low-Density Lipoprotein Is an Independent Pre dictor for Cardiac Events in Patients with Coronary Artery Disease,” Atheroscelrosis, Vol. 174, No. 2, 2004, pp. 343-347. doi:10.1016/j.atherosclerosis.2004.01.029
[9] S. Toshima, A. Hasegawa, M. Kurabayashi, H. Itabe, T. Tankano, J. Sugano, K. Shimamura, J. Kimura, I. Mi chishita, T. Suzuki and R. Nagai, “Circulating Oxidized Low Density Lipoprotein Levels. A Biochemical Risk Marker for Coronary Heart Disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 20, 2000, pp. 2243-2247. doi:10.1161/01.ATV.20.10.2243
[10] H. Esterbauer, M. Dieber-Rothender, G. Waeg, G. Striegl and G. Jurgens, “Biochemical, Structural, and Functional Properties of Oxidized Low-Density Lipoprotein,” Chemical Research in Toxicology, Vol. 3, No. 2, 1990, pp. 77-92. doi:10.1021/tx00014a001
[11] D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo and J. L. Witzum, “Beyond Cholesterol: Modification of Low-Density Lipoprotein That Increases Its Atherogeni city,” New England Journal of Medicine, Vol. 320, 1989, pp. 915-924. doi:10.1056/NEJM198904063201407
[12] J. L. Witzum and D. Steinberg, “Role of Oxidized Low Density Lipoprotein in Atherogenesis,” Journal of Clinical Investigation, Vol. 88, No. 6, 1991, pp. 1785-1792. doi:10.1172/JCI115499
[13] S. Parthasarathy, “Oxidation of Low-Density Lipoprotein by Thiol Compounds Leads to Its Recognition by the Acetyl LDL Receptor,” Biochimica et Biophysica Acta, Vol. 917, No. 2, 1987, pp. 337-340. doi:10.1016/0005-2760(87)90139-1
[14] L. Rohrer, M. Freeman, T. Kodama, M. Penman and M. Krieger, “Coiled-Coil Fibrous Domains Mediate Ligand Binding by Macrophage Scavenger Receptor Type II,” Nature, Vol. 434, 1990, pp. 570-572. doi:10.1038/343570a0
[15] C. P. Sparrow, S. Parthasarathy and D. Steinberg, “A Macrophage Receptor That Recognizes Oxidized Low Density Lipoprotein but Not Acetylated Low Density Lipoprotein,” Journal of Biological Chemistry, Vol. 264, No. , 1989, pp. 2599-2604.
[16] F. G. de Waart, U. Moser and F. J. Kok, “Vitamin E Supplementation in Elderly Lowers the Oxidation Rate of Linoleic Acid in LDL,” Artherosclerosis, Vol. 133, No. 2, 1997, pp. 255-263. doi:10.1016/S0021-9150(97)00137-8
[17] H. Esterbauer, M. Dieber-Rothender, G. Striegl and G. Waeg, “Role of Vitamin E in Preventing the Oxidation of Low-Density Lipoprotein,” American Journal of Clinical Nutrition, Vol. 53, 1991, pp. 314S-321S.
[18] I. Jialal, C. J. Fuller and B. A. Huet, “The Effect of α-Tocopherol Supplementation on LDL Oxidation. A Do se-Response Study,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 15, 1995, pp. 109-108. doi:10.1161/01.ATV.15.2.190
[19] I. Jialal and S. M. Grundy, “Effect of Dietary Supplementation with Apha-Tocopherol on the Oxidative Modification of Low-Density Lipoprotein,” Journal of Lipid Research, Vol. 33, No. , 1992, pp. 899-906.
[20] H. M. G. Princen, W. van Duyvenhoorde, R. Buytenhek, A. van derLaarse, G. van Poppel, J. A. Guvers Leuven and V. W. van Hinsbergh, “Supplementation with Low Doses of Vitamin E Protects LDL from Lipid Peroxidation in Men and Women,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 15, 1995, pp. 325-333. doi:10.1161/01.ATV.15.3.325
[21] P. D. Reaven and J. L. Witzum, “Comparison of Supplementation of Rrr-α-Tocopherol and Racemic α-Toco pherol in Humans. Effects on Lipid Levels and Lipoprotein Susceptibility to Oxidation,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 13, 1993, pp. 601-608. doi:10.1161/01.ATV.13.4.601
[22] M. Abbey, G. B. Belling, M. Noakes, F. Hirata and P. J. Nestel, “Oxidation of Low-Density Lipoproteins: Intraindividual Variability and the Effect of Dietary Linoleate Supplementation,” American Journal of Clinical Nutrition, Vol. 57, 1993, pp. 391-398.
[23] A. Bonanome, A. Pagnan, S. Biffanti, A. Opportuno, F. Sorgato, M. Dorella, M. Maiorino and F. Ursini, “Effect of Dietary Monosaturated and Polyunsaturated Fatty Ac ids on the Susceptibility of Plasma Low Density Lipoproteins to Oxidative Modifications,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 12, 1992, pp. 529-533. doi:10.1161/01.ATV.12.4.529
[24] A. Chait, R. L. Brazg and D. L. Tribble, “Susceptibility of Small, Dense, Low-Density Lipoproteins to Oxidative Modification in Subjects with the Atherogenic Lipoprotein Phenotype Pattern B,” American Journal of Medicine, Vol. 94, No. 4, 1993, pp. 350-356. doi:10.1016/0002-9343(93)90144-E
[25] J. de Graaf, H. L. M. Hak-Lemmers, M. P. C. Hectors, P. N. M. Demacker, J. C. M. Hendriks and A. F. H. Stalen hoef, “Enhanced Susceptibility to in Vitro Oxidation of the Dense Low Density Lipoprotein Subfraction in Heal thy Subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 11, 1991, pp. 298-306. doi:10.1161/01.ATV.11.2.298
[26] S. Dejager, E. Bruckert and M. J. Chapman, “Dense Low Density Lipoprotein Subspecies with Diminished Oxidative Resistance Redominate in Combined Hyperlipidemia,” Journal of Lipid Research, Vol. 34, 1993, pp. 295-308.
[27] S. Parthasarathy, J. C. Khoo, E. Miller, J. Barnett, J. L. Witzum and D. Steinberg, “Low Density Lipoprotein Rich in Oleic Acid Is Protected against Oxidative Modi fication: Implications for Dietary Prevention of Athero sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 87, No. 10, 1990, pp. 3894-3989. doi:10.1073/pnas.87.10.3894
[28] P. D. Reaven, B. J. Grasse and D. L. Tribble, “Effects of Linoleate-Enriched and Oleate-Enriched Diets in Combination with α-Tocopherol on the Susceptibility of LDL and LDL Subfractions to Oxidative Modification in Humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 14, 1994, pp. 557-566. doi:10.1161/01.ATV.14.4.557
[29] P. D. Reaven, S. Parthasarathy, B. J. Grasse, E. Miller, F. Almazan, F. H. Mattson, J. C. Khoo, D. Steinberg and J. L. Witzum, “Feasibility of Using an Oleate-Rich Diet to Reduce the Susceptibility of Low Density Lipoprotein to Oxidative Modification in Humans,” American Journal of Clinical Nutrition, Vol. 54, 1991, pp. 701-706.
[30] D. L. Tribble, L. G. Holl, P. D. Wood and R. M. Krauss, “Variations in Oxidative Susceptibility among Six Low Density Lipoprotein Subfractions of Differing Density and Particle Size,” Atherosclerosis, Vol. 93, No. 3, 1992, pp. 189-199. doi:10.1016/0021-9150(92)90255-F
[31] A. Lapointe, C. Couillard and S. Lemieux, “Effects of Dietary Factors on Oxidation of Low-Density Lipoprotein Particles,” Journal of Nutritional Biochemistry, Vol. 17, No. 10, 2006, pp. 645-658. doi:10.1016/j.jnutbio.2006.01.001
[32] D. M. Hegsted, R. B. McGandy, M. L. Myers and F. J. Stare, “Quantitative Effects of Dietary Fat on Serum Cholesterol in Man,” American Journal of Clinical Nutrition, Vol. 17, 1965, pp. 281-295.
[33] A. S. Csallany, C. M. Seppanen and K. L. Fritz, “Effect of High Stearic Acid Containing Fat on Markers for in Vivo Lipid Protection,” International Journal of Food Sciences and Nutrition, Vol. 56, No. 8, 2005, pp. 567-579. doi:10.1080/09637480500458019
[34] M. Bradford, “A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[35] S. S. Kim, D. D. Gallaher and A. S. Csallany, “Vitamin E and Probucol Reduce Urinary Lipophilic Aldehydes and Renal Enlargement in Streptozotocin-Induced Diabetic Rats,” Lipids, Vol. 35, No. 11, 2000, pp. 1225-1237. doi:10.1007/s11745-000-0639-2
[36] S. S. Kim, D. D. Gallaher and A. S. Csallany, “Lipophilic Aldehydes and Related Carbonyl Compounds in Rat and Human Urine,” Lipids, Vol. 34, No. 5, 1999, pp. 489-496. doi:10.1007/s11745-999-0389-1
[37] A. S. Csallany, S. S. Kim and D. D. Gallaher, “Response of Urinary Lipophilic Aldehydes and Related Carbonyl Compounds to Factors That Stimulate Lipid Peroxidation in Vivo,” Lipids, Vol. 35, No. 8, 2000, pp. 855-862. doi:10.1007/S11745-000-0594-y
[38] D. Heinegard and T. G, “Determination of Serum Creatinine by a Direct Colorimetric Method,” Clinica Chimica Acta, Vol. 43, No. 3, 1973, pp. 305-310. doi:10.1016/0009-8981(73)90466-X
[39] M. Uchiyama and M. Mikasa, “Determination of Malon dialdehyde Precursor in Tissues by Thiobarbituric Acid Test,” Analytical Biochemistry, Vol. 86, No. 1, 1978, pp. 271-278. doi:10.1016/0003-2697(78)90342-1
[40] H. A. Kleinveld, H. L. M. Hak-Lemmers, A. F. H. Stalenhoef and P. N. M. Demacker, “Improved Measurement of Low-Density-Lipoprotein Susceptibility to Copper-Induced Oxidation: Application of a Short Procedure for Isolating Low-Density Lipoprotein,” Clinical Chemistry, Vol. 38, No. 10, 1992, pp. 2066-2072.
[41] J. Ahotupa, J. Marniemi, T. Lehtimaki, K. Talvinen, O. T. Raitakari, T. Vasankari, J. Viikari, J. Luoma and S. Yla Herruala, “Baseline Diene Conjugation in LDL Lipids as a Direct Measure of in Vivo LDL Oxidation,” Clinical Chemistry, Vol. 31, No. 4, 1998, pp. 257-261.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.