Study of P, Ca, Sr, Ba and Pb Levels in Enamel and Dentine of Human Third Molars for Environmental and Archaeological Research

Abstract

Elemental determination of 80 third molars, collected from local dental clinics in Hsinchu City, Taiwan during 2009 to 2010, was conducted using inductively coupled plasma—mass spectrometry (ICP-MS). Results show that the mean concentrations of P, Ca, Sr, Ba and Pb in enamel are respectively 14.63% ± 2.19%, 27.91% ± 4.03%, 108.31 ± 35.71 ppm, 1.96 ± 1.01 ppm, and 0.72 ± 0.49 ppm. The concentrations of P, Ca and Sr are higher in enamel than in dentine, on the other hand, the concentrations of Ba and Pb are higher in dentine than in enamel. In enamel and dentine the concentrations of P, Ca and Ca/P ratio are kept constant. In enamelthe concentrations of Sr and Sr/Ca increase by age statistically but the concentrations of Ba and Ba/Ca are not. Pb concentrations in both enamel and dentine increase by age and also increase with significant differences among each birth era. This may indicate the dates of environmental exposure. The levels of Pb in this study are lower than the previous published findings before 1979. The concentrations and distribution of elements in enamel and dentine of third molars other than deciduous or permanent teeth can provide reliable base references to past and future studies.

Share and Cite:

Liu, H. , Chao, J. , Chuang, C. , Chiu, H. , Yang, C. & Sun, Y. (2013). Study of P, Ca, Sr, Ba and Pb Levels in Enamel and Dentine of Human Third Molars for Environmental and Archaeological Research. Advances in Anthropology, 3, 71-77. doi: 10.4236/aa.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Arnold, W. H., & Gaengler, P. (2007). Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Annals of Anatomy, 189, 183-190. doi:10.1016/j.aanat.2006.09.008
[2] Arora, M., Chan, S. W. Y., Kennedy, B. J., Sharma, A., Crisante, D., & Walker, D. M. (2004). Spatial distribution of lead in the roots of human primary teeth. Journal of Trace Elements in Medicine and Biology, 18, 135-139. doi:10.1016/j.jtemb.2004.07.001
[3] Ash, M. M., & Nelson, S. J. (2002). Wheeler’s dental anatomy, physiology and occlusion (pp. 32,45,53). Philadelphia, PA: W.B. Saunders.
[4] Brown, C. J., Chenery, S. R. N., Smith, B., Tomkins, A., Roberts, G. J., Sserunjogi, L., & Thompson, M. (2002). A sampling and analytical methodology for dental trace element analysis. Analyst, 127, 319-323. doi:10.1039/b109066f
[5] Brown, C. J., Chenery, S. R. N., Smith, B., Mason, C., Tomkins, A., Roberts, G. J., Sserunjogi, L., & Tiberindwa, J. V. (2004). Environ mental influences on the trace element content of teeth—Implications for disease and nutritional status. Archives of Oral Biology, 49, 705-717. doi:10.1016/j.archoralbio.2004.04.008
[6] Brudevold F., & Steadman, L. T. (1956). The distribution of lead in human enamel. Journal of Dental Research, 35, 430-437. doi:10.1177/00220345560350031401
[7] Cate, A. R. (1998). Oral histology: Development, structure, and function (5th ed., pp. 1,150). Maryland Heights, MO: Mosby Publisher.
[8] Chao, J. H., Liu, M. T., Yeh, S. A., Huang, S. S., Wu, J. M., Chang, Y. L., Hsu, F. Y., Chuang, C. Y., Liu, H. Y., & Sun, Y. C. (2009). Using medical accelerators and photon activation to determine Sr/Ca concentration ratios in teeth. Applied Radiation and Isotopes, 67, 1121-1126. doi:10.1016/j.apradiso.2009.02.089
[9] Derise, N. L., & Ritchey, S. J. (1974). Mineral composition of normal human enamel and dentin and the relation of composition to dental caries: II. Microminerals. Journal of Dental Research, 53, 853-858. doi:10.1177/00220345740530041601
[10] Dreal, W. F. (1936). Spectrum analysis of dental tissues for trace elements. Journal of Dental Research, 15, 403-406. doi:10.1177/00220345350150060401
[11] Falla-Sotelo, F. O., Rizzutto, M. A., Tabacniks, M. H., Added, N., & Barbosa, M. D. L. (2005). Analysis and discussion of trace elements in teeth of different animal species. Brazilian Journal of Physics, 35, 761-762. doi:10.1590/S0103-97332005000500010
[12] Gruner, J.W., McConnell, D., & Armstrong, W.D. (1937). The relationship between crystal structure and chemical composition of enamel and dentin. The Journal of Biological Chemistry, 121, 771-781.
[13] Hillson, S. (1996). Dental anthropology (pp. 217-225). Cambridge, UK: Combridge University Press. doi:10.1017/CBO9781139170697.010
[14] Hwang, Y. H., Ko, Y., Chiang, C. D., Hsu, S. P., Lee, Y. H., Yu, C. H., Chiou, C. H., Wang, J. D., & Chuang, H. Y. (2004). Transition of cord blood lead level, 1985-2002, in the Taipei area and its determinants after the cease of leaded gasoline use. Environmental Research, 96, 274-282. doi:10.1016/j.envres.2004.02.002
[15] Lakomaa, E. L., & Rytomaa, I. (1977). Mineral composition of enamel and dentine of primary and permanent in Finland. Scandinavian Journal of Dental Research, 85, 89-95.
[16] Liang, Q., Shi, S. Z., & Liu, Y. (2005). Microanalysis of phosphorus in enamel and dentin of deciduous teeth. Journal of PractStomatol, 21, 455-459.
[17] Lowater, F., & Murray, M. M. (1937). Chemical composition of teeth. V. Spectrographic analysis. Biochemical Journal, 31, 837-841.
[18] Malara, P., Kwapulinski, J., & Malara, B. (2006). Do the levels of selected metals differ significantly between the roots of carious and non-carious teeth? Science of the Total Environment, 369, 59-68. doi:10.1016/j.scitotenv.2006.04.016
[19] Manea-Krichten, M., Patterson, C., Miller, G., Settle, D., & Erel, Y. (1991). Comparative increases of lead and barium with age in human tooth enamel, rib and ulna. Science of the Total Environment, 107, 179-203. doi:10.1016/0048-9697(91)90259-H
[20] McConnell, D. (1973). Apatite, its crystal chemistry, mineralogy, utilization and geologic and biologic occurrences, applied mineralogy. Wien/New York: Springer-Verlag.
[21] Murray, M. M. (1936). The Chemical composition of teeth. IV. The calcium, magnesium and phosphorus contents of the teeth of different animals. A brief consideration of the mechanism of calcification (pp.1567-1571). London, UK: University of London.
[22] Pinkham, J. R. (2005). Pediatric dentistry: Infancy through adolescence (4th ed.). Alexandria, VA: Mosby Publisher.
[23] Reitznerová, E., Amarasiriwardena, D., Kop?áková, M., & Barnes, R. M. (2000). Determination of some trace elements in human tooth enamel. Fresenius’ Journal of Analytical Chemistry, 367, 748-754. doi:10.1007/s002160000461
[24] Shi, S. Z, Liang, Q., & Lai, H. (2005). Study on the calcium content of enamel and dentin in deciduous teeth. Journal of Oral Science, 21, 226-229.
[25] Soares, M. A. B., Adachi, E. M., & Saiki, M. (2008). INAA of enamel and dentine samples of a group of children and adults: A comparative study. Journal of Radio Analytical and Nuclear Chemistry, 276, 49-52. doi:10.1007/s10967-007-0408-6
[26] Soremark, R., & Samsahl, K. (1962). Gammaray spectrometric analysis of elements in normal human dentin. Journal Dental Research, 41, 603-606. doi:10.1177/00220345620410031201
[27] Steadman, L. T., Brudevold, F., Smith, F. A., Gardner, D. E., & Little, M. F. (1959). Trace elements in ancient indian teeth. Journal of Dental Research, 38, 285-292. doi:10.1177/00220345590380021001
[28] Thomas, V. N., Socolow, R. H., Fanelli, J. J., & Spiro, T. G. (1999). Effects of reducing lead in gasoline: an analysis of the international experience. Environmental Science & Technology, 33, 3942-3948. doi:10.1021/es990231+
[29] Wang, C. H., Hsu, C. C., Chang, C. W., You, C. F., & Tzeng, W. N. (2010). The migratory environmental history of freshwater resident flathead. Mullet mugilcephalus L. in the Tanshui river, Northern Taiwan. Zoological Studies, 49, 504-514.
[30] Webb, E., Amarasiriwardena, D., Tauch, S., Green, E. F., Jones, J., & Goodman, A. H. (2005). Inductively coupled plasma-mass (ICP-MS) and atomic emission spectrometry (ICP-AES): Versatile analytical techniques to identify the archived elemental information in human teeth. Microchemical Journal, 81, 201-208. doi:10.1016/j.microc.2005.04.002
[31] Zaichick, V., Ovchjarenko, N., & Zaichick, S. (1997). In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth. Applied Raidiation and Isotopes, 50, 283-293. doi:10.1016/S0969-8043(97)10150-6
[32] Zenobio, M. A. F., Nogueira, M. S., & Zenóbio, E. G. (2011). Chemical composition of human enamel and dentin.Preliminary results to de termination of the effective atomic number. http://biblioteca.cdtn.br/cdtn/arpel/adobe/Art-01_Madelon_AFZenobio.pdf

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.