Determination of the Nucleation Region Location of Si Nano-Crystal Grains Prepared by Pulsed Laser Ablation through Changing Position of Substrates

Abstract

To determine the nucleation region location of Si nano-crystal grains, pulsed laser ablation of Si target is performed in Ar gas of 10 Pa at room temperature with laser fluence of 4 J/cm2, the substrates are located horizontal under ablation spot with different vertical distance. Characteristics of deposited grains are described by scanning electron microscopy, Raman scattering and X-ray diffraction spectra, the results indicate that deposition position on substrates in a certain range is relative to target surface, which changes according to different vertical distance of substrates to ablation spot. Grain size increased at first and then decreased with addition of lateral distances to target in the range, but the integral distribution rule was independent of position of substrates. Combining with hydrodynamics model, nucleation division model, thermokinetic equation and flat parabolic motion, spatial nucleation region location of grains is obtained through numerical calculations, which is 2.7 mm-43.2 mm to target surface along the plume axis.

Share and Cite:

Deng, Z. , Luo, Q. , Hu, Z. , Zhang, X. , Ding, X. , Chu, L. and Wang, Y. (2013) Determination of the Nucleation Region Location of Si Nano-Crystal Grains Prepared by Pulsed Laser Ablation through Changing Position of Substrates. Journal of Surface Engineered Materials and Advanced Technology, 3, 133-137. doi: 10.4236/jsemat.2013.32017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Kim, J. H. Park, S. G. Doo, J. D. Nam and T. Kim, “Generation of Size and Structure Controlled Si Nanoparticles Using Pulse Plasma for Energy Devices,” Thin Solid Films, Vol. 517, No. 14, 2009, pp. 4184-4187. doi:10.1016/j.tsf.2009.02.016
[2] E. C. Cho, S. W. Park, X. J. Hao, D. Y. Song, G. Conibeer, S. C. Park and M. A. Green, “Silicon Quantum Dot/ Crystalline Silicon Solar Cells,” Nanotechnology, Vol. 19, No. 24, 2008, pp. 245201-245205. doi:10.1088/0957-4484/19/24/245201
[3] S. H. Hong, J. H. Park and D. H. Shin, “Doping-and Size-Dependent Photovoltaic Properties of p-Type Si-Quantum Dot Heterojunction Solar Cells: Correlation with Photoluminescence,” Applied Physics Letters, Vol. 97, No. 7, 2010, pp. 072108-1-072108-3. doi:10.1063/1.3480609
[4] Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell and M. A. Green, “Effective Light Trapping in Polycrystalline Silicon Thin-Film Solar Cells by Means of Rear Localized Surface Plasmons,” Applied Physics Letters, Vol. 96, No. 26, 2010, pp. 261109-1-261109-3. doi:10.1063/1.3460288
[5] K. Irina, I. Teodora, M. Mihaela, C. Florea, T. Mihaela, S. Monica, B. Adina and D. Adrian, “Nanostructured Silicon Particles for Medical Applications,” Journal of Nanoscience and Nanotechnology, Vol. 10, No. 4, 2010, pp. 2694-2700. doi:10.1166/jnn.2010.1419
[6] S. R. Franklin and R. K. Thareja, “Simulation of Cluster Formation in Laser-Ablated Silicon Plumes,” Journal of Applied Physics, Vol. 97, No. 12, 2005, pp. 123303-1-123303-6. doi:10.1063/1.1931028
[7] I. Umezu and A. Sugimura, “Formation of Nanoscale Fine-Structured Silicon by Pulsed Laser Ablation in Hydrogen Background Gas,” Physics Review B, Vol. 76, No. 4, 2007, pp. 045328-1-045328-10. doi:10.1103/PhysRevB.76.045328
[8] Y. Khang and J. Lee, “Synthesis of Si Nanoparticles with Narrow Size Distribution by Pulsed Laser Ablation,” Journal of Nanoparticle Research, Vol. 12, No. 4, 2010, pp. 1349-1354. doi:10.1007/s11051-009-9669-z
[9] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. K. Kulkarni, S. Heun and F. Rosei, “Diffusion Dynamics during the Nucleation and Growth of Ge/Si Nanostructures on Si(111),” Physics Review Letters, Vol. 96, No. 9, 2006, pp. 096103-1-096103-4. doi:10.1103/PhysRevLett.96.096103
[10] R. Glaus, R. Kaegi, F. Krumeich and D. Günther, “Phenomenological Studies on Structure and Elemental Composition of Nanosecond and Femtosecond Laser-Generated Aerosols with Implications on Laser Ablation Inductively Coupled Plasma Mass Spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy B, Vol. 65, No. 9-10, 2010, pp. 812-822. doi:10.1016/j.sab.2010.07.005
[11] G. S. Fu, Y. L. Wang, L. Z. Chu, Y. Zhou, W. Yu, L. Han and Y. C. Peng, “The Size Distribution of Si Nanoparticles Prepared by Pulsed-Laser Ablation in Pure He, Ar or Ne Gas,” Europhysics Letters, Vol. 69, No. 5, 2005, pp. 758-762. doi:10.1209/epl/i2004-10420-2
[12] Y. L. Wang, Z. C. Deng, L. Z. Chu, G. S. Fu and Y. C. Peng, “The Difference of Energies of Si Atoms with Single-Crystalline, Amorphous, Free and Nanoparticle Configurations,” Europhysics Letters, Vol. 86, No. 1, 2009, pp. 15001-15005. doi:10.1209/0295-5075/86/15001
[13] S. Amoruso, R. Bruzzese, X. Wang and J. Xia, “Propagation of a Femtosecond Pulsed Laser Ablation Plume into a Background Atmosphere,” Applied Physics Letters, Vol. 92, No. 4, 2008, pp. 041503-1-041503-3. doi:10.1063/1.2839582
[14] J. Zi, H. Büscher, C. Falter, W. Ludwig, K. M. Zhang and X. D. Xie, “Raman Shifts in Si Nanocrystals,” Applied Physics Letters, Vol. 69, No. 2, 1996, pp. 200-202. doi:10.1063/1.117371
[15] A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physics Review, Vol. 56, No. 10, 1939, pp. 978-982. doi:10.1103/PhysRev.56.978
[16] T. Yoshida, S. Takeyama, Y. Yamada and K. Mutoh, “Nanometer-Sized Silicon Crystallites Prepared by Excimer Laser Ablation in Constant Pressure Inert Gas,” Applied Physics Letters, Vol. 68, No. 13, 1996, pp. 1772-1774. doi:10.1063/1.116662
[17] Z. C. Deng, Q. S. Luo, X. C. Ding, L. Z. Chu, W. H. Liang, J. Z. Chen, G. S. Fu and Y. L. Wang, “Pressure Threshold and Dynamics of Nucleation for Si Nano-Crystal Grains Prepared by Pulsed Laser Ablation,” Acta Physics Sinica, Vol. 60, No. 12, 2011, pp. 126801-1-126801-5.
[18] T. Makimura, T. Mizuta and K. Murakami, “Formation Dynamics of Silicon Nanoparticles after Laser Ablation Studied Using Plasma Emission Caused by Second-Laser Decomposition,” Applied Physics Letters, Vol. 76, No. 11, 2000, pp. 1401-1403. doi:10.1063/1.126045
[19] T. Makimura, T. Mizuta, T. Takahashi and K. Murakami, “In Situ Size Measurement of Si Nanoparticles and Formation Dynamics after Laser Ablation,” Applied Physics A, Vol. 79, No. 4-6, 2004, pp. 819-821. doi:10.1007/s00339-004-2798-4
[20] S. S. Harila, C. V. Bindhu, M. S. Tillack, F. Najmabadi and A. C. Gaeris, “Internal Structure and Expansion Dynamics of Laser Ablation Plumes into Ambient Gases,” Journal of Applied Physics, Vol. 93, No. 5, 2003, pp. 2380-2388. doi:10.1063/1.1544070
[21] Y. L. Wang, Y. L. Li and G. S. Fu, “Relation between Size-Distribution of Si Nanoparticles and Oscillation-Stabilization Time of the Mixed Region Produced during Laser Ablation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 252, No. 2, 2006, pp. 245-258. doi:10.1016/j.nimb.2006.09.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.