Use of Isoproturon Imprinted Polymer Membranes as a Selective Recognition Platform in a Resistance Based Electrochemical Sensor

Abstract

Methacrylic acid with isoproturon has been utilized to prepare molecularly imprinted polymeric (MIP) membrane on Whatman filter paper no. 5 for selective electrochemical estimation of isoproturon pesticide. MIP membrane was prepared by radical polymerization and characterized using Ultra Violet spectrophotometer, Fourier Transform Infra Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Contact angle study was used to determine the surface energy of the MIP membrane and electrical conductivity measurements were performed by applying a small-amplitude alternating voltage (20 mV) with frequencies varying from 20 Hz to 80 kHz generated by a low-frequency wave form generator. Different isoproturon concentrations in samples were tested and analyzed. Results indicate linear increase in membrane resistance with increasing isoproturon in 10-3 to 10-6 M range. The selectivity of the electrochemical sensor was confirmed by testing isoproturon in presence of the structurally related compounds monouran and diuran. Results reveal highly selective and sensitive sensor, which can be employed for regular estimation of isoproturon in fields.

Share and Cite:

Singh, K., Prajapati, R., Ahlawat, S., Ahlawat, S., Mungali, M. and Kumar, S. (2013) Use of Isoproturon Imprinted Polymer Membranes as a Selective Recognition Platform in a Resistance Based Electrochemical Sensor. Open Journal of Applied Biosensor, 2, 20-28. doi: 10.4236/ojab.2013.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. A. Boyd-Boland, S. Magdic and J. B. Pawliszyn, “Si- multaneous Determination of 60 Pesticides in Water Us- ing Solid-Phase Microextraction and Gas Chromatography- Mass Spectrometry,” Analyst, Vol. 121, No. 7, 1996, pp. 929-937. doi:10.1039/an9962100929
[2] R. Eisert and K. Levsen, “Determination of Pesticides in Aqueous Samples by Solid-Phase Microextraction In-Line Coupled to Gas Chromatography—Mass Spectrometry,” Vol. 6, No. 11, 1995, pp. 1119-1130.
[3] G. R. Pieper, “Residue Analysis of Carbaryl on Forest Foliage and in Stream Water Using HPLC,” Bulletin of Environmental Contamination and Toxicology, Vol. 22, No. 1, 1979, pp. 167-171. doi:10.1007/BF02026924
[4] Z. Hussain and S. Siddique, “Determination of Pesticides in Fruits and Vegetables Using Acetonitrile Extraction and GC/MS Technique,” Journal of Scientific Research, Vol. XXXX, No. 2, 2010, pp. 19-29.
[5] S. Yao, A. Meyer and G. Henze, “Comparison of Am- perometric and UV-Spectrophotometric Monitoring in the HPLC Analysis of Pesticides,” Fresenius’ Journal of Ana- lytical Chemistry, Vol. 339, No. 4, 1991, pp. 207-211. doi:10.1007/BF00325738
[6] C. D. Watts and B. Hegarty, “Use of Immunoassays for the Analysis of Pesticides and Some Other Organics in Water Samples,” Pure and Applied Chemistry, Vol. 67, No. 8-9, 1995, 1533. doi:10.1351/pac199567081533
[7] C. Mouvet, S. Broussard, R. Jeannot, C. Maciag, R. Abuknesha and G. Ismail, “Validation of Commercially Available ELISA Microtiter Plates for Triazines in Water Samples,” Analytica Chimica Acta, Vol. 311, No. 3, 1995, pp. 331-339. doi:10.1016/0003-2670(94)00638-3
[8] M. Franek, V. Kolar and S. A. Eremin, “Enzyme Immu- noassays for s-Triazine Herbicides and Their Application in Environmental and Food Analysis,” Analytica Chimica Acta, Vol. 311, No. 3, 1995, pp. 349-356. doi:10.1016/0003-2670(95)00158-V
[9] G. Wulff, “Molecular Imprinting in Cross-Linked Materi- als with the Aid of Molecular Templates—A Way to- wards Artificial Antibodies,” Angewandte Chemie, Inter- national Edition in English, Vol. 34, No. 17, 1995, pp. 1812-1832. doi:10.1002/anie.199518121
[10] K. J. Shea, “Molecular Imprinting of Synthetic Network Polymers: The de Novo Synthesis of Macromolecular Binding and Catalytic Sites,” Trends in Polymer Science, Vol. 2, No. 5, 1994, 166-173.
[11] D. Kriz and K. Mosbach, “Competitive Amperometric Morphine Sensor Based on an Agarose Immobilised Molecularly Imprinted Polymer,” Analytica Chimica Acta, Vol. 300, No. 1-3, 1995, pp. 71-75. doi:10.1016/0003-2670(94)00368-V
[12] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube, P. Yu. Parhometz and A. V. El’skaya, “Atrazine Sensing by Molecularly Imprinted Membranes,” Biosen- sors and Bioelectronics, Vol. 10, No. 9-10, 1995, pp. 959-964. doi:10.1016/0956-5663(95)99233-B
[13] S. A. Piletsky, T. L. Panasyuk, E. V. Piletskaya, A. V. El’skaya, R. Levi, I. Karube and G. Wulff, “Imprinted Membranes for Sensor Technology: Opposite Behavior of Covalently and Noncovalently Imprinted Membranes,” Macromolecules, Vol. 31, No. 7, 1998, pp. 2137-2140. doi:10.1021/ma970818d
[14] A. W. Flounders, A. K. Singh, J. V. Volponi, S. C. Carichner, K. Wally, A. S. Simonian, J. R. Wild and J. S. Schoeniger, “Development of Sensors for Direct Detec- tion of Organophosphates. Part-II: Sol-Gel Modified Field Effect Transistor with Immobilised Organophosphate Hy- drolase,” Biosensors and Bioelectronics, Vol. 14, No. 8-9, 1999, pp. 715-722. doi:10.1016/S0956-5663(99)00045-7
[15] E. Mallat, D. Barcelo, C. Barzen, G. Gauglitz and R. Abuknesha, “Immunosensors for Pesticide Determination in Natural Waters,” TrAC Trends in Analytical Chemistry, Vol. 20, No. 3, 2001, pp. 124-132. doi:10.1016/S0165-9936(00)00082-0
[16] O. A. Sadik and J. M. Van Emon, “Application of Elec- trochemical Immunosensors to Environmental Monitor- ing,” Biosensors & Bioelectronics, Vol. 11, No. 8, 1996, pp. 1-11.
[17] S. M. Reddy, J. P. Jones, T. J. Lewis and P. M. Vadgama, “Development of an Oxidase-Based Glucose Sensor Us- ing Thickness-Shear-Mode Quartz Crystals,” Analytica Chimica Acta, Vol. 363, No. 2-3, 1998, pp. 203-213. doi:10.1016/S0003-2670(98)00131-7
[18] N. G. Karousos, et al., “Quartz Crystal Microbalance Determination of Organophosphorus and Carbamate Pes- ticides,” Analytica Chimica Acta, Vol. 469, No. 2, 2002, pp. 189-196. doi:10.1016/S0003-2670(02)00668-2
[19] A.-H. Wu and M.-J. Syu, “Synthesis of Bilirubin Im- printed Polymer Thin Film for the Continuous Detection of Bilirubin in an MIP/QCM/FIA System,” Biosensors and Bioelectronics, Vol. 21, No. 12, 2006, pp. 2345-2353. doi:10.1016/j.bios.2006.01.017
[20] B. Sellergren, “Noncovalent Molecular Imprinting: Anti- body-Like Molecular Recognition in Polymeric Network Materials,” TrAC Trends in Analytical Chemistry, Vol. 16, No. 6, 1997, pp. 310-320. doi:10.1016/S0165-9936(97)00027-7
[21] K. P. Singh, S. Ahalawat, R. K. Prajapati, S. Kumar, P. Singh and S. K. Dhawan. “Electrochemical Sensing for the Detection of 2,4-Dichlorophenoxy Acetic Acid Using Molecularly Imprinted Polymer Membrane,” Ionics, Vol. 16, No. 6, 2010, pp. 529-537. doi:10.1007/s11581-010-0419-0
[22] T. Takeuchi and J. Haginaka, “Separation and Sensing Based on Molecular Recognition Using Molecularly Im- printed Polymers,” Journal of Chromatography B: Bio- medical Sciences and Applications, Vol. 728, No. 1, 1999, pp. 1-20. doi:10.1016/S0378-4347(99)00057-2
[23] Q. Liu, Y. X. Zhou and Y. T. Liu, “Recent Progresses in Research on Molecular Imprinting Sensors,” Chinese Journal of Analytical Chemistry, Vol. 27, No. 11, 1999, pp. 1341-1347.
[24] F. L. Dickert, P. Lieberzeit and M. Tortschanoff, “Mo- lecular Imprints as Artificial Antibodies—A New Gen- eration of Chemical Sensors,” Sensors and Actuators B: Chemical, Vol. 65, No. 1-3, 2000, pp. 186-189. doi:10.1016/S0925-4005(99)00327-5
[25] S. Wu, “Polymer Interface and Adhesion,” Marcel Dek- ker, New York, 1982.
[26] D. K. Owens and R. C. Wendt, “Estimation of the Surface Free Energy of Polymers,” Journal of Applied Polymer Science, Vol. 13, No. 8, 1969, pp. 1741-1747. doi:10.1002/app.1969.070130815
[27] K. L. Mittal, “Contact Angle, Wettability and Adhesion,” Vision Sports Publishing (VSP), Utrecht, 1993.
[28] B. Sellergren, “Molecular Imprinting by Noncovalent Interactions. Enantioselectivity and Binding Capacity of Polymers Prepared under Conditions Favouring the For- mation of Template,” Die Makromolekulare Chemie, Vol. 190, No. 11, 1989, pp. 2703-2711. doi:10.1002/macp.1989.021901104
[29] S. A. Piletsky, D. M. Fedoryak, I. D. Atamanenko, M. T. Bryk and V. P. Kukhar, “Nucleoside-Selective Polymers Based on Methacrylate Copolymers,” Ukrainskii Khimi- cheskii Zhurnal, Vol. 59, No. 12, 1993, pp. 1316-1320. (in Russian)
[30] I. A. Nicholls, L. I. Andersson, K. Mosbach, “Recogni- tion and Enantioselection of Drugs and Biochemicals Us- ing Molecularly Imprinted Polymer Technology,” Trends in Biotechnology, Vol. 13, No. 2, 1995, pp. 47-51. doi:10.1016/S0167-7799(00)88904-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.