Share This Article:

Wavefronts and Light Cones for Kerr Spacetimes

Full-Text HTML Download Download as PDF (Size:1023KB) PP. 1882-1890
DOI: 10.4236/jmp.2012.312237    3,511 Downloads   5,533 Views   Citations

ABSTRACT

We investigate the light propagation by means of simulations of wavefronts and light cones for Kerr spacetimes. Simulations of this kind give us a new insight to better understand the light propagation in presence of massive rotating black holes. A relevant result is that wavefronts are backscattered with winding around the black hole. To generate these visualizations, an interactive computer program with a graphical user interface, called JWFront, was written in Java.

Cite this paper

F. Frutos-Alfaro, F. Grave, T. Müller and D. Adis, "Wavefronts and Light Cones for Kerr Spacetimes," Journal of Modern Physics, Vol. 3 No. 12, 2012, pp. 1882-1890. doi: 10.4236/jmp.2012.312237.

References

[1] R. P. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics,” Physical Review Letters, Vol. 11, No. 5, 1963, p. 237. doi:10.1103/PhysRevLett.11.237
[2] H. Friedrich and J. M. Stewart, “Characteristic Initial Data and Wavefront Singularities in General Relativity,” Proceedings of the Royal Society London, Series A, Vol. 385, No. 1789, 1983, pp. 345-371.
[3] J. M. Stewart, “Advanced General Relativity,” Cambridge Monographs on Mathematical Physics, Cambridge University, Cambridge, 1993.
[4] V. I. Arnold, “Singularities of Caustics and Wavefronts,” Kluwer, Amsterdam, 1990. doi:10.1007/978-94-011-3330-2
[5] W. Hasse, M. Kriele and V. Perlick, “Caustics of Wave-fronts in General Relativity,” Classical and Quantum Gravity, Vol. 13, No. 5, 1996, pp. 1161-1182. doi:10.1088/0264-9381/13/5/027
[6] R. Low, “Stable Singularities of Wavefronts in General Relativity,” Journal of Mathematical Physics, Vol. 36, No. 8, 1998, pp. 3332-3335. doi:10.1063/1.532257
[7] J. Ehlers and E. Newman, “The Theory of Caustics and Wavefront Singularities with Physical Applications,” Journal of Mathematical Physics, Vol. 41, 2000, pp. 3344-3378, arXiv:gr-qc/9906065. doi:10.1063/1.533316
[8] V. Perlick, “Gravitational Lensing from a Spacetime Perspective,” Living Reviews in Relativity, Vol. 7, No. 9, 2004, arXiv:1010.3416.
[9] K. P. Rauch and R. Blandford, “Optical Caustics in a Kerr Spacetime and the Origin of Rapid X-Ray Variability in Active Galactic Nuclei,” The Astrophysical Journal, Vol. 421, No. 1, 1994, pp. 46-68. doi:10.1086/173625
[10] F. Grave, “Visualization of Gravitational Collapse and Wavefronts in the General Relativity Theory, Diplomar-beit,” Master Thesis, Eberhard Karls Universit?t Tübingen, Tübingen, 2004.
[11] M. Sereno and F. De Luca, “Primary Caustics and Critical Points behind a Kerr Black Hole,” Physical Review D, Vol. 78, No. 2, 2008, Article ID: 023008, arXiv: astro-ph/0710.5923.
[12] V. Bozza, “Optical Caustics of Kerr Spacetime: The Full Structure,” Physical Review D, Vol. 78, No. 6, 2008, Article ID: 063014, arXiv:gr-qc/0806.4102.
[13] R. D. Blandford and R. Narayan, “Cosmological Applications of Gravitational Lensing,” Annual Review of Astronomy and Astrophysics, Vol. 30, 1992, pp. 311-358. doi:10.1146/annurev.aa.30.090192.001523
[14] P. Schneider, J. Ehlers and E. E. Falco, “Gravitational Lenses,” Springer, Berlin, 1992. doi:10.1007/978-1-4612-2756-4
[15] H. Ohanian and R. Ruffini, “Gravitation and Spacetime,” W. W. Norton & Company, New York, 1994.
[16] A. O. Petters, “Arnold’s Singularity Theory and Gravitational Lensing,” Journal of Mathematical Physics, Vol. 34, No. 8, 1993, pp. 3555-3581. doi:10.1063/1.530045
[17] A. O. Petters, H. Levine and J. Wambsganss, “Singularity Theory and Gravitational Lensing,” Springer, Berlin, 2001. doi:10.1007/978-1-4612-0145-8
[18] S. Frittelli and A. O. Petters. “Wave Fronts, Caustic Sheets, and Caustic Surfing in Gravitational Lensing,” Journal of Mathematical Physics, Vol. 43, No. 11, 2002, pp. 5578-5611, arXiv:astro-ph/0208135. doi:10.1063/1.1511790
[19] G. F. R. Ellis, B. A. Bassett and P. K. S. Dunsby, “Lensing and Caustic Effects on Cosmological Distances,” Classical and Quantum Gravity, Vol. 15, No. 8, 1998, pp. 2345-2361, arXiv:gr-qc/9801092v1. doi:10.1088/0264-9381/15/8/015
[20] F. Grave, F. Frutos-Alfaro, T. Müller and D. Adis, “JWFront in the Eleventh Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity,” In: H. Kleinert and R. T. Jantzen, Eds., Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting, World Scientific Publishing Company, London, 2008.
[21] R. d’Inverno, “Introducing Einstein’s Relativity,” Oxford University Press, Oxford, 1992.
[22] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” Freeman, San Francisco, 1973.
[23] J. M. Bardeen, W. H. Press and S. A. Teukolsky, “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation,” The Astrophysical Journal, Vol. 178, 1972, pp. 347-369. doi:10.1086/151796
[24] A. C. Hearn, “REDUCE (User’s and Contributed Packages Manual),” Konrad-Zuse-Zentrum für Information-stechnik, Berlin, 1999.
[25] O. Semerák, “Spinning Test Particles in a Kerr Field-I,” Monthly Notices of Royal Astronomical Society, Vol. 308, No. 3, 1999, pp. 863-875. doi:10.1046/j.1365-8711.1999.02754.x

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.