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Abstract 
By the distance or degree of vertices of the molecular graph, we can define 
graph invariant called topological indices. Which are used in chemical graph 
to describe the structures and predicting some physicochemical properties of 
chemical compound? In this paper, by introducing two new topological in-
dices under the name first and second Zagreb locating indices of a graph G, 
we establish the exact values of those indices for some standard families of 
graphs included the firefly graph. 
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1. Introduction 

Topological indices play a significant role mainly in chemistry, pharmacology, 
etc. (see [1]-[7]). Many of the topological indices of current interest in mathe-
matical chemistry are defined in terms of vertex degrees of the molecular graph. 
Two of the most famous topological indices of graphs are the first and second 
Zagreb indices which have been introduced by Gutman and Trinajstic in [8], 
and defined as ( ) ( ) ( )( )2

1 u V GM G d u
∈

= ∑  and ( ) ( ) ( ) ( )2 uv E GM G d u d v
∈

= ∑ , 
respectively. The Zagreb indices have been studied extensively due to their nu-
merous applications in the place of existing chemical methods which need more 
time and increase the costs. Many new reformulated and extended versions of the 
Zagreb indices have been introduced for several similar reasons (cf. [9]-[17]). 

One of the present authors Saleh [18] has recently introduced a new matrix 
representation for a graph G by defining the locating matrix ( )GLo  over G. 
We will redefine this representation as in the following. 
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Definition 1 ([18]) Let ( ),G V E=  be a connected graph with vertex set 
{ }1 2, , , nV v v v= 

. A locating function of G denoted by ( )GL  is a function 
( ) ( ) { }( ): 0

n
G V G +→ L  such that  
( ) ( ) ( ) ( )( )1 2, , , , , ,i i i i n iv d v v d v v d v v= =v L , where ( ),i jd v v  is the distance 

between the vertices iv  and jv  in G. The vector iv  is called the locating 
vector corresponding to the vertex iv , where i j⋅v v  is actually the dot product 
of the vectors iv  and jv  in the integers space { }( )0

n+
  such that iv  is 

adjacent to jv . 
The above locating function and huge applications of Zagreb indices moti-

vated us to introduce two new topological indices, namely first and second lo-
cating indices, based on the locating vectors. 

Definition 2. Let ( ),G V E=  be a connected graph with a vertex set 
{ }1 2, , , nV v v v= 

 and an edge set ( )E G . Then we define the first and second 
locating indices as 

( )
( )
( ) ( )

( )

2
1 2and ,

i i j
i i j

v V G v v E G
M G M G

∈ ∈

= = ⋅∑ ∑v v v   

respectively. 
All graphs in this paper will be assumed simple, undirected and connected 

unless stated otherwise. For graph theoretical terminologies, we refer [19] to the 
readers. 

2. Some Exact Values in Terms of Locating Indices 

In this section, by considering Definition 2, we determine the first and second 
locating indices for the standard graphs nK , nC , ,n mK , nW , nP , and also for 
the join graph 1 2G G G≅ +  such that 1G  and 2G  are both connected graphs 
with diameter 2 and G will be assumed as 3C , 5C -free graphs. 

Theorem 3. Let nG K≅  be the complete graph with a vertex set  

( ) { }1 2, , , nV G v v v= 
, where 2n ≥ . Then ( ) ( )1 1nM K n n= −  and  

( ) ( )( )
2

1 2
2n

n n n
M K

− −
= . 

Proof. Let iv  be a locating vector corresponding to the vertex ( )iv V G∈ . 
Then ( )1 2, , ,i na a a=v 

 such that 0ia =  and 1 1ia + = . Thus ( )2 1i n= −v . 
But we have total n vertices in ( )V G , and so ( ) ( )1 1nM K n n= − , as required. 
On the other hand, for any two locating vectors iv  and jv , where i j≠ , we  

definitely have 2i j n⋅ = −v v . Hence ( ) ( )( )
2

1 2
2n

n n n
M K

− −
= . 

In the next two Theorems, we investigate the cycle nC  depends on the status 
of n. 

Theorem 4. For an even integer 2n ≥ , let nG C≅ . Then  

( )
( )2

1

2

12n

n n
M C

+
=  and ( ) ( )22

2

2
12n

n n
M C

−
= . 

Proof. By labeling the vertices of the cycle nC  as { }1 2, , , nv v v
 in the anti-

clockwise direction, we obtain 
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1 0,1, 2,3, , , 1, 2, ,1 ,
2 2 2
n n n = − − 

 
v    

2 1,0,1,2, , 1, , 1, , 2 ,
2 2 2
n n n = − − 

 
v    

3 2,1,0,1, , 2, 1, , ,3 ,
2 2 2
n n n = − − 

 
v    

  

1,2,3, , , 1, 2, 2, ,0 ,
2 2 2 2n
n n n n = − − − 

 
v    

and hence 
2

2 22
12

4

n

i i

ni
=

= −∑v . It is not difficult to see that each iv  has the same 

components within different location, and so each 2
iv  has the same sum as the 

form of ( )( ) 2
2 1 2 3

12i

n n n n+ + −
=v . Therefore ( )

( )2

1

2

12n

n n
M C

+
= . In addi-

tion, by the symmetry, 

( )
( ) ( )2

2

1
2

1 1 1 22 2 2 22 1 2 1 2 1
6 2 12

n

i i
i

n n n nn n n
i i+

=

      + + +       −      ⋅ = − = − − − =
   
   
   

∑v v  

which gives ( ) ( )22

2

2
12n

n n
M C

−
= . 

Theorem 5. For an odd integer 3n ≥ , let nG C≅ . Then  

( )
( )2 2

1

1

12n

n n
M C

−
=  and ( ) ( )( )( )

2

1 2 3
12n

n n n n
M C

− − +
= . 

Proof. With a similar procedure as in the proof of Theorem 4, we get 

1
1 1 10,1,2,3, , , 1, 2, ,1 ,

2 2 2
n n n− − − = − − 

 
v  

 

2
1 1 11,0,1,2, , 1, , 1, , 2 ,

2 2 2
n n n− − − = − − 

 
v  

 

3
1 1 12,1,0,1, , 2, 1, , ,3 ,

2 2 2
n n n− − − = − − 

 
v  

 

  
1 1 11,2,3, , , 1, 2, ,0

2 2 2n
n n n− − − = − − 

 
v  

 
which implies 

( )1
2

2
2 2

1

1
2 ,

12

n

i
i

n n
i

−

=

−
= =∑v  

and so ( )
( )2 2

1

1

12n

n n
M C

−
= . Also, by the symmetry, 
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( ) ( )

( )

( )( )( )

1
2

2

1
2

2

1
2 1

4
1 1 1 1 11 2 1 1 12 2 2 2 22 1 2 1

6 2 4

1 2 3
12

n

i i
i

n
i i

n n n n n
n

n n n

−

+
=

−
⋅ = − +

 − − −   − −     + + +        −       = − − − +
   
   
   

− − +
=

∑v v

 

which gives the exact value of ( )2 nM C  as depicted in the statement of theo-
rem.  

Now we will take into account the complete bipartite graphs to determine the 
locating indices. 

Theorem 6. Let ,n mG K≅ , where 1 n m≤ ≤ . Then  
( ) ( ) ( )2 2

1 , 4 4 2n mM K n m n m nm= + − + +  and ( ) ( )2 , 2 2n mM K nm n m= + − . 
Proof. For all 1 i n≤ ≤  and 1 j m≤ ≤ , by labeling the adjacent vertices iv  

and n jv +  of ,n mK , the locating vectors iv  of iv  are given by: 
1 2

1 2

3 1

3

1

0, 2, , 2,1,1, ,1 , 2,0, 2, , 2,1,1, ,1 ,

2, 2,0, 2, , 2,1,1, ,1 , , 2, , 2,0,1,1, ,1 ,

1, ,1,0, 2

n m n m

n m n m

n

n

n

− −

− −

+

   
= =      
   
   

= =      
   

=

v v

v v

v

   

   



   

    



1 2

2

1

, 2, , 2 , 1, ,1, 2,0, 2, , 2 , ,

1, ,1, 2, , 2,0 .

m n m

n

n m

n m

− −

+

−

+

   
=      

   
 

=   
 

v

v

  

 

   

 

 

In here, for any 1,2, ,i n= 
, we have ( )2 4 1i n m= − +v  and for any 

1, 2, ,i n n n m= + + +
, we get ( )2 4 1i m n= − +v . Therefore 

( ) ( )( ) ( )( )
( ) ( )

1 ,

2 2

4 1 4 1

4 4 2 .

n mM K n n m m m n

n m n m nm

= − + + − +

= + − + +



 

On the other hand, for any two consecutive locating vertices 1,i i+v v  in ,n mK , 
since ( )1 2 2i i n m+⋅ = + −v v , we obtain ( ) ( )2 , 2 2n mM K nm n m= + − . 

Since the following consequences of Theorem 6 are very special cases and 
clear, we will omit their proofs. 

Corollary 7. Let ,n nG K≅ , where 1n ≥ . Then ( ) ( )1 , 2 5 4n nM K n n= −  and 
( ) ( )2

2 , 2 2 2n nM K n n= − . 
Corollary 8. Let 1,mG K≅ . Then ( ) ( )1 1, 2 2 1mM K m m= −  and  
( ) ( )2 1, 2 1mM K m m= − . 

The case for wheel graphs will be investigated in the following result. 
Theorem 9. Let us consider G as the wheel graph nW  ( 4n ≥ ) with 1n +  

vertices. Then we have ( ) ( )1 4 2nM W n n= −  and ( ) ( )2 6 15nM W n n= − . 
Proof. With a similar approximation as in the previous results, by labeling the 
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vertices of ( )V G  in the anticlockwise direction as 1 2 1, , , ,n nv v v v +  such that 

1nv +  is the center of the wheel, we obtain 
3 3

1 2

2 3

3

1

0,1, 2, 2, , 2,1,1 , 1,0,1, 2,2, , 2,1 ,

2,1,0,1,2, , 2,1 , , 1, 2, 2, , 2,1,0,1 ,

1,1, ,1,0 .

n n

n n

n

n

n

− −

− −

+

   
= =      
   
   

= =      
   
 

=   
 

v v

v v

v

 

 



 

  



 

Now for any locating vector iv  corresponding to a vertex iv  { }( )1,2, ,i n∈  , 
we have 2 4 9i n= +v  and 2

1n n+ =v . Hence ( ) ( )1 4 2nM W n n= − . 
For ( )2 nM W , by labeling the vertices as above, we have 

1 2
3 3

3 4
2 1

5
3

, , 2, 2, , 2,1, , , , , 2, 2, , 2,1 ,

2, , , , 2, , 2,1 , 2, 2, , , , 2, , 2,1 ,

2, 2, 2, , , , 2, , 2,1 , , 1, 2, 2, , 2, ,

n n

n n

n
n n

− −

− −

−

   
= =   
   
   

= =   
   
 

= = 
 

v v

v v

v v

 

 

 

 

 

  

0 1 1 1 0 1

1 0 1 1 0 1

1 0 1 1

1

, ,

1,1, ,1,0 .n
n

+

 
 
 

 
=  
 

v




0 1
 

Bearing in mind the permutation of components , ,1 0 1  in each vector iv , 
where 1,2, ,i n= 

, it is easy to see that any two adjacent vertices iv  and jv  
{ }( ), 1, 2, ,i j n∈   satisfy 4 11i j n⋅ = −v v  and 1 2 4i i n+⋅ = −v v  for  

1,2, ,i n= 
. Hence ( ) ( )2 6 15nM W n n= − . 

The result for determining of locating indices on path graphs can be given as 
in the following. 

Theorem 10. Let nG P≅  ( )3n ≥ . Then 

( ) ( )( )( )1

1
1

1 2 2 1
,

3

n

n
j

n j n j n j
M P

−

=

− − + − +
= ∑  

and 

( ) ( )( )( )1

2
1

1 1
2 .

3

n

n
j

n j n j n j
M P

−

=

− − + − −
= ∑  

Proof. Assume that G is the graph nP  ( 3n ≥ ). By labeling the vertices from 
left to right as 1 2, , , nv v v  according to the locating function, the correspond-
ing vector for each vertex ( )iv V G∈  ( 1, ,i n= 

) will be the form of 

( ) ( )
( ) ( )

1 2

1

0,1, 2,3, , 1 , 1,0,1, 2, , 2 , ,

2, 1, ,0,1 , 1, 2, 3, ,0 .n n

n n

n n n n n−

= − = −

= − − = − − −

v v

v v

  

 

 

By applying the symmetry on components between the vector pairs 1, nv v  
and 2 1, ,n−v v   and so on, we can see that 
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( ) ( )( )( )1 1
2

1
1 1 1

1 2 2 1
2 .

3

n jn n

n
j i j

n j n j n j
M P i

−− −

= = =

− − + − +
= =∑∑ ∑  

For ( )2 nM P , we see that 

( ) ( ) ( )( ) ( )
1

1 2
1

0 1 1 0 1 2 1 ,
n

i
n n i i

−

=

⋅ = ⋅ + ⋅ + + − − = −∑v v   

( ) ( ) ( )( ) ( )
1

2 3
1

1 2 0 1 2 3 1 ,
n

i
n n i i

−

=

⋅ = ⋅ + ⋅ + + − − = −∑v v   

( )
1

3 4
1

1 ,
n

i
i i

−

=

⋅ = −∑v v  

  

However, by the symmetry between the components of the vectors as men-
tioned above, we get 

( ) ( )
1 1

2
2

1 1 1 1 1
2 1 2

n j n j n jn n

n
j i j i i

M P i i i i
− − −− −

= = = = =

 
= − = − 

 
∑∑ ∑ ∑ ∑  

which can be rewritten as in the form 

( ) ( )( )( ) ( )( )

( )( )( )

1

2
1

1

1

1 2 2 1 1
2

6 2

1 1
2 .

3

n

n
j

n

j

n j n j n j n j n j
M P

n j n j n j

−

=

−

=

− − + − + − − + 
= − 

 
− − + − −

=

∑

∑



 

This complete the proof. 
It is known that from the elementary textbooks the join 1 2G G G= +  of 

graphs 1G  and 2G  with disjoint vertex sets 1V  and 2V  and edge sets 1E  
and 2E  is the graph union 1 2G G  together with all the edges joining 1V  and 

2V . In the following theorem we find first and second locating indices for the 
join graph G. 

Theorem 11. Let 1 2G G G≅ +  such that 1G  and 2G  are both connected 
graphs with diameter 2 and G is a 3C  or 5C -free graph. Assume that 1G  has 

1n  vertices and 1m  edges while 2G  has 2n  vertices and 2m  edges. Then 

( ) ( ) ( )2 2
1 1 2 1 2 1 2 1 22 4 6 ,M G n n n n n n m m= + + − − − +  

and 

( ) ( ) ( ) ( )2 1 1 2 2 1 2 1 2 1 22 4 2 2 .M G m n m n m m n n n n= + − + + + −  

Proof. Assume that G satisfies the conditions in the statement of theorem. Let 
us label the vertices of the graph G as 

1 1 1 1 21 2 1 2, , , , , , , ,n n n n nv v v v v v+ + + 
 

where ( )
11 2 1, , , nv v v V G∈  and ( )

1 1 1 21 2 2, , ,n n n nv v v V G+ + + ∈ . Also let v  be 
the locating vector corresponding to the vertex v such that ( )1v V G∈ : 

( ) ( )deg deg 1 21

0,1, ,1, 2, , 2 ,1, ,1 .
nv n v− −

 
 =
 
 

v
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Then ( )2
2 14 4 3degn n v= + − −v . 

Similarly, for any vertex ( )2w V G∈ , the locating vector w  corresponding to 
w: 



( )


( )1 2deg deg 1

1, ,1,0,1, ,1, 2, , 2 .
n w n w− −

 
 =
 
 

w   



 

So ( )2
1 24 4 3degn n w= + − −w . Therefore, by the above equalities on 2v  

and 2w , we obtain 

( ) ( ) ( )
( ) ( )

1 1 2 1 1 2 1 2 2

2 2
1 2 1 2 1 2 1 2

4 4 6 4 4 6

2 4 6 .

M G n n n m n n n m

n n n n n n m m

= + − − + + − −

= + + − − − +



 

Now, let us make partition to the set of vertices of G as 

( ){ }1: , ,A u v u v V G= ⋅ ∈
 

( ){ }2: , ,B u v u v V G= ⋅ ∈
 

( ) ( ){ }1 2: , .C u v u V G v V G= ⋅ ∈ ∈
 

Hence ( )2M G  can be written as 
u v A u v B u v C⋅ ∈ ⋅ ∈ ⋅ ∈

⋅ + ⋅ + ⋅∑ ∑ ∑u v u v u v . To 
get 

u v A⋅ ∈
⋅∑ u v  for any two adjacent vertices ( )1,u v V G∈ , let us consider 

( )


( )


21deg deg 1

0,1, ,1, 2, , 2 ,1, ,1
nu n u− −

 
 =
 
 

u   



 

( ) ( )
 

21 deg 1deg 1

1,0, 2, , 2, 1, ,1 ,1, ,1 .
nn uu − −−

 
 =
 
 

v   



 
We then have 

( )( ) ( )( )1 2 2 12 deg 1 2 deg 1 2 4u n u n n n⋅ = − + − − + = + −u v  

which implies ( )1 2 12 4u v A m n n
⋅ ∈

⋅ = + −∑ u v . With a similar calculation, we get 
( )2 1 22 4u v B m n n

⋅ ∈
⋅ = + −∑ u v . 

Next, we need to calculate 
u v C⋅ ∈

⋅∑ u v . To do that let us take ( )1u V G∈  and 
( )2v V G∈ , and then labeling as 

( )


( )


21deg deg 1

0,1, ,1, 2, , 2 ,1, ,1
nu n u− −

 
 =
 
 

u   



 

( )


( )


( )


( )1 2deg 1 deg 1 deg deg 1

1, ,1, 1, ,1 ,0,1, ,1, 2, , 2 .
u n u v n v+ − − − −

 
 =
 
 

v    



 
Hence we get 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

deg 2 deg 1 deg 2 deg 1

2 4 deg deg

u n u v n v

n n u v

⋅ = + − − + + − −

= + − − −

u v
 

and so ( )( )1 2 1 2 2 1 1 22 4 2 2u v C n n n n n m n m
⋅ ∈

⋅ = + − − −∑ u v . 
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After all above calculations, we finally obtain 

( ) ( ) ( )
( )( )

( ) ( ) ( )

2 1 2 1 2 1 2

1 2 1 2 2 1 1 2

1 1 2 2 1 2 1 2 1 2

2 4 2 4

2 4 2 2

2 4 2 2 .

M G m n n m n n

n n n n n m n m

m n m n m m n n n n

= + − + + −

+ + − − −

= + − + + + −



 

Hence the result. 

3. Locating Indices of Firefly Graphs 

We recall that a firefly graph , , 2 2 1s t n s tF − − −  ( 0, 0s t≥ ≥  and 2 2 1 0n s t− − − ≥ ) 
is a graph of order n that consists of s triangles, t pendant paths of length 2 and 

2 2 1n s t− − −  pendent edges that are sharing a common vertex (cf. [20]). Let 

n  be the set of all firefly graphs , , 2 2 1s t n s tF − − − . Note that n  contains the stars 
( )0,0, 1n nS F −≅ , stretched stars ( )0, , 2 1t n tF − −≅ , friendship graphs 1,0,0

2
nF −

 
≅  
 

 and 
butterfly graphs ( ),0, 2 1s n sF − −≅ . 

In the next theorem we present the first and second locating indices for the 
firefly graph. In our calculations, for simplicity, we denote 2 2 1n s t− − −  by a 
single letter l. 

Theorem 12. Let , ,s t lG F≅  ( 0, 0s t≥ ≥  and 0l ≥ ) be a firefly graph of or-
der n. Then 

( ) 2 2 2
1 4 16 26 2 16 52 10 38 28 ,M G l ls lt l s st s t t= + + − + + − + −  

and 

( ) 2 2 2
2 2 16 13 2 24 52 20 22 17 .M G l ls lt l s st s t t= + + − + + − + −  

Proof. Let , ,s t lG F≅  ( 0, 0s t≥ ≥  and 0l ≥ ) is a firefly graph of order n. Let 
us label the vertices with clockwise direction as 

1 2 2 1 2 2 2 3 2 1 2 2

2 3 2 1 2 2 2 3 2 2 1

, , , , , , , , ,
, , , , , , ,

s s s s l s l

s l s l t s l t s l t s t l

v v v v v v v
v v v v v

+ + + + + + +

+ + + + + + + + + + + + + +

 

 

 

where 1v  is the center of the firefly graph and 

2 3 2 1
2

, , , : vertices of triangles,s
s

v v v +




 
2 2 2 3 2 1, , , : vertices of pendent edges,s s s l

l

v v v+ + + +




 
2 2 2 3 2 1, , , : vertices of pendent path of length 1,s l s l s l t

t

v v v+ + + + + + +




 
2 2 2 3 2 2 1, , , : vertices of pendent path of length 2.s l t s l t s t l

t

v v v+ + + + + + + + +




 
Now we calculate the corresponding vectors iv  for each vertex ( )iv V G∈ , 

where 1,2, , 2 2 1i s t l= + + + , as in the following: 

1
2

0,1,1, ,1,1,1, ,1,1,1, ,1, 2, 2, , 2 ,
s l t t

 
=  
 

v
   

   

 

2
2 2

1,0,1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
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3
2 2

1,1,0, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 

4
2 4

1, 2, 2,0,1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 

5
2 4

1, 2, 2,1,0, 2,2, , 2, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,
s l t t−

 
=  
 

v
   

   

 
  

2 1
2 2

1, 2, 2, , 2,1,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

2 2
2 1

1, 2, 2, , 2,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

2 3
2 2

1, 2, 2, , 2, 2,0, 2, 2, , 2, 2, 2, , 2,3,3, ,3 ,s
s l t t

+
−

 
=  
 

v
   

   

 

  

2 1
2 1

1, 2, 2, , 2, 2, 2, , 2,0, 2, 2, , 2,3,3, ,3s l
s l t t

+ +
−

 
=  
 

   

   v  

2 2
2 1 1

1, 2, 2, , 2, 2, 2, , 2,0, 2, 2, , 2,1,3,3, ,3s l
s l t t

+ +
− −

 
=  
 

   

   v  

  

2 1
2 1 1

1, 2, 2, , 2, 2, 2, , 2, 2, 2, , 2,0,3,3, ,3,1 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

2 2
2 1 1

2,3,3, ,3,3,3, ,3,1,3,3, ,3,0, 4, 4, , 4 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

2 3
2 2 2

2,3,3, ,3,3,3, ,3,3,1,3,3, ,3,0, 4, 4, , 4 ,s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

  

2 2 1
2 1 1

2,3,3, ,3,3,3, ,3,3,3, ,3,1, 4, 4, , 4,0 .s l t
s l t t

+ + +
− −

 
=  
 

   

   v  

Suppose that ( ), , ,A B C D V G⊂  such that 

{ } { }
{ } { }

2 3 2 1 2 2 2 3 2 1

2 2 2 3 2 1 2 2 2 3 2 2 1

, , , , , , , ,

, , , , , , , .
s s l s l s l t

s s s l s l t s l t s t l

A v v v C v v v

B v v v D v v v
+ + + + + + + +

+ + + + + + + + + + + + +

= =

= =

 

 

 

Therefore we can write 

( ) 2 2 2 2
1 .

v A v B v C v D
M G

∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑v v v v  

For the calculation of 2
v A∈∑ v , we have the cases 2

1 2 4 2 5s l t t s l t= + + + = + +v  
and 
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( )2 2 4 2 2 4 4 9 4 8 13 6,i s l t t l s t= + − + + + = + + −v  

where 2,3, , 2 1i s= +
. Hence 

( )2

2

2

2 5 2 4 8 13 6

2 5 8 16 26 12

10 5 8 26 16 .

v A
s l t s l s t

s l t sl s st s
l s t ls st s

∈

= + + + + + −

= + + + + + −

= − + + + +

∑v

 

On the other hand, for the calculation of 2
v B∈∑ v , we have 

( ) ( )2 1 4 2 4 1 4 9 4 8 13 3,i s l t t l s t= + + − + + = + + −v  

where for 2 1,2 2, , 2 1i s s s l= + + + + . Thus 

( )2 24 8 13 3 4 8 13 3 .
v B

l l s t l ls lt l
∈

= + + − = + + −∑v  

Thirdly to calculate 2
v C∈∑ v , we have 

( ) ( ) ( )2 2 4 2 4 4 1 9 1 4 8 13 11,i s l t t l s t= + + + − + − = + + −v  

where 2 2,1,2 3, , 2 1i s l s l s l t= + + + + + + + , and so 

( )2 24 8 13 11 4 8 13 11 .
v C

t l s t tl ts t t
∈

= + + − = + + −∑v  

Finally, for the case of 2
v D∈∑ v , we get 

( ) ( ) ( )2 3 9 2 9 9 1 16 1 9 18 25 22,i s l t t l s t= + + + − + − = + + −v  

where 2 2 2 3 2 2 1, , ,s l t s l t s t li v v v+ + + + + + + + +=  . This gives 

( )2 29 18 25 22 9 18 25 22 .
v D

t l s t tl ts t t
∈

= + + − = + + −∑v  

By collecting all above calculations, we obtain 

( ) 2 2 2 2
1

2 2

2 2

2 2 2

10 5 8 26 16 4 8 13 3

4 8 13 11 9 18 25 22

4 16 26 2 16 52 10 38 28 ,

v A v B v C v D
M G

l s t ls st s l ls lt l
tl ts t t tl ts t t

l ls lt l s st s t t

∈ ∈ ∈ ∈

= + + +

= − + + + + + + + −

+ + + − + + + −

= + + − + + − + −

∑ ∑ ∑ ∑v v v v

 

as required. 
Before starting to calculate the index ( ) ( )2 i j i jv u E GM G

∈
= ⋅∑ v u , we should 

remind that for any two adjacent vertices u and v will be denoted by u v≈ . Now, 
let us again consider the same subsets A, B, C and D of ( )V G . Therefore we 
firstly have 

( )( ) ( )1

2

2 1 2 2 2 3 2 2 4 5 3

4 8 10 6 .
i

i
v A

s s l t t s l s t

sl s st s
∈

⋅ = + − + + + = + + −

= + + −

∑ v v
 

( )( ) ( )1

2

2 2 1 3 2 4 5 2

2 4 5 2 .
i

i
v B

l s l t t l l s t

l sl lt l
∈

⋅ = + − + + = + + −

= + + −

∑ v v
 

( )( ) ( )1

2

1 2 2 1 2 2 4 4 1

2 4 4 .
i

i
v C

t s l t t t l s t

tl ts t t
∈

⋅ = + + + − + = + + −

= + + −

∑ v v
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Secondly, 

{ }
( )( ) ( )

1
1

1

2

2 1 4 2 2 9 2 4 8 13 7

8 16 26 14 .

i
i i

i i
v A v

v v

s s l t t s l s t

sl s st s
+

+
∈ −
≈

⋅ = + − + + + = + + −

= + + −

∑ v v
 

Thirdly, 

( ) ( )( )

( )

,

2

2 6 2 1 12 1

6 12 18 16 6 12 18 16 .

i i t
i i t

i i t
v C v D

v v

t s l t t

t l s t tl ts t t

+
+

+
∈ ∈

≈

⋅ = + + + − + −

= + + − = + + −

∑ v v
 

Again, by collecting all above calculations, we obtain 

( )
{ }1

1

2 1 1 1 1
,

2 2 2

2 2

2 2

4 8 10 6 2 4 5 2 2 4 4

8 16 26 14 6 12 18 16

2 16 13 2 24 52 20

i i tii i i
i i ti i

i i i i i i i t
u C v Dv A vv A v B v C

v vv v

M G

sl s st s l sl lt l tl ts t t
sl s st s tl ts t t

l ls lt l s st s

+
++

+ +
∈ ∈∈ −∈ ∈ ∈

≈≈

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + + − + + + − + + + −

+ + + − + + + −

= + + − + + − +

∑ ∑ ∑ ∑ ∑v v v v v v v v v v

222 17 .t t−

 

These all above processes complete the proof. 
Corollary 13. 1) For any friendship graph of order n, 

( ) ( )2 2
1 24 13 9 and 6 22 16.M G n n M G n n= − + = − +   

2) For any butterfly graph of order n, 

( ) ( )2 2
1 24 10 6 6 and 8 24 6 2 4.M G n n s M G ns s n n= − − + = − − + +   

4. Conclusion 

In this paper, two new topological indices based on Zagreb indices are proposed. 
The exact values of these new topological indices are calculated for some stan-
dard graphs and for the firefly graphs. These new indices can be used to investi-
gate the chemical properties for some chemical compound such as drugs, bridge 
molecular graph etc. For the future work, instead of defining these new topolog-
ical indices based on the degrees of the vertices, we can redefine them based on 
the degrees of the edges by defining them on the line graph of any graph. Similar 
calculations can be computed to indicate different properties of the graph. 
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