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Abstract 
In the following pages I will try to give a solution to this very known unsolved 
problem of theory of numbers. The solution is given here with an important 
analysis of the proof of formula (4.18), with the introduction of special inter-
vals between square of prime numbers that I call silver intervals Mδ . And I 
make introduction of another also new mathematic phenomenon of logical 
proposition “In mathematics nothing happens without reason” for which I 
use the ancient Greek term “catholic information”. From the theorem of 
prime numbers we know that the expected multitude of prime numbers in an 
interval [ ],x x dx+  is given by formula ( ) ( )lnx dx xπ   considering that 
interval as a continuous distribution of real numbers that represents an ele-
mentary natural numbers interval. From that we find that in the elementary 
interval [ ), 1ν ν +  around of a natural number ν we easily get by 1dx =   

the probability ( ) ( )1 lnp ν ν  that has the ν to be a prime number. From 

the last formula one can see that the second part ( ) ( )1 8p ν ν>  of formula 

(4.18) is absolutely in agreement with the above theorem of prime numbers. 
But the benefit of the (4.18) is that this formula enables correct calculations in 
set N on finding the multitude of twin prime numbers, in contrary of the 
above logarithmic relation which is an approximation and must tend to be 
correct as ν tends to infinity. Using the relationship (4.18) we calculate here 
the multitude of twins in N, concluding that this multitude tends to infinite. 
But for the validity of the computation, the distribution of the primes in a 
random silver interval Mδ  is examined, proving on the basis of catholic in-
formation that the density of primes in the same random silver interval Mδ  
is statistically constant. Below, in introduction, we will define this concept of 
“catholic information” stems of “information theory” [1] and it is defined to 
use only general forms in set N, because these represent the set N and not fi-
nite parts of it. This concept must be correlated to Riemann Hypothesis. 
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Stay away from infinity 
Never look it in the eye 

Friedrich Gauss 

1. Introduction 

The symbol qν  (with Nν ∈ ) from now on will symbolize the prime numbers. 
There are the definitions of the endless sequence of the prime numbers that will 
be symbolized as follows: 0 1 2 31, 2, 3, 5,q q q q= = = =  .

 
Let a random natural number aν ν= , Nν ∈  and let two more prime num-

bers qα , qβ  that are not equal to each other,
 

q qα β≠ . At first, it will be shown 
the independency of the fact that “the random Natural number aν , can be di-
vided by the prime number qα ” from the fact that “the random Natural number 
aν  can be divided by the prime number qβ ”. Let, also, without impairment of 
the generality of this proof, that 7qα =  and 5qβ = . Obviously, per 35 succes-
sive Natural numbers the 5 Natural numbers will be multiple of 7 and the 7 Natu-
ral numbers will be multiples of 5 and only one Natural number will be multiple of 
both 7 and 5. So, when selecting an Integer number aν  from the infinite multi-
tude of Natural numbers, the information of the fact that “ aν  is multiple of 7” 
does not interfere with the probability of the fact that “ aν  is multiple of 5” be-
cause every five multiples of 7 there will be only one that can be divided once 
again by the prime number 5, regardless of the information of the first fact. The 
Natural number aν  will indeed belong to a group of thirty-five, if the multi-
tude of Natural number N is divided into groups of thirty-five successive Natural 
numbers. Therefore, if the first fact, “ aν  is multiple of 7”, is valid then aν  will 
belong to the group of 5 (of a group of 35) that are multiples of 7. This group of 
5, however will include only one multiple of 5, therefore aν  will again have 1/5 
probability of being multiple of 5, regardless of the information of the first fact 
that “it is multiple of 7”. The proof is obviously generalized with the same me-
thodology for any of the prime number qα , qβ , not equal to each other.  

It should be underlined that the Natural number 0 is divided by every Natural 
number, even when selecting a random integer aν , which will obviously have a 
probability equal to 1 kq  of being divided by the prime number kq . Here, the 
probability has the meaning of the appearance frequency of a subset of Natural 
numbers, so when stating that fact Γ is independent of the probability-frequency 
that is referring to the subset of these Natural numbers, defined; based on an ac-
tivity-criterion of their selection, it is meant that fact Γ is independent from the 
activity-criterion of their selection. 

Opposite to that now, the information “a Natural number aν  is divided by 
one non-prime number (compound) i.e. 18” immediately gives the information 
that aν  will be divided by all the prime numbers that divide 18, therefore by 2 

https://doi.org/10.4236/apm.2019.99038


P. Papadopoulos 
 

 

DOI: 10.4236/apm.2019.99038 796 Advances in Pure Mathematics 
 

and 3, since 1 218 2 3= ⋅ , (or generally 1 2 0 0 0 0 018 2 3 5 7 11 13 kq= ⋅ ⋅ ⋅ ⋅ ⋅   ). The 
sentence that was just shown is directly understood by writing the general form 
of a random Natural number aν  = v:  

31 2
1 2 3

k
k

j jj j
i i i ia q q q qν =   

where 1 2, , , kj j j  are Natural, non-zero numbers. 
Therefore, the fact “ aν  is divided by the prime number { }1 2 3, , , , ,n kq n i i i i∈  ” 

will be independent from the fact “the Natural number aν  is divided by the 
prime number { }1 2 3, , , , ,m kq m i i i i∈  ” if m n≠ . This will be name Proposition 
of Divisibility Independence (PDI), which as shown is valid for the set N of Nat-
ural numbers.  

Every random element selection from a given set A will be called Catholic Se-
lection (CS), a term from ancient Greek language. In addition, as Catholic in-
formation will be defined a set K of catholic (logical) propositions that will be 
valid for infinity CS elements from different appropriate subsets (of finite mul-
titude) of a set A. For example, a set K consisting of finite multitude of relations 
(written in general form) among infinite elements of another set A. An example 
of a logical proposition (or simply a proposition) that is a Catholic Proposition 
(CP), due to the fact that it is valid for infinite elements in N, specifically for in-
finite pairs of multiples of two prime numbers each time, is the PDI. The set of 
all the CP, meaning the propositions of catholic cardinality in N, that can be 
proved using PDI will now defined as catholic information of PDI for N. Owing 
that in mathematics nothing happens without a reason, it is concluded that if an 
algorithm of creation of a set A with infinite multitude is proven that does not 
create a property (proposition) P that will be catholically valid in A, therefore 
not implied by this algorithm (a set of finite multitude propositions) that the 
proposition P (e.g. a non-random statistical distribution) is valid in A, then P 
will not be valid in A. This last sentence will be named Proposition of Catholic 
Information.  

1.1. The Fundamental Principles of This Research  

They are: 1) The introduction of “catholic information” that we introduced 
above. 2) The extraction of all possible catholic or general relationships for 
which we define to must being them valid in all parts of set of natural numbers 
N and not only for special parts [2]. So the catholic formulas must use alphanu-
merical (by general expression) symbols for their catholic variables. 3) The defi-
nition of two kinds of intervals which we here call silvers and darks respectively. 
4) The statistical calculation of catholic multitude of twin prime numbers in set 
N that is a calculation until infinity.  

1.2. About the Study  

After the definitions mentioned above, we pay attention on analyze the proof of 
catholic relationships (2.1) and (4.18). In the basis of “catholic information” 
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concept and by use of (2.1), (4.18) we solve the problem in two ways: First by 
compact calculation using the appearance frequencies of twins in N, and second 
by using the dark intervals of N, which are increasing their sizes by a monster 
rate and however they are have infinite multitude. In this last process we initially 
proof that if some intervals not includes twin primes then this hypothesis drives 
to the existence of one twin prime on every top of these intervals. Thus we again 
arrive on the same conclusion. In pages before the relation (4.20), we examine 
the stability of frequency of prime numbers appearance in a random “silver in-
terval”, which is, a condition useful of validity of statistical calculations bellow.  

1.3. Conclusions 

Our conclusions from the below are: 1) The hypothesis of twin prime numbers is 
correct. 2) Maybe the concept of “catholic information” can be used as well in 
other Mathematical investigations. This concept is the other expression of fun-
damental proposition that “In mathematics nothing happens without reason”. 
This concept of “catholic information” maybe could be connected by Riemann 
hypothesis [3] [4].  

1.4. Twin Pairs 

Here will be studied the twin pair problem. Let that an “honest” dice (in the 
shape of a normal hexagon) is thrown three consecutive times and the three 
consecutive positions are noted respectively A/B/Γ. Which twin pairs (meaning 
repetitions) of a particular number, i.e. of 5, are expected? 

Answer [5]: 
According to the sample space 6(6)6 = 216 facts there will be five cases of the 

form 5/5/C, where Γ is one of the results {1, 2, 3, 4, 6}, which has multitude of 
five. Similarly, there are five cases of the form Α/5/5, where Α is one of the re-
sults {1, 2, 3, 4, 6}, and only one is the 5/5/5. Due to the 10 first having 1 twin 
pair of 5, meaning one boundary “/” for the 5, and the last (one) case having 2 
twin pairs, there will be altogether 10(1) + 1(2) = 12 total twin pairs in the 216 
cases, and therefore the probability of twin pairs in A, B, Γ facts, (which is “the 5” 
in each one of the ordered throw) will be 12/216 = 1/18. On the other aspect of 
the counting method based on the probability 1 6p =  to get number 5 in a 
throw, there will be probability ( )( )2 1 6 1 6 1 36p = =  for the twin pair of A, B 
and similarly 1/36 for the twin pair of B, Γ, so expected probability 1/36 + 1/36 = 
2/36 = 1/18, which shows that in this example the two non-independent and at 
the same time non-incompatible facts X A B= ∩  and Y B= ∩Γ  will be 
counting their respective percentages without considering their dependency and 
compatibility. The condition, however, for the proper counting is the indepen-
dency of A, B, Γ which is true. Therefore, the expected multitude of twin pairs of 
5 will be 216∙(1/18) = 12 cases of twin pairs, as found above. Generalizing the 
above problem for N successive throws of a (fair) dice the expected percentage of 
the twin pairs of the number 5, of the “fair” dice, for the N − 1 multitude of the 
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boundaries “/” of the facts of the throws 1 2/ / / NA A A  would be:  

( ) ( )21 1 36P N p N= − = −                    (1.1) 

One could try to prove this last relation in the case of a/b/c/d using the first 
method with the sample space. However, in this case the counting of the proba-
bility P0 will be completely different in order for at least one of the above facts X 
and Y to occur. This probability will be counted as follows: 

( ) ( ) ( ) ( ) ( )0 0 0 0 0
1 1 1 1 11|
36 36 36 6 216

P X Y P X P Y P X P Y X∪ = + − = + − =
 

The probability ( )0 |P Y X  above is 1/6, because when fact X occurred the 
information that the second pair has already given 5 is provided, so the 

( )0 |P Y X  will correspond only to the probability “the third dice will be again 5”, 
and it is obviously 1/6. In the sample space of the 216 facts there will indeed be 5 
+ 5 + 1 = 11 of these cases (and not 12 as before), since 5 cases will be of the 
form 5/5/Γ, the other 5 of the form A/5/5 and only 1 will be 5/5/5. The reader 
perceives that the differentiator is the key phrase in the above sentence: at least 
one. 

Coming to an end, by proving the independency of the events; the “divisibility 
of the random natural number aν  by the random prime number qα  (of its 
sub-sequence)” from the “divisibility of the random natural number aµ  

by the 
random prime number qβ  (of its sub-sequence)” the definition of these two 
events independency will be repeated: Any two events Γ1 and Γ2 will be consi-
dered independent from each other in a set (their range) A, “if and only if the 
frequency-probability of the elements in A where Γ1 appears, is the same as the 
frequency-probability of the elements in A where Γ1 and Γ2 appear together 
(once each)” and additionally the last sentence (“…”) is valid if C1 and Γ2 are in-
terchanged in it.  

2. Specification of the Indefinite Frequency-Probability  
Appearance of Prime Numbers 

A set { }1 2 3, , , ,M MY q q q q=   is taken as a sub-sequence of the interval 

)2 2
1,M M Mq qδ +=  . The internal dm will be named Silver interval. It should also be 

clarified the reason why for the study of the natural numbers. The interval Mδ  
will be named Silver Interval.  

It should also be clarified the reason why in the study of natural number 

Maν ν δ= ∈  the prime numbers qλ  were chosen as elements of MY  the nat-
ural numbers with the characteristic: It is noticed that if the random natural 
number aν  is divided by another positive natural number aνκ > , then the 
quotient of this division, let natural number μ, will satisfy the relation aνµ < . 
It is obvious since aνµ κ⋅ = . In other words, if aνµ >  was true, then it 
would be a a a aν ν ν νµ κ= ⋅ > = , which is absurd. Therefore, if aν  has a di-
visor greater than aν  then it will also have a divisor smaller than aν , 
which is followed by the fact that is a natural number aν  is not divided by 
none of the other prime numbers q aλ ν< , then it will not be divided by any 
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other prime number greater than aν . Because if this last statement were to be 
true, then according to the aforementioned facts there would be a divisor smaller 
than aν , which would either be prime or it would be analyzed in product of 
prime numbers that are for sure smaller than aν . The conclusion drawn is 
that in the case where aν , does not have as a divisor a prime number smaller 
than aν , then aν  is the prime number. Therefore, the prime numbers that 
define as possible divisors of aν  being prime, are only the prime numbers that 
are all smaller than its square root, which is the sub-sequence of prime numbers 
of aν , that was defined above.  

The probability Pν , that aν ν=  is not divided by any of the elements of the 
sub-sequence of 2,3,5,7, , Mq ν  (defining 0 1 2 31, 2, 3, 5,q q q q= = = =  ) will 
be equal to the products of the probabilities not to be divided by 2,3,5,7, , Mq ν .  

These probabilities will respectively be 1 1 1 1 11 ,1 ,1 ,1 , ,1
2 3 5 7 Mq ν

− − − − − , due to  

the fact that Mν  multitude events 1 2 3, , , , MA A A A ν  that state respectively that 
the natural number aν ν=  is divided by the prime numbers 2,3,5,7, , Mq ν  
of its sub-sequence, which according to PDI that was previously proven, per two 
events that are independent from each other. It is obvious that 1/2 is the proba-
bility of the natural number aν , to be divided by 2, that is to be an even number 
with complimentary probability the 1 − (1/2) not to be divided by 2. Similarly, 
1/3 is the probability of aν  to be divided by 3, while 1 − (1/3) is the compli-
mentary probability to not be divided by 3 and so on for every term of the 
sub-sequence. The 1 2 3, , , , MA A A A ν , however are not every two exclusive 
events from each other, owning to the fact that the divisibility of the natural 
number aν ν=  by a number of its sub-sequence do not exclude its ability to be 
divided by another term of that sub-sequence. For example, the natural number 

30 30a =  has as a sub-sequence of prime numbers 2, 3, 5 and the fact that it can 
be divided by another of these three terms. It is indeed divided by the term 3. 
The probability Pν  of the following Equation (2.1) is a unique enumerate of 
prime numbers, but (initially) in not-well-defined intervals. The following defi-
nition is derived from the available information of the production of infinite 
element of set N, provided that according to the definition of Shannon the 
probability Pν  is another way of expressing information. Based on the fact that 
the events 1 2 3, , , , MA A A A ν  are every two independent from each other, one 
concludes that the probability-frequency of appearance of all the events above 
will simply be the product of all their individual probabilities therefore one will 
obtain the relation.  

1 1 1 1 11 1 1 1 1
2 3 5 7 M

P
qν

ν

     = − − − − −     
      

             (2.1) 

It will, however be proven and in another way the relation (1.2) [5]. Let Pν  
the probability that the natural number aν  is divided with at least one term of 
the sub-sequence of its prime numbers. Then the probability not to be divided 
by any of its terms will obviously be complimentary of the probability:  
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1P Pν ν′= −                             (2.2) 

The probability Pν , for the events 1 2 3, , , , MA A A A ν , that are per two inde-
pendent to each other, which state that the given natural number aν  is divided, 
respectively, by the prime natural numbers 2,3,5,7, , Mq ν  of its sub-sequence, 
is:  

( )
( ) ( ) ( )
( ) ( )

1 2 1 2 3

1 2 3

1
1 2 31 .

M

j j j j j j

M
M

P P A A A A

P A P A A P A A A

A A A A
ν

ν ν ν

ν ν ν

ν −

′ ′= ∪ ∪ ∪ ∪

′ ′ ′= − ∩ + ∩ ∩

− + − ∩ ∩ ∩ ∩

∑ ∑ ∑
∑



 

 

and because the facts 1 2 3, , , , MA A A A ν  are as previously mentioned per two 
independent from each other, the relation above becomes 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2
|j j j j j j jP A A P A P A A P A P Aν ν ν ν ν′ ′ ′ ′ ′∩ = ⋅ = ⋅  

The second part of the equation in the last relation is due to the independency 
of the fact 

1 2
,j jA A . Similarly there is: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 1 2 1 3 2 1

1 2 3

| |j j j j j j j j j

j j j

P A A A P A P A A P A A A

P A P A P A

ν ν ν ν

ν ν ν

′ ′ ′ ′∩ ∩ = ⋅ ∩

′ ′ ′= ⋅
 etc. 

So, the probability Pν  results to expression   

( )
1 2 1 2 3

1

1 2

1 1 1 1 1 1 1 1 11 M

j j j j j j M

P
q q q q q q q q q

ν

ν
ν

−′ = − + − + − ⋅∑ ∑ ∑ ∑   (2.3) 

In the above sums the indicators 1 2 3, , ,j j j   are as known, per two different 
from each other and obviously ( ) 1

kj jP A q
κν′ =  is the probability, of the event 

kj
A , where the natural number aν  is divided by a prime number jq q

κ λ=  of 
its sub-sequence. 

Let now be the Polynomial  

( ) 1 2 1 0
1 2 1

M M M
M Mf x x a x a x a x a xν ν ν
ν ν

− −
−= + + + + +         (2.4) 

with roots 1 2 3 4 5, , , , , , Mx x x x x x ν  respectively the fractions 

1 1 1 1 1 1, , , , , ,
2 3 5 7 11 Mq ν

  

Therefore one has  

( ) ( )1 2 31 1 Mf a a a a ν= + + + + +                 (2.5) 

and now the known polynomials give  

1
1

j
j

a x
q

= − = −∑ ∑ , 
1 2

1 2

2
1 1

j j
j j

a x x
q q

= + =∑ ∑          (2.6) 

and also 

( ) ( )( ) ( )1 2
1 1 1
2 3M

M

f x x x x x x x x x x
qν

ν

   = − − − = − − −   
    

   (2.7) 

The relations (2.3), (2.5), (2.6) result in ( )1 1f Pν′= −  and due to relations 
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(2.2) and (2.7) where x = 1 one concludes in (2.1). 
The relation above (2.1) indefinitely gives the probability to be equal to the 

positive natural number aν , because it cannot be in a defined set [ )1 2,δ ν ν=  
where the probability Pν  is counting the exact multitude Qδ  of the prime  

numbers in it: 
2

1

Q P
ν

δ ν
ν

= ∑ . The exact counting as shown below, will be done in  

appropriate intervals, that have already been named silver intervals Mδ , and 
with the use of an unknown probability Pν , that will be proven to be greater 
than a useful expression, that will be related to (2.1). From the above it is be-
coming clear that all the natural number that have the same sub-sequence of 
prime numbers should constitute an interval such as Mδ , i.e. the intervals: 

( ) ) ) )2 2 2 2 2 2 2 2
0 1 2 31 , 2 , 2 ,3 , 3 ,5 , 5 ,7δ δ δ δ  = = = =    

respectively correspond in the sub-sequences of the prime number {(1)}, {(1), 2}, 
{(1), 2, 3}, and these are defined as the four prime silver intervals that clearly in-
clude only the natural numbers. For example the interval 1δ  includes a multi-
tude of five numbers. Number one (1) was in purpose set in bracket above so as 
to declare that number one is not included in the elements of these subsets, be-
cause number 1 is not a prime number. It should be clarified that a definition of 
prime numbers is that prime numbers are all the multiples of number one 
(therefore they are natural numbers) that have the attribute to not be divided by 
one another. So the prime numbers define the set of all the possible independent 
repetitions of number one, since none of them is the repetition of the other. It is 
noticed that the first of the above silver intervals, that is 0δ , has as a 
sub-sequence the empty set and includes two prime numbers which are 2 and 3, 
the second 1δ  has as its sub-sequence the unit-set with 2 as an element and in-
cludes two prime numbers, 5 and 7, while the third one includes five prime 
numbers, the fourth includes sixteen prime numbers and so on. Furthermore, 
the enumerators-probabilities that were mentioned, Pν  and Pν , will have 
constant value in every specific silver interval, which will be explained in details, 
and be proven in Section 4. In this section it will be defined that these values will 
be dependent, according to relation (2.1), only on the sub-sequence of prime 
number, which is the same for all natural numbers and only of the specific silver 
interval: 

constant, constant,P Pν ν κν δ= = ∀ ∈ , 

with κ function of ν. 
Now certainly the definition of silver intervals is justified 

)2 2
1,M Mq qκδ +=   

And seeing that M Mν κ= = , Nν∀ ∈  one obtains  

)2 2
1,M M Mq qδ +=                        (2.8) 

with M N∈  and { }1 2 3, , , ,M MY q q q q=   its respective sub-sequence. 
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A check of Pν  by calculating the counting of 
2

1

Q P
ν

δ ν
ν ν=

= ∑  and with the use  

of a computers, via (2.1) with 1 4ν =  and 2ν  an arbitrarily large natural 
number, it is shown that the countable multitude of prime numbers, whilst at 
the beginning coincides with the real, it becomes more and more larger than that 
of the real multitude of prime numbers, as 2ν  is increased. The reason why this 
is happening will be explained below and will be proven that the new precise 
probability ( )p Pνν = , that was mentioned before will tally the precise multitude  

of prime numbers: 
2

1

Q P
ν

δ ν
ν ν=

= ∑ , although unknown here, it will satisfy in every  

particular silver interval )2 2
1,M M Mq qδ +=   a very useful inequality, which will be 

named fundamental inequality of the silver intervals. 
It will also be proven true that for the probability of the relation (2.1):  

lim 0Pνν→∞
=                            (2.9) 

In the beautiful book “the secret life of numbers” professor of Mathematics 
Andrew Hodges mentions that one of the smartest tricks in the history of ma-
thematics is the Euler transformation below:  

1 2 3 1 2 3 1 2 3

1 2 3 4

1 1 1 1 1 1 1 1 11 1 1
2 2 2 3 3 3 5 5 5

1 1 1 1 1 1 1 1 11 1
2 3 4 5 6q q q qν ν ν ν

   + + + + + + + + + + + +   
   
 
+ + + + + = + + + + + + 

 

  

   

  (2.10) 

The second part of 2.10 is the known harmonic sequence that as known is in-
exhaustible and corresponds to Riemann’s function: 

( ) 1 1 1 2 1 3z z zzζ = + + +  

The proof of (2.10) results directly from the general form of writing the natu-
ral number:  

31 2
1 2 3

k
k

j jj j
i i i ia q q q qν =                      (2.11) 

That was mentioned in the beginning of Section 2. Executing retrospectively 
the multiplication of the 1st part it will indeed lead to the 2nd part due to the ap-
pearance of all the combinations of (2.11) in the denominators, and so all the 
integers positive numbers etc. 

The relation (2.10) is known from the time of Gauss, that leads directly to the 
conclusion found by Euclid thousands years ago, which is that the prime num-
bers are infinite. If they were not then the first part of (2.10) would be a product 
of finite multitude of derivatives, where each one of them would converge and 
therefore this product would not deviate from infinity. This however, is absurd, 
since the second part would also not deviate, which is indeed deviating, because 
it is the harmonic sequence that was previously mentioned. However, the au-
thor’s shorter proof can be given here: “the relation (2.11) includes exponents 
that are natural integer numbers and therefore each one of them is developed 
again in the same way 31 2

1 2 3
r

r

mm m m
s s s sj q q q qρ =  . However, the new exponents nm , 
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will be developed again in the same way and so on. It is therefore obvious, that if 
the prime numbers had finite multitude in N, then the combinations for the re-
presentation the natural numbers aν  would be depleted, since these combina-
tions would not obviously have the advantage of infinite different per-two ma-
thematical (tree-like) representations. Hence, in that case the infinite natural 
numbers would not be represented by the relation (2.11) which is absurd”. 

One more not so well known relation of the bibliography (that is also men-
tioned in Section 6 of Andrew’s Hodges book) for a random prime number qν , 
as symbolized here, is: 

1

1 2 3 4

1 1 1 1 11 1
q q q q qν ν ν ν ν

−
 
− = + + + + + 

 
                 (2.12) 

It is noted that (2.12) could be proven easily from the known Taylor formula-
tion [3]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3

0 0 0
0 0 0 01! 2! 3!

x x x x x x
f x f x f x f x f x

− − −
′ ′′ ′′′= + + + +  

Plugging 0 0x =  and ( ) ( ) 11f x x −= − , and placing afterwards the differen-
tiations of x, where x is 1 qν . So the same relation which can be used to convert 
the functions such as ( )cos ,exx  etc. was used in a sequence of infinite terms. 

Now, because the second part of (2.10) tends towards infinity when ν →∞ , 
as stated before, combining the relations (2.1), (2.10), (2.12) one immediately 
concludes to the proven (2.9) 

The 1st part of (2.10) is equal to the function zeta 

( ) 1 1 1 1 1 1 1 11
1 2 3 4 5 6 7 8

ζ = + + + + + + + +              (2.13) 

Because when executing the 1st part the multiplication in the denominators of 
the fractions, all the combinations of the products of all the prime derivatives, 
raised in all the powers, to infinity will appear. Hence, according to the relation 

31 2
1 2 3

k
k

j jj j
i i i ia q q q qν =   (which was reported in the beginning of this Section 2) the 

result will be all the natural numbers, therefore function ( )1ζ . Combining this 
fact with the one from (2.10) (2.12) and also with (2.1) the following known re-
lation is concluded: 

( ) 11 lim
Pν
ν

ζ
→∞

=                         (2.14) 

3. The Tracker of Infinity (Eratosthenes Sieve) 

One should think about the endless axis of positive natural numbers aν , that 
starts from 0 and contains, in equal distances, the natural numbers 1, 2, 3, 4, 5, 6, 
7, 8, … coloured light blue which are simultaneously stationary observers. Fur-
thermore, the author suggests to visualise one more tracker that starts from po-
sition number 2 and walks towards the right side of the line of the natural num-
bers executing the following order “Every time you encounter a light blue natu-
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ral number aν  send on your right, to the abyssal infinity, a message to the light 
blue observers-natural numbers, which are integer multiples of aν , that says 
change your colour to black. The aν  remains light blue and is registered in 
your log book”. What will happen? Simply. In the route 2 3→  all the even 
natural numbers will be black to infinity except of course for number 2. These 
will be called second-multiple (2-multiples) not including number 2. In the 
route 3 4→  there will be black numbers except from the second-multiples and 
all the multiples of 3 to infinity except for the natural number 3. These multiples 
of 3 not including the initial number 3 will be called third-multiples (3-multiples) 
numbers. When the tracker reaches number 4, however, finds it black and does 
not send a message for colour changing to the observers-natural numbers. 
Number 5 is found light blue (unmarked) and a new message is sent, according 
to the order given, to mark all the integer multiples of the natural number 5 ex-
cept for 5, with the colour black. The multiples of 5 except for 5, will be called 
fifth-multiples numbers and so on. Therefore, the tracker in this journey leaves 
behind as light blue only the prime numbers that have been registered in the log 
book. The integers, third-multiples, fifth-multiples, seventh-multiples etc. meaning 
all the natural numbers that are not prime numbers and have been marked black 
will be called prime-multiples numbers. According to what was shown regarding 
the silver interval during the route 2 22 3→ , that is, in the tracker’s route inside 
the silver interval )2 2

1 2 ,3δ =  , an encounter with all the now blackened mul-
tiples of 2 will take place. The numbers 5, 7 will remain light blue during this 
route and they are prime numbers. Similarly, during the new route in 

)2 2
2 3 ,5δ =  , the tracker will encounter, marked in black, all the multiples of 2 

and 3. That means that the multiples of the subsequence of the prime numbers 
in the silver interval that the tracker crosses each time, will be marked black. 

The prime numbers that are integer multiples of the random prime number 

sq , will be called sq -multiples. Additionally, in a random silver interval 

)2 2
1,M M Mq qδ +=   the natural numbers will be called: 

2 2 2 2 2
1, 1, 2, 3, , 1M M M M Mq q q q q ++ + + −  

respectively as 1st, 2nd, 3rd, … position in the interval )2 2
1,M M Mq qδ +=  . 

According to this last definition the question now is; which is the position of a 
first appearing sq -multiple in )2 2

1,M M Mq qδ +=   and which is the position of 
the last sq -level in this silver interval. This positions are called ( )1,s Mθ  and 

( ),s Mθ τ  respectively, ensuring that the symbols represent the information 
given accordingly. Here 1 represents the 1st and τ represents the last (from the 
Greek word “τελευταίος” that means last). The interval  

( ) ( ) ( )1, , ,s s sb M M Mθ θ τ=     that includes only natural numbers will be called 
band of sq -multiples (prime-multiples) of the silver interval Mδ . Furthermore, 

2 2
1M M Md q q+= −  symbolizes the “length” of a random silver interval  

)2 2
1,M M Mq qδ +=  . Since the two successive prime numbers 1,M Mq q +  will have a 

difference of greater or equal to 2 (2 occurs when they are twin prime numbers) 
there will be: 
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( ) ( ) ( )2 22 2
1 2 4 1 4M M M M M M Md q q q q q q+= − ≥ + − = + >         (3.1) 

And since , 1, 2,3, 4, ,M sq q s M≥ ∀ =   one concludes that:  
2 2

1 4 4 , 1,2,3,4, , , 1M M M M sd q q q q s M M+= − > ≥ ∀ = ∀ >         (3.2) 

Also, due to the distance of the origin ( )1,s Mθ  of any band ( )sb M  from 
the origin of the silver interval )2 2

1,M M Mq qδ +=   being always less that the dis-
tance sq  of the two successive sq -levels of its subsequence (that means s Mq q≤ ) 
there will be: 

( ) ( )0 1, 1 , , ,s s M s s s MM q d M q q qθ θ τ≤ − < − < ∀ ≤          (3.3) 

The “equal to 0” in the first relation (3.3) represents the case where s Mq q= . 
For example:   

( ) ( ) ( )1 11, 1, 1, 2, , , 1M MM M M d Mθ θ θ τ= = = ∀ >  

Because 2 2
1,M Mq q +  are odd natural numbers as squares of prime numbers (that 

are odd). Also, it should be reminded that 1,2,3,4,5,6,M Mν= =  . Moreover, 
it will be symbolized as  

( ) ( ) ( ), 1, 1s s sl M M Mθ τ θ= − +  

the “length” of a random band ( )sb M . Therefore as an example one finds: 

( )1 2 1 1, 1M Ml M d d M= − + = − ∀ > , for example ( )1 2 16 1 15l = − =   

But ( )2 2 16l = , ( )3 2 11l = , ( )2 3 22l = , ( )3 3 21l = ,  . 
As “lengths” for both the silver intervals and the bands were defined not the 

geometrical distances of the two ends but the multitude of the natural numbers 
that are included in the interval that corresponds each time to the silver interval 
(or band). In contrast, their normal length ( ) 1sl M −  could be named geome-
trical length.  

4. The Silver Intervals, the Fundamental Inequality and a  
First Solution 

Summing up, the silver interval is defined as Mδ  using the relation  

)2 2
1,M M Mq qδ +=                           (4.1) 

with M M Nν= ∈  and 1 2 3, , , , Mq q q q
ν

 , being the respective subsequence of 

MY . Reminding that this subsequence of 1 2 3, , , , Mq q q q
ν

 , of a silver interval 
consists of M successive prime natural numbers. sq -multiples were named the 
multiples of the random sq  prime number and for the random silver interval 

)2 2
1,M M Mq qδ +=   the defined band of the specific sq -multiple in the interval of 

natural numbers is:  

( ) ( ) ( )1, , ,s s sb M M Mθ θ τ=                     (4.2) 

Between the first (1) and the last (τ) position of the sq -multiple in the silver 
interval Mδ . In general ( ),s Mθ κ  will be a position in the silver interval that 
corresponds to the κth in a row sq -multiple. Furthermore, it was symbolised  
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2 2
1M M Md q q+= −                         (4.3) 

the “length” of a random silver interval )2 2
1,M M Mq qδ +=  . Also, the multitude of 

the natural numbers that contains a random band ( )sb M  as its “length” was 
defined and symbolized as  

( ) ( ) ( ), 1, 1 1s s s sl M M M nqθ τ θ= − + = +             (4.4) 

In this length ( )sl M  there are obviously n + 1 sq -multiples. Also the distance 

snq  of the ( )sb M  band will be called, as stated before its geometrical length. 
At last the relation (3.2) was proven:  

2 2
1 4 4 , 1,2,3,4, ,M M M M sd q q q q s M+= − > ≥ ∀ =   and 1M∀ >      (4.5) 

It should be clarified that all the composites of Mδ  are necessarily sq
-multiples of its subsequence, as it was proven in Section 2.  

In the below Figure 1 we see that the band ( ) [ ],sb M γ ζ=  has a “length” 
3M sd q=  and not 4M sd q>  as the (4.5) implies above, however that was done 

die to the simple supervision and obviously it will not interfere with the proving 
methodology that will be shown below. (A composite natural number is the one 
that is not prime). In general all the prime-multiples numbers of a random prime 
number sq  (meaning all its integer multiples, that were named sq -multiple 
numbers) function as erasers in the list of prim number candidates, since they erase 
the possibility of being the natural numbers with which the prime numbers coin-
cide. Using this interpretation they will be named sq -multiples erasers. These are 
the ones that the tracker changes their color from light blue to black (erasure) as 
soon as the tracker meets the first sq  number on the unending travel of the 
axis aν ν=  of natural numbers. 

In Figure 1 are shown the two boarders 2
MG q=  and 2

1 1ML q += −  of the 
random silver interval )2 2

1,M M Mq qδ +=   where:  
2

11 1ML l q += − = −                        (4.6) 

Also in that same figure are seen the two bands ( ) [ ],sb M γ ζ=  of sq  and 
the ( ) [ ],b Mρ α η=

 
of qρ . Where , , , , , , , , , , ,G L lλ α β γ δ ε ζ η µ  obviously 

natural numbers on the axis of natural numbers aν . The band ( )sb M  with 
geometrical length snq  and n = 3 for Figure 1, will include n + 1 multitude of  
 

 
Figure 1. Silver interval. 
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sq -multiples erasers that is Figure 1 are the , , ,γ δ ε ζ  with properties: 
  sqγ λ δ γ ε δ ζ ε µ ζ− = − = − = − = − = . In addition, β is a random qρ -multiple 

number of another random band ( )b Mρ  that as shown in the figure happens 
to be overlapping with ( )sb M . The relation (2.1) shown in Section 2:  

( )
1

1 1 1 1 11 1 1 1 1
2 3 5 7

M

j
j M

P M P F
q

ν

ν
ν=

     = = = − − − − −     
      

∏       (4.7) 

is based on the assumption that the density of jq -multiples erasers in the silver 
interval Mδ , where 1,2,3, ,j M=   is:  

11:j j
j

q
q

ρ = =                           (4.8) 

Thus, the active multitude of jq -multiples erasers in Mδ , with “length” Md  
will be: 

M
j

j

dK
q

=                             (4.9) 

Hence, the non-erased natural numbers in Mδ  from the jq -multiples will 
have as active multitude  

11j M
j

F d
q

 
= −  
 

                       (4.10) 

However, owing to two random bands ( )sb M  and ( )b Mρ  of Mδ  not hav-
ing the same boarders, as shown in Figure 1, meaning that theirs boarders do not 
coincide (i.e. ,α γ ζ η≠ ≠  in Figure 1) the active multitude of the erasers of the 
assumption in Mδ  will not coincide with the true multitude of erasers. 

Let sK  the unknown multitude of sq -multiples of these erasers of Mδ . It 
was shown before that all these numbers belong to ( )sb M  of Mδ  and are of 
multitude n + 1 (with n = 3 in Figure 1). Hence, in general it will be true:  

1sK n= +                          (4.11) 

However due to the relation (4.8), (4.9) and based on the help of Figure 1 in 
the general form it would be 

( ) ( )M
s j M

s s s s s s

G ld l G G lK d n
q q q q q q

γ ζγ ζ γ ζρ
− + −− − − −

= = = = + + = +  

The remainders between the silver interval Mδ  and the band ( )sb M  are 
the intervals Gγ −  and l ζ− , that obviously each one of these is less or equal 
to sq  not however both equal to sq , because then 1s M Mq q q += = , which is 
absurd, hence it is true that 

( ) ( )
0 2

s

G l
q

γ ζ− + −
< <  

Combining the last relation with the expression of sK  from above, it is given:  

2sK n< +                          (4.12) 

And based on (4.11) it will be true  
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1s sK K> −                        (4.13) 

This relation (4.13) shows how the expected multitude of prime numbers in 
the Mδ  interval will have to be as a whole greater than the true multitude, since 
the active multitude of the erasers is generally smaller that their true multitude, 
fact that was confirmed using computer based calculations and will be further 
explained in the following analysis. In the table below is shown the changes be-
tween the true and expected multitude of prim numbers in the first 12 silver in-
tervals. The expected or active multitude of prime numbers is calculated using 
the relation ( )M MQ Int P M d = ⋅ =   Integral part of ( ) MP M d⋅ . 

A random eraser, prime-multiple, of band ( )sb M , let that be δ, would have 
non-zero probability coinciding with another eraser qρ -multiple, let that be β, 
of another band ( )b Mρ  (that is overlapping with band ( )sb M  and β is not in 
the overlapping region) if the left boarders γ, α of ( )sb M  and ( )b Mρ  were 
coinciding. In this case [which is the implied acceptance of (2.1) or (4.7)] there is 
a possibility of the creation of an additional prime number, than it would in re-
ality, because this way the capability of erasing of the eraser δ is cancelled, since 
it is degenerating into the erasing that is already fulfilled by the other 
prime-multiple eraser β. To reverse the possible redundancy by 1 of multitude of 
active erasers in comparison to the multitude of real, due to the boarders γ, α, 
not overlapping and instead to increase it, it is enough to increase sK  by 1. 
However, how would one explain the choice to increase “by 1”? The proof, for 
its necessity, is that if the left boarder γ, of a random band ( )sb M , was overlap-
ping with the left boarder G of the silver interval of Mδ , then ( )sb M  would 
include at most one more eraser x. It should be highlighted here that only this 
eraser introduced error (and thus causes the difference in active and real values), 
because this is the only one missing from the area sG qγ < , resulting in the sta-
tistically expected cancelling of the erasing ability of another eraser of another 
band being included in the calculations of the relation (2.1)—only from this x—, 
due to the statistically expected overlapping of x, β in Gγ . With this virtual 
cancelling will reasonably be born in the statistical calculations of (2.1) fewer 
prospective (active) erasers. This way, however, there will be, from (2.1), more 
prime numbers than the real ones, because x does not exist (i.e. virtual), hence it 
did not accomplish statistical erasing, like β did. So to reverse the result x needs 
to be added to become from virtual to real. The same will be true for the right 
boarder ζ of ( )sb M . 

Similarly, because the right boarders e.g. ζ, η of ( )sb M , ( )b Mρ  are possibly, 
in general, not overlapping, there needs to be anew an increase in the active 
multitude sK , for the same reason as before, by one more unit. In total, by in-
creasing sK  by 2, the new active multitude of erasers for ( )sb M  will be for 
every case greater than the real multitude of sK , owing to the fact that it is like 
placing in each one of the two intervals [G, γ) and (ζ, L] one jq -multiple eraser, 
which is over-covering, because the λ, μ do not, as a rule, overlap with G, L re-
spectively. Thus one concludes in the relation  

, 2s NEW s sK K K= + ≥                     (4.14) 
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More specifically, one can show (4.14) in a different way, shown below. If all 
the bands had, in the ideal case, their left and right boarders same as the borders 
G and L respectively of Mδ  (Figure 1) then the easers would increase by mul-
titude 2 2M − . The −2 is present because the ( )Mb M  band of Mq  has al-
ready the same left boarder (limit) with G, but also another one, the ( )1b M  of 

1 2q =  has the same right boarder with L. Splitting the multitude of the new 
erasers (that transform, the distribution of prime numbers sq  in the Mδ  in-
terval into an ideal one, and thus over-covering the error), in the band M of Mδ . 
There will be an increment for every band of this ideal case [of (4.7)] by 
( ) ( )2 2 2 2 2M M M− = − < . So with 2 further erasers, for every band, the 
over-covering mentioned before is certain. Because in this way a new ideal dis-
tribution is born “that it is certain to realise all the missing erasing and even 
more”. That leads to an inequality.  

A more analytical proof of the above is given here. Let 
mmkµ  be the new in-

creased (by 2) multitude of erasers of the band ( )
mkb m , which is the band mk  

of mδ  silver interval. Let 1 MI Q=  be the definition of a new unit with  

1 1

m

m
m

Tm M

M mk
m k

Q µ
=

= =

= ∏ ∏ . The new unit I (instead of the previous one which is 1)  

subdivides now, to more parts the interval, that is defined by the subsequence of 
M of sequential silver intervals on the axis of natural numbers, with multitude 

mT N∈  of bands, the catholic selected among them mδ . It is clear that every 
unit of natural numbers, which is the distance 1 of two sequential natural num-
bers on their axis, to the last silver interval mδ , will be subdivided in multitudes 

MQ  equal parts. Afterwards, the erasers of every band are equally distributed in 
every single silver interval. It is obvious that there will be created Μ multitude 
new virtual silver intervals that will have all their erasers 

mkq -multiples placed 
on the new marks that define the smaller according to the factor MQ  new sub-
divisions, where each subdivision has length I. So after the increment by 2 eras-
ers of every band ( )kb m  and after equally distribution of erasers in all bands 
and in all these, M multitude, virtual silver intervals, we conclude that the eras-
ers of every band ( )kb m  become more frequent and thus finally the previous 
ability of distribution:  

1 1
m

m m

M
k

M k k

Q
Q q q

ρ
⋅

= =  

transforms in a new greater distribution density: 

1 1
m m

m
m m

M M k k
k

M k k

Q Q
Q q q

ξ ξ
ρ

⋅ + +
= =  

where according to the previous ones and because the increment for every band 
by 2 erasers; the following will be true: 

2 0, ,
m

m

k m
k

k m
u

ξ = > ∀ ∀  

where 
mku N∈  represents the old (before the increment by 2) multitude of 
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erasers of the band ( )
mkb m . It becomes clear, on the one hand, that in every 

single virtual silver interval mδ , due to the equal distribution of the erasers of 
every band in it, it would now be true the exact corresponding relation of the 
previous (4.7) so as to estimate the prime numbers in every silver interval mδ . 
That means that now the ideal—for the precise calculations of the multitude of 
prime numbers—new virtual density 

mkρ  (that will be used and directly below) 
is used instead of the real and non-ideal 

mkρ  that was used before in (4.7). On 
the other hand, it is realised that in this way there will be less virtual prim num-
bers (in every mδ ), since there are more erasers for every band of every silver 
interval mδ . The index mk  obviously corresponds to the index s of Mδ  for the 
random now intermediate or non silver interval mδ . Leaving the above boarder 
M of the arbitrary elected sequence, of the successive silver intervals mδ , to tend 
towards infinity; all the different cases are covered. It is very important to em-
phasize that this method of creating the virtual silver interval functions as fol-
lows: “In order the true multitude of erasers to coincides with their active multi-
tude, all erasers should belong to bands which would had their boundaries in 
common with the boundaries of their silver space mδ , so that in this case, on the 
one side the random band ( )jb M  would had the predicted density 1 jq  of 
erasers, and on the other side this band would had equal distribution of all its 
erasers in its total mδ . So in this case would be made the coincidences of erasers 
predicted by the statistics of relationship (4.7), so that finally the relationship 
(4.7) would function correctly. But that does not happen. Therefore, with the 
virtual silver interval we achieve the equal distribution of the erasers of random 
band in the total mδ , that is we achieve the realization of the statistically pre-
dicted coincidences from the relationship (4.7), and on the other hand simulta-
neously we succeed that these erasers to have greater density than the real den-
sity 1 jq . So finally in the virtual silver interval we will surely have more 
write-offs than the real ones. In others words we will have something that re-
quired from the asking inequality”. This proof, combined with the definition of 
the virtual silver interval of precise calculations of prime numbers (due to the 
equal-distribution of the erasers of the bands as mentioned), will clarify the 
analysis below, of the inequalities mentioned and justified before, with a differ-
ent additional way. 

It is observed that in the relation (4.5) it was proved that 4M sd q> . So now, 
the two additional erasers of relation (4.14) must be distributed in more than 4 

sq -multiples of ( )sb M . [The band ( )sb M  of Figure 1 has geometrical length 
3 4M s sd q q= < , instead of 4M sd q> , owing to the relation (4.5), however, this 

is not inadequate, because as stated it was done only due to the simple impedi-
ments and it clearly does not influence the probative methodology]. So, with this 
distribution that creates the new active multitude of its erasers (4.14) based on 
the old one, on every one of the old erasers there will be added at most 2/4 = 1/2  

erasers. In more details from the relation (4.14) one gets: 2s s

M M

K K
d d
+

≥  and due 
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to the 4M sd q>  results in 2
4

s s

M s M

K K
d q d

+ >  so 1 2
s s

sq
ρ ρ+ > , and due to 

1
s

sq
ρ =  of (4.8) one results:  

1
1

consequent2 1.75 1.75 7, 1, ly
2 8s

s

s
q q

ρ ρ
 

< ∀ > < = = 


       (4.15) 

So for the absolute validity of the inequalities (4.15) the fact that the active 
density 1s sqρ =  of every band ( )sb M  [that is used in the relation (2.1) or 
(4.7)] was considered to probably be a bit greater, because every band (that is 
enclosed on its whole in the silver interval Mδ ) does not include exactly n mul-
titude of sq -multiples erasers, as implied by the expression 1s sqρ = , but 

1n + , which is explained using Figure 1. [For example 1s sqρ =  means that 
( )sb M  in Figure 1 will include 1 sq -multiple eraser in each one of these three 

intervals [γ, δ), [δ, ε), [ε, ζ], that means 3 and not 4 of sq -multiples, that it in-
deed contains]. Therefore, in order to be led in the two relations (4.15) one is 
obligated to use the expression ( ) ( ) [ ] ( )1 1 1s s s sn nq q nqρ  = + = +   , instead of 
the relation 1s sqρ = . Additionally, because it was said 4M sd q> , 4n >  will be 
true [owing to the band ( )sb M  necessarily includes all the sq -multiples of 

Md ], so in every case there is ( )5 4s sqρ < . Thus, based on all the previous 
1.75 2s s sq qρ < <  will be true, which led to the two relations (4.15) that will 

be used below, because it was shown that they are generic and true for every case. 
On the grounds that, even if the observation ( ) ( )1s sn nqρ = +  is not taken into 
consideration and by simply accepting that 1s sqρ = , then 1.5 2s s sq qρ < <  
will arise, which drive to the same conclusion that the above relation (4.15) is true.  

As a result the true probability will be defined respectively by (4.7) using the 
true density sρ  which satisfies the relation (4.15), meaning:  

( ) ( )( )( ) ( )1 2 3
1

1 1 1 1
M

j M
j

p P F
ν

νν ρ ρ ρ ρ
=

= = = − − − −∏         (4.16) 

And now obviously due to the (4.15) it is true that:  

( )
2

1 21 ,
8

M

j j

p P M N
qνν

=

 
= > − ∀ ∈  

 
∏                (4.17) 

However, in this way an interesting scenario occurs, a sequence of inequali-
ties:  
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1 1
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8 3 5 7 1113 17
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j M

M M

M M

M M M M

M M M

p P F
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q q
q q

q q q q
q q q q

ν
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=

−

−

− −

− −

     = > = − − − − −     
      

 − −
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Particularly, all the successive fractions of the type ( )1ν ν +  were inserted in 
brackets (…) exactly where they were missing, which creates a more enhanced 
inequality. 

The last arose after the erasing of the equal numerators and denominators. 
Consequently for the true function ( )p ν , that defines the exact number of prime 
numbers in the random silver interval Mδ , the result will be:  

( ) 1 1
8 8M

P p P
qν νν

ν
≥ = > ≥ , Mν δ∀ ∈  and M N∀ ∈        (4.18) 

The last inequality from the tree inequalities of the relation (4.18) derives ob-
viously from the relation 2 2

1M Mq qνν α +≤ = <  that defines the natural numbers 
ν of the silver interval Mδ , whilst the first inequality (4.18) derives from every-
thing that was mentioned before for the consequences of the non-overlapping of 
the limits of ( )sb M  and ( )b Mρ , however this will not be used in this proof. 
The inequality ( ) ( )1 8 Mp qν >  of the relation (4.18) will be named fundamen-
tal inequality of the silver intervals. The inequalities (4.18) are these that as men-
tioned will be proved in regards to the relation (2.1) when mentioned in Section 
3 that (2.1) along with everything that will be shown related to it below, includes 
all the available catholic information. 

Previously, the probability ( ) ( )p P M Pνν = =  was characterized as exact func-
tion meaning that it calculates the exact number of prime numbers in Mδ . The 
function ( )p ν , even unknown is said here to be exact in the sense that the in-
equality (4.18) can be used for it, exactly like an inequality can be used for number 
π in the sense that in theory this number exists in any desirable precision. The proof 
of (2.1) is completed based in the independent divisibility of the prime numbers, 
like it was determined in Section 2. It is noticed that the fundamental inequality is 
the “function” of each silver interval, and this concept is a form of correcting (2.1) 
specifically for every silver interval, because the equal-distributions of prime 
numbers are disturbed in the limits of Mδ . Hence now, the wanted tally of the 
events of twins (and maybe of other formed prime numbers) to infinity can be 
assessed whether it has a finite result or not.  

Observing Table 1 the reason can be understood. The generator of 
prime-multiples numbers is, as explained in Section 3, an ideal mathematical 
generator that would define precisely the multitude of prime numbers in every 
single one of the silver intervals Mδ  if the bands had the same limits, which is 
shown by the procedure of calculation of the active probability 
( ) ( )p P M Pνν = =  in the proof of (2.1) [or (4.7)] that means one precise calcu-

lation based on the absolutely know tally of the prime-multiples natural numbers 
that consist a perfect repetitive procedure in every silver interval Mδ . If now (2.1) is 
combined with the exact constraint of (4.17), that was shown it is understood that 
(4.17) is not refuted in any Mδ  to infinity. An assessment, without essential mean-
ing, by a computer in a depth of hundreds of millions of natural numbers verified 
relation (4.17) even with 1.5g < , instead of 2g =  that all the factors of the in-
equality (4.17) have. Of course it was already proven that (4.17) is true for 1.75g = ;  
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Table 1. Prime multitude in silver intervals. 

Silver intervals 
True multitude  

of prime number 
Expected multitude  
of prime numbers 

[4, 8] 2 2 

[9, 24] 5 5 

[25, 48] 6 6 

[49, 120] 15 16 

[121, 168] 9 9 

[169, 288] 22 23 

[289, 360] 11 12 

[361, 528] 27 28 

[529, 840] 47 51 

[841, 960] 16 18 

[961, 1368] 57 62 

[1369, 1680] 44 46 

 
however 2g =  was chosen because that was the one that allowed the erasing of 
sequential fractions, which at the end led to the proof of (4.18) that in turn 
proved to be sufficient for the calculation of the multitude of twin prime num-
bers, as it will be shown. 

It was proven before, that an increment of ideal erasers (active) of every band 
for a mean multitude ( ) ( )2 2 2 2M M M− = − , will cause expected correction. 
Indeed, by calculating the mean increment-correction of each erasers, [one in 
every interval 1s sq q⇒  in (4.7) or (2.1)] for every band ( )sb M , approx-
imately equal to: 

( ) ( )
( )2 2

1

2 2 2 2
1 1

s
M M s

M M
n

n q q q+

− −
∆ ≅ ≅

+  + − 
 

Once can set in (4.16) ( )1s s sn qρ = + ∆  instead of 1s sqρ =  of (4.7) or (2.1). 
Meaning  

1
, 1,2, ,s

s
s

n
s M

q
ρ

+ ∆
= =                 (4.18a) 

Based on this correction (4.16) forms the previous Table 1 as follows. 
It is observed from Table 2 that there is indeed an important correction from 

an initial active multitude of 278 expected prime numbers, to 257.3 now. Mean-
ing an error of approximately 1.4% from 6.5% that was before in Table 1. 

On the subject of the twin pair, which was studied after Introduction, in Sec-
tion 1, it was seen by relation (1.1) that a specific event with a probability p with 
regards to its appearance in a single repetition, in a multitude of N independent 
repetitions, will have a mean multitude of twin pairs, (which will be precise in 
infinity repetitions) equal to:  
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Table 2. Correction of prime multitude in silver intervals. 

Silver intervals 
True multitude  

of prime number 
Expected multitude  
of prime numbers 

[4, 8] 2 2.5 

[9, 24] 5 4.36 

[25, 48] 6 5 

[49, 120] 15 14.6 

[121, 168] 9 8 

[169, 288] 22 20.65 

[289, 360] 11 10.6 

[361, 528] 27 26 

[529, 840] 47 47.9 

[841, 960] 16 16 

[961, 1368] 57 58.8 

[1369, 1680] 44 42.8 

Sums: 264 257.3 

 

( ) 21R N p= −                      (4.19) 

The precise relation (4.19) derives from the independency of repetitions in a 
multitude of Ν − 1 boarders among these.  

The known theorem of prime numbers that dictates a logarithmic distribution 
[1] [3] [6] is essentially a statistical theorem. To be exact, in this paper’s Statistics, 
based on the relations (2.1), (4.18) that were proven and will be utilized below, it 
will additionally be validated that “the catholic (random) selection of a prime 
number aq  (that was named in the beginning of this paper) in an also catholic 
(randomly) selected silver interval Mδ , does not give the catholic information 
(that was also named in the beginning of this paper) that the probability of ap-
pearance of the next prime number bq  is changing in the very same silver in-
terval according to the distance of its position from aq ”. The useful meaning of 
this catholic capacity is that the prime numbers are distributed in the catholic 
silver interval in such way that it does not statistically favor, after all in their in-
finity multitude, neither them getting closer nor away from each other. One of 
the initial reasons for this is that the creation of the prime numbers from the 
tracker does not produce any logical suggestion that will neither dictate them 
getting closer to each other in the same silver interval, which statistically would 
favor the twin paring among them in their infinity multitude, nor them getting 
away from each other in the same silver interval which statistically would com-
plicate the twin pairing among them in their infinity multitude. In other words, 
all the catholic information for the distribution of prime numbers in provided by 
the relations (2.1) and (4.18) along with the improvement of (4.18a) etc. If the 
position of a prime number was affecting the position of a neighboring prime 
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number in the same silver interval based on the catholic information (with a 
proposal of generic validity in N), then this catholic event would prevent the 
probative method of creation of (2.1) to ignore it, and thus it would be disclosed 
in that way. Consequently, since in mathematics nothing happens without a 
reason, the distribution of the prime numbers in a random (or otherwise catho-
lic) selected silver interval will be the one that dictates the catholic relation (2.1). 
The catholic relations (4.18), (4.18a), but also any of their improvements, do not 
change the above conclusion because they are objective inequalities. Meaning 
the reason is that this inequalities of catholic validity are exclusively due to the 
disorder of calculations that creates the border between two sequential catholic 
selected silver intervals, which however does not change the way the erasers that 
create the relation (2.1) work; using the equal-distribution of the probabilities of 
the prime numbers in this catholic selected silver interval, but this border pre-
vents their precise calculations due to the non-overlapping of the limits of the 
erasers bands with the limits of the silver intervals, as it was already mentioned. 

Proof 

It is known, (and easy to be shown), that the minimum distance ijL  between 
two multiples of the random (meaning; catholic selected) prime numbers iq , 

jq  is changing cyclically and therefore all the values of ijL  are equiprobable in 
a catholic (random) selection of ijL . For example, without damaging the gene-
rality if one selects 5iq = , 3jq = , then this minimum distance will change 
cyclically from 0 to 2. Hence, the action of the catholic information (relations 
which are true in all N) that a “catholically selected natural number Maν δ∈  is 
not divided by a prime number i Mq Y∈ ” will again leave equal the probabilities 
to be not divided by the same i Mq Y∈ , and also by any other prime number 

j Mq Y∈ , one of its following natural numbers Maκ δ∈ . The obvious reason for 
this is that the catholic sentence “catholic selected natural number Maν δ∈  is 
not divided by a prime number i Mq Y∈ ”, based on everything that was said for 

ijL , not produce any catholic suggestion (meaning there is not any catholic in-
formation) to produce differentiation on the (catholic or general expressed) 
probability for divisibility of the following natural numbers Maκ δ∈ , (which 
follow after Maν δ∈ ) by one of prime numbers (separately) of the subsequence 

MY  of this catholic selection silver interval. This conclusion directly entails that 
the catholic information that “ Maν δ∈  is a prime number” does not changes 
the probability (in function with the distance of its position) “to have a following 
natural prime number Maκ δ∈  at any distance in this same catholic selected 
silver interval”. Also the same will happen if for this catholic selected number is 
valid the proposition 1Maκ δ +∈  instead the before one, because the change of 
the probability, due to the existence of an additional factor in the relation (2.1), 
will be independent of the previous proof. We have said in introduction that 
without catholic information nothing happening in Mathematics because Ma-
thematics is absolutely based on causality.  
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Summing up, based on the previous paragraph, but also based on those men-
tioned at the end of the Introduction (for the Proposition of Catholic Informa-
tion and PDI), we proved that the prime numbers in their infinite multitude sta-
tistically neither approach each other nor the inverse thus they will have a statis-
tically unbiased distribution regarding their probability of appearance in a ran-
dom (catholic) chosen silver interval. Specifically, the multiples of any prime 
numbers (e.g. the prime numbers 5, 7 that were mentioned in the beginning of 
the Introduction) appear as independent events in N (as results of an ideal rou-
lette) of the classical theory of probability. Therefore, the prime numbers per 
two will have their multiples as independent events of classical theory of proba-
bilities in N. So, whether a random natural number νν α=  is prime or not de-
pends on the interaction of independent events of the probability theory that is 
the interaction of multiples of the preceding prime numbers in the subsequence 

MY  of this randomly selected silver interval Mδ . These events are distributed 
like the result of an ideal imaginary roulette, as stated. It is the most representa-
tive distribution of an ideal roulette. So the prime numbers will be independent 
events of the probability theory. A question that is raised is if the boundaries of 
silver intervals affect on the distribution of prime numbers in them. The answer 
is no. The proof for this is based on the fact that the prime numbers have mul-
tiples independent per two and that means that the same will happen with the 
square of the prime numbers which define the boundaries of the silver intervals. 
Thus these boundaries do not catholically affect on the distribution of prime 
numbers in the catholic silver interval. So during the selection of a random (rep-
resentative catholic selected) silver interval it will occur inductively for its boun-
daries to also be independent events regarding the prime number multiples of 
the subsequence of this catholic selected interval. Thus these boundaries will be 
catholically independent regarding the position that the prime numbers will ap-
pear in random silver interval.  

We can finally prove that not only the probability Pν  is constant within a 
randomly selected silver interval Mδ  (or in others words Pν  independent of 
the position of a random candidate prime number Maν δ∈ ) but and the varia-
tion 0Pν∆ <  of Pν , which is being introduced by the inequality (4.18), is also 
a constant in the same random Mδ . Indeed, we observe that Pν∆

 
depends 

solely on the positions and range of overlap of the bands and so the Pν∆

 
ulti-

mately depends on the bounds of the bands. Let be B1, B2 two such bands of 1sq
-multiples and 2sq -multiples that means 1 2,s sq q  are the primes which their 
multiples define the bounds of B1, B2 respectively. Then the distances a1, a2 of 
two boundaries of B1 from random (CS) position aν  will be (in the general case 
of choosing random Mδ ) independent of the two other distances b1, b2 of the 
boundaries of B2 from the same position aν . The reason is the catholic property 
of multiples of prime numbers 1 2,s sq q : 

( ) ( )1 2 1multiple of multiple of multiple ofs s sp q q p q=  

where p represents the probability of event in its parenthesis. That is what we 
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prove before in introduction. As we prove there this last relation is valid for the 
same position μ and thus therefore it will be valid for different positions μ1, μ2. 
Therefore, the reducing the probability of the deletions, that we also mentioned, 
as well its result Pν∆ , eventually will be both independent of the position of aν  
in general choice of Mδ . That means that the correct probability ( )p P Pν νν = + ∆  
will be independent of position Maν δ∈ . In others words as Pν  as well Pν∆  
are independent of position Maνν δ= ∈  because both these probabilities in 
catholic case are defined of the prime multiples which relative to that position ν 
have appearance frequencies independent each other. Therefore according to the 
Proposition of Catholic Information which we refer before in Introduction, if 
would exist general relationships between a random position ν (in random Mδ ) 
and range of overlap of some catholic (random) band in Mδ  then we would 
conclude that must exist also catholic relationships between the appearance fre-
quencies of these primes multiples in random Mδ . But on the basis of PDI that 
we prove in Introduction this last conclusion is wrong. In other words according 
to the Proposition of Catholic Information we can’t write general formulas be-
tween frequencies of appearance of two prime multiples in random Mδ  using 
in this formula only the general symbols qµ , sq  for them. According to the 
Shannon definition of information we know that the information is the other 
side of probability: ( )2log 1I p= , and thus in our solution the catholic expres-
sions (written in general form) are the only ones which include and transfer in-
formation of total space that is information of set N relative to some general de-
fined form, for example to some interval in its random choice. And as we have 
said in introduction, in Mathematics nothing happens in the total space of some 
set without the existence of catholic information which according its definition 
is flowing from corresponding general form that must concerns the total space 
of this set. So in the same random Mδ  the statistical tendency of primes will be 
neither their approach nor their depart, but simply they will follow the statistic 
dictated by the relations (2.1) and (4.18). In other words, we have prove that the 
general relations (2.1) and (4.18) that constitute catholic information (because 
they are written in general form and they are referenced on random Mδ ) have 
generally been the ones that define the distribution of prime numbers. This 
process is valid until to the infinite, a fact ensures correctness of our statistical 
calculations bellow.  

For the clarification of the definition inductively, that was used previously, it 
should be explained that the creation of prime numbers, by the procedure that 
was used to prove the relation (2.1) (which drives to creation of prime numbers 
in silver intervals and based on the independent multiples of prime numbers of 
their subsequence) starts without any overruling of the above proof form the be-
ginning of the set of the silver intervals. Thus it is necessary at this point to in-
vestigate the inaugural structure at the proof above. Indeed, the first silver inter-
val ( )2 2

0 1 , 2δ =  has, as we said shortly after the relation (2.7), as its subse-
quence the empty set. Therefore, from 0δ , necessarily, all of its elements will be 
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selected the natural number 2, 3 as new prime numbers according to the selec-
tion rule which in this case states only that “the unreal multiples of unreal 
primes in the subsequence 0Y  not divide the natural numbers 2, 3”. This due to 
the fact that the subsequence 0Y  of 0δ  does not includes any element and so 
therefore the sentence “the numbers 2, 3 are not multiples of a non-existent 
prime number” is true. Afterwards, it is noticed that the multiples of these initial 
prime numbers 2 and 3 are independent from each other in the set N and thus 
the prime numbers that will be selected, based on the same selection rule, in the 
next silver intervals 1δ , 2δ  will be always, according to the previous proving 
procedure, independent events of the probability theory and so on inductively. 
Additionally, the boarders of the following silver interval that is created from the 
squares of the prime numbers 2, 3 do not contribute any logical catholic sugges-
tion that will affect the divisibility both in this silver interval and in a catholic 
(randomly) selected one below. In this way we understand that the squares of 
prime numbers which define the silver intervals (because they define their 
boundaries) will be catholically independent events of the established probability 
theory.  

Hence, according to the Proposition of catholic Information, that was men-
tioned in the Introduction of this article, there is no catholic Information that 
will force the infinity multitude of prime numbers to being thicken or dilute in a 
statistically random (CS) silver interval, and thus (based on the obvious axiomatic 
logical Proposition of catholic Information, in the introduction) one can execute 
(for infinity multitude of prime numbers) accurate statistical calculation (exactly 
because this multitude is infinite) using the established probability theory. And 
this is something that we will make below. In other words the total appearance 
of prime numbers in N is same with one of the infinite results-games (with infi-
nite rotations for each game) of an ideal roulette that in every game has on its 
rotating disc (in every rotation) the multiples of those prime numbers which 
inductively produced using the previous prime numbers, which were found in 
the same way as before, and so on. Saying “random” way we mean “without ad-
ditional catholic information except the one dictated by the relation (2.1)”. The 
reason is that the action of inequalities (4.18) and (4.18a) etc are only preventing 
the accurate calculation of the multitude of the prime numbers in a silver inter-
val and do not affect the catholic power of (2.1) for the reason stated in previous 
paragraphs.  

Returning to the problem of the twin prime numbers, according to everything 
that was stated, the system of the aforementioned relations (2.1) and (4.18) will 
dictate a catholic distribution of prime numbers, where the frequency of their 
appearance will remain constant in the same silver interval. Thus the positions 
of prime numbers are per two independent from each other and is reduced in a 
rate dictated by the two relations (2.1) and (4.18) from the one silver interval to 
the next. Thus the frequency of appearance of prime numbers is changing only 
between silver intervals and not in the same silver interval, and all these are de-
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termined statistically by the catholic relations (2.1) and (4.18), etc. 
Thereupon, for the natural number aν ν=  of a silver interval Mδ , the rela-

tion (4.18) in the respective (cumulative) here application of the relation (4.19) 
for the tallying of the twin prime numbers, that form the independent events of 
the appearance of prime numbers, meaning the independent prime numbers, 
gives: 

2 2
1 1

2 2

1 1
2 1 1

64

M M

M M

q q

M
q q

R Pν
ν ν ν

+ +− −

= =

= >∑ ∑                   (4.20) 

Hence, the infinity multitude of the silver intervals one has:  
2

1

2

1

2 2 9

1 1 1 1 1 1 1 1 1
64 64 64 9 10 11 12

M

M

q

M
M M q

R R
ν

νν ν ν

+ −∞ ∞ =∞

= = ==

   = > = = + + + +       
∑ ∑ ∑ ∑   (4.21) 

However, the second part of (4.21) becomes infinity because the brackets are 
the result of the subtraction of a finite multitude of terms from the known har-
monic series, that as proven in the introduction of unit 1, it becomes infinity:  

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 ν
+ + + + + + + + + = ∞               (4.22) 

Therefore, it was proven that the wanted multitude of the twin prime numbers 
in the infinite multitude of natural numbers will also be infinite.  

Without damaging the generality, assuming the twin pairs from the left, that is 
assuming the twin pairs of every new prime natural number candidate in the 
random silver interval Mδ  (with probability Pν ) with the one smaller (on its 
left) also new candidate prime (and hence its twin) natural number (with proba-
bility 1Pν − ) it is found: 

( )

2 2
1 1

2 2
2 2

2 1
2 2

1
1

M M

M M
M M

q q

MM left q q
q q

R P P P R Pν ν
ν ν

+ +− −

−
= + =

′= + > =∑ ∑  

Taking into consideration, in every Mδ  for Μ > 0, that the terms are of even 
multitude. The obvious reason for the clarification is that the disorder, that is 
caused by the relation above (in the tally R of twin numbers) also refers to the 
boarders of the sequential silver intervals, due to the fact that for these the 
probability Pν  changes. So for the relations (4.21) there is: 

( )
2

1 1 1 1 1
64 9 10 11 12left M left

M
R R R

∞

=

 = > > + + + + = ∞ 
 

∑   

which is a condition able to make the multitude of twin prime pairs in the set N 
of natural numbers infinity and thus concludes this proof, since it is true that 

leftR = ∞ . The question here is why it was not taken into consideration the causal 
datum that “the twin prime pairs of two successive natural numbers is excluded”. 
The answer is that this calculation ignores this kind of causal data, because it is 
based only on the possibility of twin pairs. If, however, on the base of a see-
mingly stricter proving procedure one considers this datum (information), then 
the above calculation is repeated using the set of the odd natural integers. In 
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such a case, because ( ) ( )3 2 1 1 2 2 , 0, Nν ν ν ν+ > + ∀ > ∈ , it is easily seen that: 

,
1 1 1 1 1 1 1
4 4 256 9 10 11 12left leftR R Rπεριττων

 > > > + + + + = ∞ 
 

  

Hence, the conclusion is the same. 
The reader can easily note that the steps from the relation (4.20) to the rela-

tion (4.22) can once more verify that the multitude of the prime numbers in the 
set of the natural N is infinite, if 2Pν  is replaced by Pν  in (4.20) calculating 
now the multitude of prime natural numbers. 

Furthermore, it will be shown that the probability of appearance of a prime 
number in a silver interval tends towards zero, meaning:  

( )lim 0p
ν

ν
→∞

=                           (4.23) 

From the inequality (4.18) that was shown here and the relation (2.9) that was 
shown in Section 2; the relation (4.23) is immediately proven:  

( ) ( )
1lim lim 0
1

p Pνν ν
ν

ζ→∞ →∞
≤ = =                   (4.24) 

This relation is very important, because it states according to the definition 
given by Shannon that the information that the prime numbers enclose is infi-
nite. Considering the set of natural numbers N quantified, in the sense that both 
its definition and all of its properties can be supported on the numbering, with-
out breaking the quantum “1” that defines on the basis of the numbering all of 
the properties of set N, one concludes that the information will also be quanti-
fied in N. Indeed, since there is no prime number factorised, then according to 
the Shannon definition every new prime number in N defines the information

( )2logI pν ν= −     which has the property to not be broken in a sum of two or 
more information terms smaller than the prime number. Consequently, in ac-
cordance with (4.24) every new prime number creates a new form of informa-
tion, because it will not be analysed in a previous prime numbers information, 
additionally this information tends towards infinity. In the author’s book “The 
twins of infinity and the Riemann hypothesis”, Ziti (“Ζήτη”) publications, it is 
defined as quantum q the least quantity of a quality Q. And as quality Q is de-
fined a notifier set of properties, that are altered only during the break of quan-
tum q. For example, the quantum of the quality “water” will be the “molecule of 
water”. And therefore the q will be the physical unit of set Q with which one 
counts the repetitions of Q in a phenomenon in physics (or in mathematics). For 
instance, according to these the quantum of the Euclidean space-time of the 
Special Theory of Relativity will be four-dimensional and elementary hypercube 
of the space-time with an edge length equal to the length of Planck (10−35 m). 
Furthermore, based on the above definition, every well-defined pure physical size, 
will owing to be quantified and that will be the definition of the pure physical size. 
And it is truly very charming the question, whether on the infinite information of 
prime numbers is paradoxically mirrored an infinite and unchanged hyper-verse 
of events.  
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5. The Dark Paths of Infinity and a Second Solution 

This is at last the final step of this research. It will define one more kind of in-
tervals on an axis of natural number, because their inconceivable length will be 
named dark or gloomy intervals. The first of these will be the interval of 25 nat-
ural numbers:  

( ) [ ] [ ]1 1 2.3,1 2.3.5 7,31Z = + + =  

The second will also be an interval of natural numbers as follows: 

( ) [ ]
[ ]

2 2 2 3 5,1 2 3 5 7 11 13 17 19 23 29 31

32,1 200560490130

Z = + × × + × × × × × × × × × ×

= +  

The third will be the interval of natural numbers: 

( ) ( )

( )
4 5 23 2 200560490130,1 2 3 5

200560490132,1 3

LZ q q q = + + × × × 
= +Ω  



 

where ( )2Lq  is the last prime number, meaning the greatest prime number that 
will be included in the immediately previous gloomy interval, meaning it will be 
the one that will be included in the second which is ( )2Z . In general for 1i >  
there will be: 

( ) ( ) ( ) ( ) ( )1 2 3 12 1 ,1 2 1 ,1L iZ i i q q q q i i−
 = +Ω − + = +Ω − +Ω   

  (5.1) 

And obviously:  

( )
( )

( )

1

1 2 3 1
1

L i

j L i
j

i q q q q q
−

−
=

Ω = =∏                   (5.2) 

The natural number ( )L i  is obviously representing the multitude of the prime 
numbers that will be included up to the gloomy interval ( )Z i . It will be again de-
fined as “length” of ( )Z i  the multitude of natural numbers that include: 

( ) ( ) ( ) ( ) ( )1 2 1 1 1Zl i i i i i= +Ω − +Ω − + = Ω −Ω −        meaning 

( ) ( ) ( )1Zl i i i= Ω −Ω −                     (5.3) 

Also, the multitude of prime numbers that are included in the interval:  

( ) ( ) ( ) ( ){ }1, 1G i Z i i i= − Ω − Ω +               (5.4) 

will be symbolized as ( )iω . 
The gloomy intervals that are defined in this way are infinite, however their 

length is increased in an outrageous rate! They have however a very important 
ability: “if ( ) 0iω = , meaning if the interval ( )G i  that was defined does not 
include any prime number, then the ( ) ( )1, 1i iΩ − Ω +  will constitute a twin 
pair”. This will be named twin pair proposition of the gloomy intervals. The 
proof is very simple and is derived from its definition (5.2): 

If the hypothesis of this proposition is true, then all the previous prime num-
bers of the ( ) ( )1, 1i iΩ − Ω + , will be ( )1 2 3 1, , , , L iq q q q − , because the common 
first term ( )iΩ , of the natural numbers ( ) ( )1, 1i iΩ − Ω + , is obviously divided 
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by all the ( )1 2 3 1, , , , L iq q q q − , however their second term by none. Hence, if the 
hypothesis of the proposition is true, then the ( ) ( )1, 1i iΩ − Ω +  will both be 
prime numbers and since their difference is 2, these will constitute the twin pair. 
This proof is similar with that of Euclid.  

The question, whether there are gloomy intervals that do not contain any 
prime number, has a negative answer. The same question for the silver intervals 
that were defined in the previous sections is not known if it has the same answer, 
but this fact does not affect in any case the proof given. In the below Figure 2 is 
shown a gloomy interval ( )Z i  with its limits, as well as the prime number jq , 
if there is even one prime number in it not equal to the natural numbers 
( ) ( )1, 1i iΩ − Ω + , where ( )2 1iW iλ= +Ω − . 
It is proven that if ( )G i  of the relation (5.4) does not contain prime num-

bers then the gloomy interval ( )Z i  will contain a twin because then the pair 
( ) ( ){ }1, 1i iΩ − Ω +  will be twin. What will happen though if there is only one 

prime number in ( )G i ? This will create four possible events, independent (due 
to the prime number independency) but not incompatible: 

A = “ jq  has a right sequential prime number, that is 2jq + ” 
B = “ jq  has a left sequential prime number, that is 2jq − ” 
X = “ jq  divides the natural number ( ) 1iα = Ω − ” 
Y = “ jq  divides the natural number ( ) 1iβ = Ω + ” 
It should be clarified here that the above events of divisibility X, Y have catho-

lic probability (frequency of their appearance) equal to 1 jq , exactly as it is re-
quired to apply with absolute accuracy the probability theory below. The reason 
is that the “random” jq  is an event (during its appearance) independent re-
garding the appearance of every prime factor of the “random” ( )iΩ , hence it 
will also be an event independent from the natural number α, β, according al-
ways to the definitions of the independency of events in the probability theory 
that was mentioned in the beginning. It is about the catholic or random selection 
exactly as required by an accurate calculation in an infinity multitude of events. 

The probabilities of the two prime events A and B will satisfy the relations 
(4.18) shown before in Section 4. That means that the following relations will be 
true:  

( ) ( ) 1 12
8 2j

j

p A p q
q

= + >
+

, ( ) ( ) 1 12
8 2j

j

p B p q
q

= − >
−

     (5.5) 

The events X, Y will have equal probabilities:  

( ) ( ) 1

j

p X p Y
q

= =                      (5.6) 

 

 
Figure 2. Dark intervals. 
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The relations (5.6) have an obvious cause. For example if 3jq =  then the 
probability of a random natural number to be divided by 3 is 1/3, since one of 
the three natural numbers is third-multiple, meaning the integer multiple of the 
prime number 3. Similarly the probability to be divided as an integer a random 
natural number (as above the unspecified α, β) by jq  is 1 jq , since one in the 

jq -multitude natural numbers is multiple of jq . Based on (5.5) one gets:  

( ) ( ) 1 1 2 , 258
8 2 j

jj

p B p A q
qq

≥ > > ∀ >
+

              (5.7) 

The last inequality of (5.7) is equivalent to the 2 256 512 0j jq q− − > , where 
obviously 258jq∀ >  will be true, based on the properties of the triphony. On 
the other hand based on (5.6) there will be:  

( ) ( ) ( ) ( ) ( )2 1 1 |
j j j

p X p Y p X p Y X p X Y
q q q

= + > + − = ∪      (5.8) 

The probability ( ) ( )i jP q p X Y∆ = ∪  in (5.8) is obviously the probability of 
“destroying” the twin ( ) ( ){ }1, 1i i i∆ = Ω − Ω +  of ( )Z i  from the appearance of 
the prime number jq . Combining now the two relations (5.7) and (5.8) it is 
found:  

( ) ( ) ( ) , 258i j jp A P q p X Y q∆> = ∪ ∀ >  

or 

( ) ( ) ( ) 0, 258i j i j jq p A P q qδ ∆= − > ∀ >              (5.9) 

The relation (5.9) states something very important “the probability to create at 
least one twin, the pair { }, 2j jq q +  in the gloomy interval ( )Z i  from the ap-
pearance of the prime number jq  is greater (significantly greater) than the 
probability for the potential twin ( ) ( ){ }1, 1i i i∆ = Ω − Ω +  to be destroyed by 
the appearance of jq , that from now on will be called the potential gloomy twin 
of ( )Z i  interval”. Provided that 258jq > , which is not of interest, because for 
this proof the infinite last gloomy intervals ( )Z i  are enough i.e. with 2i > . 

What will happen now if a second prime number jq λ±  is created? The rela-
tion (5.9) now with jq λ±  in the place of jq  it will once more be true, with the 
main difference now being that except from the change in the probability of (5.9) 
there is another additional probability for the creation of a twin, because there 
will be the probability of the new of the new jq λ±  to become neighbors with 
the already existing prime number jq  in the gloomy interval ( )Z i  and so on. 
In conclusion there is a more powerful inequality for the relation of tallying the 
mean multitude of the twin pairs in ( )Z i  where 2i > . 

( )
1

1 1, 2
ij W

i i j
j j

N q iδ
=

=

> + > ∀ >∑                    (5.10) 

Number 1 on the left part of the second inequality (5.10), exists due to the po-
tential gloomy twin ( ) ( ){ }1, 1i i i∆ = Ω − Ω + , which is accounted by this unit, 
however this is increased with the ability of appearance of new prime number in 
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all possible positions in ( )Z i . Thereupon, the total multitude of twins in the in-
finite multitude of the gloomy intervals due to (5.10) will:  

( )
13 3

1
ij W

i i j
i i j j

R N qδ
=∞ ∞

= = =

 
= > + = ∞ 

 
∑ ∑ ∑                (5.11) 

In that way it is verified with an additional way the result found at the end of 
Section 4, which is that the multitude of prime twins is infinite, because from 
(5.11); R = ∞  is derived. The first inequality of (5.10) is due to not considering 
the probability of creating a twin with the appearance of the prime number jq  
on the left during the tallying, because the event B that was mentioned before 
was ignored.  

There last statements can also be presented by a more mathematically concise 
way. The phrase “at least one” as shown and in Section 2, in the proof of relation 
(2.1), means the connection of all the respective probable events. The probability 
of the appearance of a right twin due to the appearance of at one prime number 

jq , (Figure 2) in the positions: 

ka  with ( )2 1 , 1,2,3,4, , , 2ka k j i j iλ= = +Ω − = >  

and with ( )2 1 2iW iλ β= +Ω − ≤  it will be  

( )
1

2
1 1 2 1i

j
p p j i

λ+

+
=

 ∆ = − − +Ω −   ∏              (5.12) 

The last inequality 2iW β≤  is set because there is obviously a probability 
that the random number jq  divides one of the two parts of the gloomy twin, if 

jq  appears in a position further away from the middle of ( )Z i . 
The probabilities ( )2 1 , 2,3, , 1p j i j λ+Ω − = +     refer to the positions of 

( )2 1 , 2,3, , 1j i j λ+Ω − = +  in the neighborhood of whom, on the left as well, 
there might be the number jq , therefore there is a possibility of one more 
prime number to appear, (so as a twin to arise), with the respective probabilities. 
The proof is completely the same with the proof of the relation (2.1). 

The product: ( )
1

2
1 2 1

j
p j i

λ+

=

 − +Ω −   ∏  

In (5.12) above represents the probability of not creating any neighboring 
prime number of jq , from the right, and from the “section” of the independent 
events there is no appearance of prime numbers in the positions: 

( )2 1 , 2,3, , 1j i j λ+Ω − = +  

In the same exactly way there is the probability of ip −∆  to be divided by one 
of the parts of the potential gloomy twin of the interval ( )Z i  from the appear-
ance of at least on prime number jq  in any appropriate position in ( )Z i , 
meaning till the natural number 2iW β≤ . The probability jp −  of the natural 
number ( ) { }2 1 , 1,2,3, ,ka j i j λ= +Ω − ∈   of the interval ( )Z i  to divide one 
at least of the two parts of the potential gloomy twin of ( )Z i , will satisfy the re-
lationships: 

( ) ( ) { }2 2 2 1 , 1,2,3, , , 2
2 1jp p j i j i

j i
λ− < < + +Ω − ∈ ∀ >  +Ω −
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That arise in a completely similar way with the relation (5.9), from the com-
parison of (5.7) and (5.8). 

For the correlation of the changes ip −∆  and ip +∆ , taking into consideration 
the previous inequalities and since completely similar with the proof of (5.12), 
one gets: 

( )
1

1 1i j
j

p p
λ

− −
=

∆ = − −∏  

and afterwards is led: 

( ) ( )
1

1 2

21 1 1 1 2 1
2 1i i

j j
p p j i p

j i

λ λ+

− +
= =

 
 ∆ < − − < − − +Ω − = ∆     +Ω −  

∏ ∏  

these last relations reveal that:  
, 2i ip p i+ −∆ > ∆ ∀ >                      (5.13) 

The relation (5.13), that was shown above, states that the change of the proba-
bility to create at least one twin from the complex event of the appearance of at 
least one prime number (meaning one, two or three prime numbers etc.), in 
( )Z i  will be “much” greater than the change in the probability of this complex 

event to be destroyed by the potential existing gloomy twin of ( )Z i . Then again, 
like before, by applying the last relation (5.13), the total multitude of twins in 
( )Z i  will be:  

1 1i i iN p p+ −> + ∆ − ∆ >                    (5.14) 

And following that, based on relation (5.14), for the whole of interval N of the 
natural numbers it will be true that: 

( )
3 3

1i i i
i i

R N p p
∞ ∞

+ −
= =

= > + ∆ − ∆ = ∞∑ ∑  

Therefore, finally the multitude of the twins in the interval N of natural num-
bers will be:  

R = ∞  

This is the last signal the tracker send from infinity [3] [7] [8] from this world 
of intangible beings of the pure information that is mirrored in the mental world 
of the Pythagoras’ numbers, where paradoxically the tracker seems to have the 
advantage of the instantaneous transmission of the infinite information, like the 
goodness of reputation in the mysterious place of Ovid: 

In the middle of the world 
There is a place 

Among the countries 
In the waves of the sea 

And the heavenly slopes 
The boarder of the triple world… 
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