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Abstract 
In recent years, Convolutional Neural Networks (CNNs) have enabled un-
precedented progress on a wide range of computer vision tasks. However, 
training large CNNs is a resource-intensive task that requires specialized 
Graphical Processing Units (GPU) and highly optimized implementations to 
get optimal performance from the hardware. GPU memory is a major bottle-
neck of the CNN training procedure, limiting the size of both inputs and 
model architectures. In this paper, we propose to alleviate this memory bot-
tleneck by leveraging an under-utilized resource of modern systems: the de-
vice to host bandwidth. Our method, termed CPU offloading, works by 
transferring hidden activations to the CPU upon computation, in order to 
free GPU memory for upstream layer computations during the forward pass. 
These activations are then transferred back to the GPU as needed by the gra-
dient computations of the backward pass. The key challenge to our method is 
to efficiently overlap data transfers and computations in order to minimize 
wall time overheads induced by the additional data transfers. On a typical 
work station with a Nvidia Titan X GPU, we show that our method compares 
favorably to gradient checkpointing as we are able to reduce the memory 
consumption of training a VGG19 model by 35% with a minimal additional 
wall time overhead of 21%. Further experiments detail the impact of the dif-
ferent optimization tricks we propose. Our method is orthogonal to other 
techniques for memory reduction such as quantization and sparsification so 
that they can easily be combined for further optimizations. 
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1. Introduction 

Over the last few years, Convolutional Neural Networks (CNNs) [1] [2] have 
enabled unprecedented progress on a wide array of computer vision tasks. One 
disadvantage of these approaches is their resource consumption: Training deep 
models within a reasonable amount of time requires special Graphical 
Processing Units (GPU) with numerous cores and large memory capacity. Given 
the practical importance of these models, a lot of research effort has been di-
rected towards algorithmic and hardware innovations to improve their resource 
efficiency such as low-precision arithmetic [3], network pruning [4], or efficient 
stochastic optimization algorithms [5]. 

In this paper, we focus on a particular aspect of resource efficiency: optimiz-
ing the GPU memory cost of training CNNs. Given the ubiquity of CNN for 
practical computer vision applications, optimizing the memory consumption of 
CNN training has the potential to impact a wide range of applications. Here, we 
only present a few of the most interesting potential impacts of such optimization: 

Low-Memory GPUs: Training large CNN requires special GPUs with large 
memory capacity. Typical desktop GPUs memory capacity is too small for 
training large CNNs. As a result, getting into deep learning research comes with 
the barrier cost of either buying specialized hardware or renting live instances 
from cloud service providers, while standard laptop GPUs remain idle untapped 
resources. Reducing the memory cost of deep model training allows training 
deep nets on standard graphic cards without the need for specialized hardware, 
effectively removing this barrier cost. 

Research in Optimization: Recent works on stochastic optimization algo-
rithms have highlighted the benefits of large batch training [6] [7] [8]. For ex-
ample, in Imagenet, linear speed-ups in training have been observed with in-
creasing batch sizes up to tens of thousands of samples [7]. Optimizing the 
memory cost of CNN training may allow further research on the optimization 
trade-offs of large batch training. Very large batch training on small datasets like 
MNIST and CIFAR10 is computationally inefficient with current stochastic op-
timization algorithms [7]. However, for such small datasets, memory optimiza-
tion would allow processing the full dataset in one pass through the networks. 
The ability to process the full dataset in one pass allows to easily train CNNs on 
the exact gradient of the loss function. Hence, memory optimization techniques 
open the door for research on gradient descent optimization of neural networks 
outside the realm of Stochastic Gradient Descent. 

There is an inherent trade-off between the memory consumption and com-
putation wall time of the CNN training procedure: Existing approaches to op-
timize the memory consumption of CNN training, (gradient checkpointing, re-
versible network architectures), trade-off memory consumption for additional 
computations by recomputing all or a subset of the hidden layers activations 
during the backward pass. 

Instead, our approach reduces the GPU memory consumption without intro-
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ducing any additional computation by leveraging an under-utilized resource: 
host-device communication. We propose to temporarily offload GPU memory 
buffers to the CPU during the forward pass of the computation, and transferring 
these memory buffers back into GPU memory as needed by the gradient com-
putations during the backward of the backpropagation algorithm. 

The key challenge in our approach is to efficiently overlap the GPU computa-
tions with the data transfers between CPU and GPU in order to minimize the 
overhead in wall time introduced by these data transfer. In this paper, we de-
scribe an efficient implementation of this approach that allows us to reduce by 
up to 35% the memory cost of training a VGG network with a minimal wall time 
overhead of 21%. We compare the memory vs. wall time trade-off of our ap-
proach to gradient checkpointing to illustrate the efficiency of our approach. 

The remainder of this paper is organized as follows: In Section 2, we briefly 
review the literature for related work. Section 3 introduces the preliminary no-
tions necessary to understand the root of the GPU memory bottleneck. Section 4 
presents our approach and details the different tricks needed for efficient im-
plementation. Finally, Section 5 presents the results of our evaluation. 

2. Related Work 

Research into resource optimization of CNNs covers a wide array of techniques, 
most of which are orthogonal to our work. We briefly present some of these 
works. 

On the architectural side, Squeezenet [9] was first proposed as an efficient 
neural architecture reducing the number of model parameters while maintaining 
high classification accuracy. MobileNet [10] uses depth-wise separable convolu-
tions to further reduce the computational cost of inference for embedded device 
applications. 

Network pruning [4] is a set of techniques developed to decrease the model 
weight size and computational complexity. Network pruning works by removing 
the network weights that contribute the least to the model output. Pruning deep 
models has been shown to efficiently reduce the memory and computational 
cost of inference without significantly hurting model accuracy. Although pruning 
methods focus on the optimization of inference, the recently proposed lottery 
ticket hypothesis [11] has shown that specifically pruned networks could be 
trained from scratch to high accuracy. This may be an interesting and comple-
mentary line of work to investigate in the future to reduce training memory costs. 

Low precision arithmetic has been proposed as a mean to reduce both memo-
ry consumption and computation time of deep learning models. Mixed precision 
training [12] combines float16 with float32 operations to avoid numerical insta-
bilities due to either overflow or underflow. For inference, integer quantization 
[3] [13] has been shown to drastically improve the computation and memory ef-
ficiency and has been successfully deployed on both edge devices and data cen-
ters. Integrating mixed-precision training to our proposed architecture would 
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allow us to further reduce training memory costs. 
Most related to our work, gradient checkpointing was introduced as a mean to 

reduce the memory cost of deep neural network training. Gradient checkpoint-
ing is first introduced in [14], trades off memory for computational complexity 
by storing only a subset of the activations during the forward pass. During the 
backward pass, missing activations are recomputed from the stored activations 
as needed by the backpropagation algorithm. Follow-up work [15] has since 
built on the original gradient checkpointing algorithm to improve this memo-
ry/computation trade-off. 

In contrast, our approach does not introduce any additional computation: In-
stead of computing a set of missing hidden activations during the backward pass, 
we propose to offload the hidden activations to the CPU during the forward 
pass, and to transfer these activations back to GPU memory during the back-
ward pass. 

Reversible models [16] [17] constrain the CNN architecture to feature inverti-
ble transformations. This allows the activation values of lower layers to be re-
constructed from those of higher layers during the backward pass. Reversible 
networks have been shown to offer a better memory/computation trade-off than 
gradient checkpointing at the cost of constraining the CNN architecture. 

Our approach combines revertible operations with CPU offloading: we use the 
invertible BN-Leaky ReLu block design proposed in [18] to efficiently deal with 
normalization and non-linearity layers, and only offload to CPU the activations 
of the pooling and convolution layers. 

3. Preliminaries 

Let us consider a model F of N sequential layers trained to minimize an error e 
defined by a loss function   for an input x and ground-truth label y : 

:F x y→                          (1a) 

( )2 1Ny f f f x=                       (1b) 

( ),e y y=                           (1c) 

During the forward pass, each layer if  takes as input the activations 1iz −  
from the previous layer and outputs activation features ( )1i i iz f z −= , with 

0z x=  and Nz y=  being the input and output of the network respectively. 
During the backward pass, the gradient of the loss with respect to the hidden ac-
tivations are propagated backward through the layers of the networks using the 
chain rule as: 

1 1

i

i i i

z
z z z

δδ δ
δ δ δ− −

= ×
                         (2) 

Before propagating the loss gradient with respect to its input to the previous 
layer, each parameterized layer computes the gradient of the loss with respect to 
its parameters. In vanilla SGD, for a given learning rate η , the weight gradients 
are subsequently used to update the weight values as: 
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i

i i i

z
z

δδ δ
δθ δ δθ

= ×
                          (3a) 

i i
i

δθ θ η
δθ

← − ×
                         (3b) 

For most layers, the computation of either gradients are functions of the 
layer’s input activations 1iz − : For example, convolution layers need the values of 
input activations to compute the weight gradients: 

1
F
i

i i

z
z

δ δ
δθ δ−=
 

                         (4) 

while Rectified Linear Unit layers need the input activations values to compute 
the gradients of the loss with respect to its inputs: 

1
1

1
1

, if 0

0 if 0

j
ij

ij
ji

i

z
z

z
z

δ
δ δ
δ

−
−

−
−

 ≥= 
 <


                    (5) 

Hence, backpropagation implementations in deep learning frameworks store 
hidden layers activations in GPU memory upon computation during the for-
ward pass. Activations accumulate in live memory buffers throughout the full 
forward pass until used for gradients computations of the backward pass. Once 
the gradients computed during the backward pass, their associated hidden acti-
vation buffers can be freed from live memory. However, the accumulation of ac-
tivation values stored within each layer along the forward pass creates a major 
bottleneck in GPU memory. In the next section, we detail our approach to alle-
viate this memory bottleneck. 

4. Propose Method 
4.1. Framework 

The input activations of each layer are kept in GPU memory only to be used for 
the computation of the layer weight gradients during the backward pass. Hence, 
the activations of lower layers are kept idle in GPU memory during the forward 
and backward computations through higher layers. We propose to offload these 
activations to the CPU during this idle time in order to free up some GPU 
memory space for the computation of higher layers activations. 

Figure 1 illustrates our approach. During the forward pass (top), activations 
are computed forward through the network layers. Instead of keeping these ac-
tivations idle in GPU memory, activation values are transferred to the CPU 
memory immediately after their computation. In the backward pass (bottom), 
gradients are backpropagated backward through the network layers following 
Equations (3). Our implementation synchronizes the transfer of the layers input 
activations back to GPU right before they are needed for their layer’s gradient 
computation. Hence the key challenge in our implementation consists in syn-
chronizing the data transfers with the computations so that only the minimal 
amount of activation values is loaded in GPU memory at any given time, while 
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the least amount of time is spent waiting for the data transfer. 
To achieve this goal, we propose a set of optimization tricks organized along 

two axes: The first consists in optimizing the data transfer speed between CPU 
and GPU memory, using efficient memory accesses and data compression 
schemes. The second consists in efficient parallelization to maximally overlap 
the computations with the data transfer. The following subsections details opti-
mizations along these two axes. 

4.2. Parallelization 

Figure 2 illustrates the execution through time of a forward and backward pass 
through a toy network with and without parallelization of the data transfer. 
Without parallelization, computation and data transfers are performed sequen-
tially so that the total wall time is given by the sum of the computation and data 
transfer time. total comp data= +    Parallelization aims to overlap the computa-
tion and data transfer so that the total wall time is given by total comp idle= +   , 
where idle  represents synchronization delays in cases where the computation  

 

 
Figure 1. Illustration of CPU offloading. During the forward pass (top), hidden activation 
buffers are transferred to CPU memory upon computation. During the backward pass 
(bottom), hidden activation buffers are transferred back to GPU memory just in time to 
compute the weight gradients. 

 

 
Figure 2. Illustration of the parallel CPU offloading execution through time. (Bottom): without parallelism, computations 
and data transfers are sequentially executed within the same stream so that the overhead in wall time corresponds to the 
total time of data transfers data . (Top): Computations and data transfer are executed in parallel in their dedicated stream. 
The overhead in wall time idle  is spent as the computation stream awaits for data transfers to complete (illustrated in 
red). 
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is stopped to await for the required data transfer to complete. 
The key challenge in this parallelization scheme consists in efficiently manag-

ing memory allocation and data transfer so as to minimize the time idle  spent 
awaiting for data transfer. In this paper, we adopt a simple parallelization strat-
egy: During the forward pass, activations iz  are transferred to CPU upon 
computation by layer i as ( )1i i iz f z −= , The GPU memory buffer of iz  must 
then await for both the data transfer to CPU and the next layer computation 

( )1 1i i iz f z+ +=  to complete before de-allocation in order to avoid unfortunate 
overwriting by concurrent operations. 

One important exception to this rule concerns skip connections, as illustrated 
in Figure 3. Skip connections induce a delay in the GPU buffer de-allocation as 
the input of residual blocks must be kept in memory until the end of the residual 
block computation to be added to the output. In ResNet architectures, this delay 
is short enough to have little impact on the memory/wall time trade-off. How-
ever, this means that our method is poorly suited to densely connected architec-
tures such as DenseNet [19] or UNet [20] as their long-range skip connections 
introduce large delays in the GPU buffer de-allocation. 

During the backward pass, the input activation 1iz −  of layer i must be trans-
ferred back into GPU memory for the backward gradient computations ifδ  to 
proceed. Hence, we overlap the transfer of 1iz −  to GPU with the backward 
computations 1ifδ +  of the upper layer 1i +  to avoid GPU idle time. As for-
malized, we thus synchronize the data transfer of 1iz −  with the beginning of the 
backpropagation through 1if + . 

We use threading and locks to handle the parallelism and synchronization on 
the CPU side, and CUDA streams to handle the parallelization on the GPU de-
vice. CUDA events provide synchronization primitives to precisely track the 
completion of kernel executions. Algorithm 1 and Algorithm 2 provide pseu-
do-code for the forward and backward pass respectively. 

With the above parallelization scheme, the overhead idle  in wall time is giv-
en by the sum of the difference in the computation and data transfer time at each 
layer. If data transfer is faster than the computation in each layer, CPU offloading  

 

 
Figure 3. Illustration of the delay in memory de-allocation induced by residual connections. (Left) without resi-
dual connection, the input 1iz −  of layer if  can be freed from GPU memory as if  computation terminates. 
(Right) Residual connections induce a delay in memory de-allocation as 1iz −  must be kept in GPU memory to be 
added to the output of the residual block. 
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Algorithm 1. Forward procedure through layer i with parallel CPU offloading. 

Data: Layer if , input activation 1iz −  

CPU pinned memory buffer 1iP−  

CPU thread dataT  

CUDA events i
dataE , i

compE  

CUDA Streams dataS , compS   

Result: iz   

Allocate (zi); 

( )1comp i i iS z f z −⇐ ← ; 

i
comp compS E⇐ ; 

In Thread dataT : 

1 1data i iS P z− −⇐ ← ; 

i
data dataS E⇐ ; 

Wait ( i
dataE , i

compE ); 

Free ( 1iz − ). 

Algorithm 1. Double arrows indicate the asynchronous execution of a CUDA directive within a stream. 
Data transfers are executed within dedicated CUDA stream and CPU thread to synchronize the memory 
de-allocation without blocking the execution of upward layers. 

 
Algorithm 2. Backward procedure through layer i with parallel CPU offloading. 

Data: Layer if , output gradients 
iz

δ
δ
  

CPU pinned memory buffer 1iP−  

CPU thread compT  

CUDA events i
dataE , 1i

dataE + , i
compE  

CUDA Streams dataS , compS  

Result: 
1iz

δ
δ −

 , 
i

δ
δθ
  

Allocate ( 1iz − ); 

1 1data i iS z P− −⇐ ← ; 

i
data dataS E⇐ ; 

Wait ( 1i
dataE + ); 

Allocate (
1iz

δ
δ −

 , 
i

δ
δθ
 ); 

1 1

i
comp

i i i

zS
z z z

δδ δ
δ δ δ− −

⇐ ← ×
  ; 

i
comp

i i i

zS
z

δδ δ
δθ δ δθ

⇐ ← ×
  . 
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will reduce memory consumption without any overhead in wall time. Hence, 
CPU offloading is best suited for computation-intensive operations like convo-
lutions. In contrast, batch normalization layers come with negligible computa-
tional cost, but significant data transfer time so that offloading the input activa-
tions of such layer comes with a significant overhead. Instead of offloading these 
layers, we reconstruct their input activations from their output using their in-
verse operation, as proposed in [18] and only offload the input activations of the 
convolution and pooling layers to CPU. 

4.3. Data Transfer Optimization 

The time needed to transfer data between devices is given by the product of the 
transfer speed bandwidth  , in bytes per second, by the volume   of the da-
ta buffer in bytes: 

data =





                           (6) 

Hence, minimizing data transfer time can be achieved by either maximizing 
the transfer speed   or minimizing the activation volume   through data 
compression. In this paper, we focus on maximizing data transfer speed using 
pinned CPU memory buffers. 

CPU memory can be accessed through either pageable memory or pinned 
memory address spaces. Pinned memory allows for Direct Memory Access 
(DMA), which can significantly speed up data transfer between CPU and GPU 
devices through PCIe lanes. However, allocating pinned memory buffers is a 
time-consuming operation, as illustrated in Table 1. Hence, naively allocating 
pinned memory buffers within each forward pass would slow down training due 
to the overhead of pinned memory allocation. Instead, we propose to allocate the 
pinned memory buffers beforehand, during the initialization of the CNN. Our 
implementation scans the network architecture upon instantiation and allocates 
dedicated pinned memory buffers for each target layer activation (convolutions 
and max-pooling). During the forward pass, we transfer the GPU data directly 
into the pre-allocated pinned memory buffer, and, during the backward pass, we 
transfer the activations back to GPU from these pinned buffers. Table 1 quanti-
fies the gains in transfer speed brought by the use of pinned memory buffers  

 
Table 1. Measurement of data transfer and pinned memory allocation speed on our 
workstation. Pinned memory buffers bring a substantial speedup in both directions of the 
data transfer. 

Operation Speed (GB/s) 

Pinned memory allocation 1.95 

GPU → CPU (pageable) 1.75 

GPU → CPU (pinned) 6.5 

CPU → GPU (pageable) 4.1 

CPU → GPU (pinned) 6.1 
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and, in Section 5, we evaluate the impact of using pinned memory buffers on the 
overall efficiency of our method. 

Another way to reduce the time of data transfer between CPU and GPU is to 
minimize   by compressing the hidden layer activations before transferring 
them between devices. Compression can be achieved by diverse means including 
sparsification, quantization or low-rank factorization techniques. Low-rank fac-
torization would induce non-negligible additional computational costs, which 
would slow down the computation. Either sparsifying or quantizing the layers 
activations are interesting solutions. However, compression would incur minor 
losses of precision in the activation values, which might affect the training dy-
namics. Although previous works suggest that such minor losses in precision do 
not negatively impact training, investigation of compression techniques would 
require a detailed analysis of the impact of compression on accuracy, which is 
out of the scope of this paper. Hence we leave this question open for future work 
as an interesting direction for further optimization. 

5. Experiments 

We conduct our experiments on a workstation with an NVIDIA Titan X GPU 
connected to the host through PCIe1 16× lanes, which represents a peak band-
width of 6.5 GB/s. We believe this set-up to be representative of a typical 
workstation for individual practitioners, if not slightly unfavorable, as our device 
to host bandwidth is rather limited. Unless specified otherwise, we conduct our 
experiments on a batch of 32 RGB images with a resolution of 128 by 128 pixels. 
This allows us to fit the training of the largest baseline architectures in memory, 
while keeping a reasonable training speed for fast iteration. For each experiment, 
we are interested in the total memory usage and Wall time of the computation 
for a full training iteration including the forward and backward pass through the 
network. It is important to note that our method does not modify the actual 
computations performed by the network so that the training dynamics and ac-
curacy are unaffected by CPU Offloading. Hence, we focus on reporting the 
memory vs. wall time trade-off, as the accuracy reached by the model is strictly 
unaffected. 

5.1. Memory vs. Wall Time Trade-Off 

Our implementation allows controlling for the memory foot-print vs. computa-
tion wall time trade-off by either using more aggressive parallelization schemes 
or by offloading different subsets of hidden layers input activations. In this sec-
tion, we use the parallelization scheme described in Section 4.2 and explore the 
memory vs. time trade-off by off-loading different subsets of the model’s layers. 

Figure 4 compares the memory/Wall time trade-off of CPU off-loading to the 
trade-off provided by gradient checkpointing, as implemented in the Pytorch 
[21] library on the VGG19 architecture. In gradient checkpointing, this trade-off 
is defined by the number of checkpointed layers through the full architecture. 
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Figure 4 shows the pareto frontier for an extensive search in both check-
pointing and CPU offloading layer subset. CPU offloading leads to a better 
trade-off between memory consumption and wall time. This observed perfor-
mance is due to the fact that the data transfer between host and device can be ef-
ficiently parallelized with the computation, hence incurring a minor overhead, 
while gradient checkpointing cannot parallelize the gradient computations and 
activation reconstructions. Hence, the additional cost of sequentially recon-
structing the hidden activations during the backward pass induces a higher 
overhead. 

5.2. Ablation Study 

Table 2 illustrates the speed up brought by both parallelization and pinned 
memory buffers. We record the timings of a training iteration needed to achieve 
maximal memory reduction on the VGG19 architecture for an input batch of 32 
images with 218 by 128 pixel resolution. We start by recording the time for a 
baseline CPU offloading approach without parallelization or data transfer opti-
mization. We then successively integrate the pinned memory buffers and paral-
lelization to this baseline and observe the improvement. 

Both parallelization and pinned memory buffers bring substantial improve-
ments in speed and have proven critical for performance. Compression of the  

 

 
Figure 4. Comparison of the memory vs. wall time trade-off achieved by CPU offloading 
and sequential gradient checkpointing. The x axis represents the relative memory reduc-
tion obtained from the baseline model. The y axis represents the relative increase in-
curred in Wall time to achieve this memory reduction. 

 
Table 2. Speed-ups achieved by the pinned memory buffers and parallelization techniques. 

Operation Time (ms) Rel. Improvement 

Baseline 560 0% 

Pinned memory 355 −36.6% 

Parallelization 236 −21.2% 
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hidden states to either sparse representations or lower precision encodings may 
bring similar speed-up and would be very interesting to investigate in future work. 
We expect that simply converting the hidden activations to FP16 before sending 
them to the host device should further reduce the data transfer time by half. 

5.3. Architecture Comparison 

In this section, we compare the memory gains and time overhead achieved 
through CPU offloading on different popular architectures (Table 3). 

Both ResNet architectures and MobileNet [10] feature batch normalization 
layers, for which we used the invertible operation of [18]. Invertible batch nor-
malization layers further reduce the memory consumption with little time over-
head, which explains the slightly better trade-off of ResNet architectures. On the 
other hand, the MobileNet architecture uses depth-wise convolutions instead of 
the regular convolution layers used in both VGG and ResNet architectures. 
Depth-wise convolutions have lower arithmetic intensity [22] than convolution 
layers, i.e.; for input activations of similar size, they perform less, hence faster, 
operations. As computations are performed faster while the data transfer time 
remains constant, CPU offloading of depth-wise convolutions incurs a more 
important overhead. This result highlights the fact that CPU offloading works 
best for computationally intensive layers. 

5.4. Discussion 

The memory/time trade-off achievable by CPU offloading is a function of the ra-
tio between computation and data transfer speed. This ratio varies with the spe-
cific hardware being run on, the algorithm used for the convolutions, as well as 
the efficiency of their implementation. 

On the software side, the experiments presented in this paper were run with 
state-of-the art cudnn implementations of the winograd convolution algorithm 
through the PyTorch framework [21]. On the hardware side, we ran experiments 
on a single Nvidia Titan X GPU connected to the host via a 6 GB/s bandwidth 
connection, which we believe to be representative of a typical deep learning stu-
dent/researcher’s workstation. 

 
Table 3. Memory vs. time trade-off achieved by different architectures. The Wall Time 
Overhead column shows the additional time needed to achieve the given memory reduc-
tion (the lower the better). Memory Reduction represents the reduction of peak memory 
usage achieved with CPU offloading (the higher the better). 

Architecture Wall Time Overhead Memory Reduction 

VGG16 19.5% 32.5% 

VGG19 21.0% 36.9% 

Resnet18 17.6% 54.4% 

Resnet50 15.3% 56.8% 

MobileNet 63.2% 67.8% 
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The exact trade-offs achieved will differ depending on the specific hardware 
and software used in different systems, as well as the parallelization strategy used 
for CPU offloading. However, the fact that data transfers between CPU and GPU 
can be efficiently parallelized with the GPU computations means that memory 
gains can be achieved with minimal time overhead on any system given an ap-
propriate parallelization strategy. 

Searching for an optimal parallelization strategy given a fixed computational 
graph and hardware system is a very interesting problem left open to investigate. 
In this paper, we provide a proof of concept by showing that even a rather naive 
parallelization strategy with minimum optimization leads to a competitive 
memory/time trade-off relatively to the well-established method of gradient 
checkpointing. 

6. Conclusion 

Convolutional Neural Networks have become the backbone of computer vision 
systems. Despite their great success, one major drawback of these models is their 
intense resource consumption: Training CNNs needs highly optimized imple-
mentations leveraging all possible hardware resources. In this paper, we pro-
posed to leverage GPU-CPU communication, an under-utilized resource in typ-
ical CNN training pipelines, to alleviate the GPU bottleneck in training CNNs. 
Our experiment on a standard single-GPU work station shows a more effective 
memory/wall time trade-off than gradient checkpointing. Our approach is or-
thogonal to other resource optimization approaches such as pruning and quan-
tization so these approaches can easily be combined in future work. 
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