
Journal of Software Engineering and Applications, 2019, 12, 307-320
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.128019 Aug. 22, 2019 307 Journal of Software Engineering and Applications

Reducing the Memory Cost of Training
Convolutional Neural Networks by CPU
Offloading

Tristan Hascoet1*#, Weihao Zhuang1#, Quenti Febvre2, Yasuo Ariki1, Tetsuya Takiguchi1

1Kobe University, Kobe, Japan
2Sicara, Paris, France

Abstract
In recent years, Convolutional Neural Networks (CNNs) have enabled un-
precedented progress on a wide range of computer vision tasks. However,
training large CNNs is a resource-intensive task that requires specialized
Graphical Processing Units (GPU) and highly optimized implementations to
get optimal performance from the hardware. GPU memory is a major bottle-
neck of the CNN training procedure, limiting the size of both inputs and
model architectures. In this paper, we propose to alleviate this memory bot-
tleneck by leveraging an under-utilized resource of modern systems: the de-
vice to host bandwidth. Our method, termed CPU offloading, works by
transferring hidden activations to the CPU upon computation, in order to
free GPU memory for upstream layer computations during the forward pass.
These activations are then transferred back to the GPU as needed by the gra-
dient computations of the backward pass. The key challenge to our method is
to efficiently overlap data transfers and computations in order to minimize
wall time overheads induced by the additional data transfers. On a typical
work station with a Nvidia Titan X GPU, we show that our method compares
favorably to gradient checkpointing as we are able to reduce the memory
consumption of training a VGG19 model by 35% with a minimal additional
wall time overhead of 21%. Further experiments detail the impact of the dif-
ferent optimization tricks we propose. Our method is orthogonal to other
techniques for memory reduction such as quantization and sparsification so
that they can easily be combined for further optimizations.

Keywords
Deep Learning, CNN, Optimization

#Equal contribution.

How to cite this paper: Hascoet, T.,
Zhuang, W.H., Febvre, Q., Ariki, Y. and
Takiguchi, T. (2019) Reducing the Memory
Cost of Training Convolutional Neural
Networks by CPU Offloading. Journal of
Software Engineering and Applications, 12,
307-320.
https://doi.org/10.4236/jsea.2019.128019

Received: July 10, 2019
Accepted: August 19, 2019
Published: August 22, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.128019
http://www.scirp.org
https://doi.org/10.4236/jsea.2019.128019
http://creativecommons.org/licenses/by/4.0/

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 308 Journal of Software Engineering and Applications

1. Introduction

Over the last few years, Convolutional Neural Networks (CNNs) [1] [2] have
enabled unprecedented progress on a wide array of computer vision tasks. One
disadvantage of these approaches is their resource consumption: Training deep
models within a reasonable amount of time requires special Graphical
Processing Units (GPU) with numerous cores and large memory capacity. Given
the practical importance of these models, a lot of research effort has been di-
rected towards algorithmic and hardware innovations to improve their resource
efficiency such as low-precision arithmetic [3], network pruning [4], or efficient
stochastic optimization algorithms [5].

In this paper, we focus on a particular aspect of resource efficiency: optimiz-
ing the GPU memory cost of training CNNs. Given the ubiquity of CNN for
practical computer vision applications, optimizing the memory consumption of
CNN training has the potential to impact a wide range of applications. Here, we
only present a few of the most interesting potential impacts of such optimization:

Low-Memory GPUs: Training large CNN requires special GPUs with large
memory capacity. Typical desktop GPUs memory capacity is too small for
training large CNNs. As a result, getting into deep learning research comes with
the barrier cost of either buying specialized hardware or renting live instances
from cloud service providers, while standard laptop GPUs remain idle untapped
resources. Reducing the memory cost of deep model training allows training
deep nets on standard graphic cards without the need for specialized hardware,
effectively removing this barrier cost.

Research in Optimization: Recent works on stochastic optimization algo-
rithms have highlighted the benefits of large batch training [6] [7] [8]. For ex-
ample, in Imagenet, linear speed-ups in training have been observed with in-
creasing batch sizes up to tens of thousands of samples [7]. Optimizing the
memory cost of CNN training may allow further research on the optimization
trade-offs of large batch training. Very large batch training on small datasets like
MNIST and CIFAR10 is computationally inefficient with current stochastic op-
timization algorithms [7]. However, for such small datasets, memory optimiza-
tion would allow processing the full dataset in one pass through the networks.
The ability to process the full dataset in one pass allows to easily train CNNs on
the exact gradient of the loss function. Hence, memory optimization techniques
open the door for research on gradient descent optimization of neural networks
outside the realm of Stochastic Gradient Descent.

There is an inherent trade-off between the memory consumption and com-
putation wall time of the CNN training procedure: Existing approaches to op-
timize the memory consumption of CNN training, (gradient checkpointing, re-
versible network architectures), trade-off memory consumption for additional
computations by recomputing all or a subset of the hidden layers activations
during the backward pass.

Instead, our approach reduces the GPU memory consumption without intro-

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 309 Journal of Software Engineering and Applications

ducing any additional computation by leveraging an under-utilized resource:
host-device communication. We propose to temporarily offload GPU memory
buffers to the CPU during the forward pass of the computation, and transferring
these memory buffers back into GPU memory as needed by the gradient com-
putations during the backward of the backpropagation algorithm.

The key challenge in our approach is to efficiently overlap the GPU computa-
tions with the data transfers between CPU and GPU in order to minimize the
overhead in wall time introduced by these data transfer. In this paper, we de-
scribe an efficient implementation of this approach that allows us to reduce by
up to 35% the memory cost of training a VGG network with a minimal wall time
overhead of 21%. We compare the memory vs. wall time trade-off of our ap-
proach to gradient checkpointing to illustrate the efficiency of our approach.

The remainder of this paper is organized as follows: In Section 2, we briefly
review the literature for related work. Section 3 introduces the preliminary no-
tions necessary to understand the root of the GPU memory bottleneck. Section 4
presents our approach and details the different tricks needed for efficient im-
plementation. Finally, Section 5 presents the results of our evaluation.

2. Related Work

Research into resource optimization of CNNs covers a wide array of techniques,
most of which are orthogonal to our work. We briefly present some of these
works.

On the architectural side, Squeezenet [9] was first proposed as an efficient
neural architecture reducing the number of model parameters while maintaining
high classification accuracy. MobileNet [10] uses depth-wise separable convolu-
tions to further reduce the computational cost of inference for embedded device
applications.

Network pruning [4] is a set of techniques developed to decrease the model
weight size and computational complexity. Network pruning works by removing
the network weights that contribute the least to the model output. Pruning deep
models has been shown to efficiently reduce the memory and computational
cost of inference without significantly hurting model accuracy. Although pruning
methods focus on the optimization of inference, the recently proposed lottery
ticket hypothesis [11] has shown that specifically pruned networks could be
trained from scratch to high accuracy. This may be an interesting and comple-
mentary line of work to investigate in the future to reduce training memory costs.

Low precision arithmetic has been proposed as a mean to reduce both memo-
ry consumption and computation time of deep learning models. Mixed precision
training [12] combines float16 with float32 operations to avoid numerical insta-
bilities due to either overflow or underflow. For inference, integer quantization
[3] [13] has been shown to drastically improve the computation and memory ef-
ficiency and has been successfully deployed on both edge devices and data cen-
ters. Integrating mixed-precision training to our proposed architecture would

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 310 Journal of Software Engineering and Applications

allow us to further reduce training memory costs.
Most related to our work, gradient checkpointing was introduced as a mean to

reduce the memory cost of deep neural network training. Gradient checkpoint-
ing is first introduced in [14], trades off memory for computational complexity
by storing only a subset of the activations during the forward pass. During the
backward pass, missing activations are recomputed from the stored activations
as needed by the backpropagation algorithm. Follow-up work [15] has since
built on the original gradient checkpointing algorithm to improve this memo-
ry/computation trade-off.

In contrast, our approach does not introduce any additional computation: In-
stead of computing a set of missing hidden activations during the backward pass,
we propose to offload the hidden activations to the CPU during the forward
pass, and to transfer these activations back to GPU memory during the back-
ward pass.

Reversible models [16] [17] constrain the CNN architecture to feature inverti-
ble transformations. This allows the activation values of lower layers to be re-
constructed from those of higher layers during the backward pass. Reversible
networks have been shown to offer a better memory/computation trade-off than
gradient checkpointing at the cost of constraining the CNN architecture.

Our approach combines revertible operations with CPU offloading: we use the
invertible BN-Leaky ReLu block design proposed in [18] to efficiently deal with
normalization and non-linearity layers, and only offload to CPU the activations
of the pooling and convolution layers.

3. Preliminaries

Let us consider a model F of N sequential layers trained to minimize an error e
defined by a loss function  for an input x and ground-truth label y :

:F x y→ (1a)

()2 1Ny f f f x=   (1b)

(),e y y=  (1c)

During the forward pass, each layer if takes as input the activations 1iz −
from the previous layer and outputs activation features ()1i i iz f z −= , with

0z x= and Nz y= being the input and output of the network respectively.
During the backward pass, the gradient of the loss with respect to the hidden ac-
tivations are propagated backward through the layers of the networks using the
chain rule as:

1 1

i

i i i

z
z z z

δδ δ
δ δ δ− −

= ×
  (2)

Before propagating the loss gradient with respect to its input to the previous
layer, each parameterized layer computes the gradient of the loss with respect to
its parameters. In vanilla SGD, for a given learning rate η , the weight gradients
are subsequently used to update the weight values as:

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 311 Journal of Software Engineering and Applications

i

i i i

z
z

δδ δ
δθ δ δθ

= ×
  (3a)

i i
i

δθ θ η
δθ

← − ×
 (3b)

For most layers, the computation of either gradients are functions of the
layer’s input activations 1iz − : For example, convolution layers need the values of
input activations to compute the weight gradients:

1
F
i

i i

z
z

δ δ
δθ δ−=
 

 (4)

while Rectified Linear Unit layers need the input activations values to compute
the gradients of the loss with respect to its inputs:

1
1

1
1

, if 0

0 if 0

j
ij

ij
ji

i

z
z

z
z

δ
δ δ
δ

−
−

−
−

 ≥= 
 <


 (5)

Hence, backpropagation implementations in deep learning frameworks store
hidden layers activations in GPU memory upon computation during the for-
ward pass. Activations accumulate in live memory buffers throughout the full
forward pass until used for gradients computations of the backward pass. Once
the gradients computed during the backward pass, their associated hidden acti-
vation buffers can be freed from live memory. However, the accumulation of ac-
tivation values stored within each layer along the forward pass creates a major
bottleneck in GPU memory. In the next section, we detail our approach to alle-
viate this memory bottleneck.

4. Propose Method
4.1. Framework

The input activations of each layer are kept in GPU memory only to be used for
the computation of the layer weight gradients during the backward pass. Hence,
the activations of lower layers are kept idle in GPU memory during the forward
and backward computations through higher layers. We propose to offload these
activations to the CPU during this idle time in order to free up some GPU
memory space for the computation of higher layers activations.

Figure 1 illustrates our approach. During the forward pass (top), activations
are computed forward through the network layers. Instead of keeping these ac-
tivations idle in GPU memory, activation values are transferred to the CPU
memory immediately after their computation. In the backward pass (bottom),
gradients are backpropagated backward through the network layers following
Equations (3). Our implementation synchronizes the transfer of the layers input
activations back to GPU right before they are needed for their layer’s gradient
computation. Hence the key challenge in our implementation consists in syn-
chronizing the data transfers with the computations so that only the minimal
amount of activation values is loaded in GPU memory at any given time, while

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 312 Journal of Software Engineering and Applications

the least amount of time is spent waiting for the data transfer.
To achieve this goal, we propose a set of optimization tricks organized along

two axes: The first consists in optimizing the data transfer speed between CPU
and GPU memory, using efficient memory accesses and data compression
schemes. The second consists in efficient parallelization to maximally overlap
the computations with the data transfer. The following subsections details opti-
mizations along these two axes.

4.2. Parallelization

Figure 2 illustrates the execution through time of a forward and backward pass
through a toy network with and without parallelization of the data transfer.
Without parallelization, computation and data transfers are performed sequen-
tially so that the total wall time is given by the sum of the computation and data
transfer time. total comp data= +   Parallelization aims to overlap the computa-
tion and data transfer so that the total wall time is given by total comp idle= +   ,
where idle represents synchronization delays in cases where the computation

Figure 1. Illustration of CPU offloading. During the forward pass (top), hidden activation
buffers are transferred to CPU memory upon computation. During the backward pass
(bottom), hidden activation buffers are transferred back to GPU memory just in time to
compute the weight gradients.

Figure 2. Illustration of the parallel CPU offloading execution through time. (Bottom): without parallelism, computations
and data transfers are sequentially executed within the same stream so that the overhead in wall time corresponds to the
total time of data transfers data . (Top): Computations and data transfer are executed in parallel in their dedicated stream.
The overhead in wall time idle is spent as the computation stream awaits for data transfers to complete (illustrated in
red).

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 313 Journal of Software Engineering and Applications

is stopped to await for the required data transfer to complete.
The key challenge in this parallelization scheme consists in efficiently manag-

ing memory allocation and data transfer so as to minimize the time idle spent
awaiting for data transfer. In this paper, we adopt a simple parallelization strat-
egy: During the forward pass, activations iz are transferred to CPU upon
computation by layer i as ()1i i iz f z −= , The GPU memory buffer of iz must
then await for both the data transfer to CPU and the next layer computation

()1 1i i iz f z+ += to complete before de-allocation in order to avoid unfortunate
overwriting by concurrent operations.

One important exception to this rule concerns skip connections, as illustrated
in Figure 3. Skip connections induce a delay in the GPU buffer de-allocation as
the input of residual blocks must be kept in memory until the end of the residual
block computation to be added to the output. In ResNet architectures, this delay
is short enough to have little impact on the memory/wall time trade-off. How-
ever, this means that our method is poorly suited to densely connected architec-
tures such as DenseNet [19] or UNet [20] as their long-range skip connections
introduce large delays in the GPU buffer de-allocation.

During the backward pass, the input activation 1iz − of layer i must be trans-
ferred back into GPU memory for the backward gradient computations ifδ to
proceed. Hence, we overlap the transfer of 1iz − to GPU with the backward
computations 1ifδ + of the upper layer 1i + to avoid GPU idle time. As for-
malized, we thus synchronize the data transfer of 1iz − with the beginning of the
backpropagation through 1if + .

We use threading and locks to handle the parallelism and synchronization on
the CPU side, and CUDA streams to handle the parallelization on the GPU de-
vice. CUDA events provide synchronization primitives to precisely track the
completion of kernel executions. Algorithm 1 and Algorithm 2 provide pseu-
do-code for the forward and backward pass respectively.

With the above parallelization scheme, the overhead idle in wall time is giv-
en by the sum of the difference in the computation and data transfer time at each
layer. If data transfer is faster than the computation in each layer, CPU offloading

Figure 3. Illustration of the delay in memory de-allocation induced by residual connections. (Left) without resi-
dual connection, the input 1iz − of layer if can be freed from GPU memory as if computation terminates.
(Right) Residual connections induce a delay in memory de-allocation as 1iz − must be kept in GPU memory to be
added to the output of the residual block.

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 314 Journal of Software Engineering and Applications

Algorithm 1. Forward procedure through layer i with parallel CPU offloading.

Data: Layer if , input activation 1iz −

CPU pinned memory buffer 1iP−

CPU thread dataT

CUDA events i
dataE , i

compE

CUDA Streams dataS , compS

Result: iz

Allocate (zi);

()1comp i i iS z f z −⇐ ← ;

i
comp compS E⇐ ;

In Thread dataT :

1 1data i iS P z− −⇐ ← ;

i
data dataS E⇐ ;

Wait (i
dataE , i

compE);

Free (1iz −).

Algorithm 1. Double arrows indicate the asynchronous execution of a CUDA directive within a stream.
Data transfers are executed within dedicated CUDA stream and CPU thread to synchronize the memory
de-allocation without blocking the execution of upward layers.

Algorithm 2. Backward procedure through layer i with parallel CPU offloading.

Data: Layer if , output gradients
iz

δ
δ


CPU pinned memory buffer 1iP−

CPU thread compT

CUDA events i
dataE , 1i

dataE + , i
compE

CUDA Streams dataS , compS

Result:
1iz

δ
δ −

 ,
i

δ
δθ


Allocate (1iz −);

1 1data i iS z P− −⇐ ← ;

i
data dataS E⇐ ;

Wait (1i
dataE +);

Allocate (
1iz

δ
δ −

 ,
i

δ
δθ
);

1 1

i
comp

i i i

zS
z z z

δδ δ
δ δ δ− −

⇐ ← ×
  ;

i
comp

i i i

zS
z

δδ δ
δθ δ δθ

⇐ ← ×
  .

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 315 Journal of Software Engineering and Applications

will reduce memory consumption without any overhead in wall time. Hence,
CPU offloading is best suited for computation-intensive operations like convo-
lutions. In contrast, batch normalization layers come with negligible computa-
tional cost, but significant data transfer time so that offloading the input activa-
tions of such layer comes with a significant overhead. Instead of offloading these
layers, we reconstruct their input activations from their output using their in-
verse operation, as proposed in [18] and only offload the input activations of the
convolution and pooling layers to CPU.

4.3. Data Transfer Optimization

The time needed to transfer data between devices is given by the product of the
transfer speed bandwidth  , in bytes per second, by the volume  of the da-
ta buffer in bytes:

data =





 (6)

Hence, minimizing data transfer time can be achieved by either maximizing
the transfer speed  or minimizing the activation volume  through data
compression. In this paper, we focus on maximizing data transfer speed using
pinned CPU memory buffers.

CPU memory can be accessed through either pageable memory or pinned
memory address spaces. Pinned memory allows for Direct Memory Access
(DMA), which can significantly speed up data transfer between CPU and GPU
devices through PCIe lanes. However, allocating pinned memory buffers is a
time-consuming operation, as illustrated in Table 1. Hence, naively allocating
pinned memory buffers within each forward pass would slow down training due
to the overhead of pinned memory allocation. Instead, we propose to allocate the
pinned memory buffers beforehand, during the initialization of the CNN. Our
implementation scans the network architecture upon instantiation and allocates
dedicated pinned memory buffers for each target layer activation (convolutions
and max-pooling). During the forward pass, we transfer the GPU data directly
into the pre-allocated pinned memory buffer, and, during the backward pass, we
transfer the activations back to GPU from these pinned buffers. Table 1 quanti-
fies the gains in transfer speed brought by the use of pinned memory buffers

Table 1. Measurement of data transfer and pinned memory allocation speed on our
workstation. Pinned memory buffers bring a substantial speedup in both directions of the
data transfer.

Operation Speed (GB/s)

Pinned memory allocation 1.95

GPU → CPU (pageable) 1.75

GPU → CPU (pinned) 6.5

CPU → GPU (pageable) 4.1

CPU → GPU (pinned) 6.1

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 316 Journal of Software Engineering and Applications

and, in Section 5, we evaluate the impact of using pinned memory buffers on the
overall efficiency of our method.

Another way to reduce the time of data transfer between CPU and GPU is to
minimize  by compressing the hidden layer activations before transferring
them between devices. Compression can be achieved by diverse means including
sparsification, quantization or low-rank factorization techniques. Low-rank fac-
torization would induce non-negligible additional computational costs, which
would slow down the computation. Either sparsifying or quantizing the layers
activations are interesting solutions. However, compression would incur minor
losses of precision in the activation values, which might affect the training dy-
namics. Although previous works suggest that such minor losses in precision do
not negatively impact training, investigation of compression techniques would
require a detailed analysis of the impact of compression on accuracy, which is
out of the scope of this paper. Hence we leave this question open for future work
as an interesting direction for further optimization.

5. Experiments

We conduct our experiments on a workstation with an NVIDIA Titan X GPU
connected to the host through PCIe1 16× lanes, which represents a peak band-
width of 6.5 GB/s. We believe this set-up to be representative of a typical
workstation for individual practitioners, if not slightly unfavorable, as our device
to host bandwidth is rather limited. Unless specified otherwise, we conduct our
experiments on a batch of 32 RGB images with a resolution of 128 by 128 pixels.
This allows us to fit the training of the largest baseline architectures in memory,
while keeping a reasonable training speed for fast iteration. For each experiment,
we are interested in the total memory usage and Wall time of the computation
for a full training iteration including the forward and backward pass through the
network. It is important to note that our method does not modify the actual
computations performed by the network so that the training dynamics and ac-
curacy are unaffected by CPU Offloading. Hence, we focus on reporting the
memory vs. wall time trade-off, as the accuracy reached by the model is strictly
unaffected.

5.1. Memory vs. Wall Time Trade-Off

Our implementation allows controlling for the memory foot-print vs. computa-
tion wall time trade-off by either using more aggressive parallelization schemes
or by offloading different subsets of hidden layers input activations. In this sec-
tion, we use the parallelization scheme described in Section 4.2 and explore the
memory vs. time trade-off by off-loading different subsets of the model’s layers.

Figure 4 compares the memory/Wall time trade-off of CPU off-loading to the
trade-off provided by gradient checkpointing, as implemented in the Pytorch
[21] library on the VGG19 architecture. In gradient checkpointing, this trade-off
is defined by the number of checkpointed layers through the full architecture.

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 317 Journal of Software Engineering and Applications

Figure 4 shows the pareto frontier for an extensive search in both check-
pointing and CPU offloading layer subset. CPU offloading leads to a better
trade-off between memory consumption and wall time. This observed perfor-
mance is due to the fact that the data transfer between host and device can be ef-
ficiently parallelized with the computation, hence incurring a minor overhead,
while gradient checkpointing cannot parallelize the gradient computations and
activation reconstructions. Hence, the additional cost of sequentially recon-
structing the hidden activations during the backward pass induces a higher
overhead.

5.2. Ablation Study

Table 2 illustrates the speed up brought by both parallelization and pinned
memory buffers. We record the timings of a training iteration needed to achieve
maximal memory reduction on the VGG19 architecture for an input batch of 32
images with 218 by 128 pixel resolution. We start by recording the time for a
baseline CPU offloading approach without parallelization or data transfer opti-
mization. We then successively integrate the pinned memory buffers and paral-
lelization to this baseline and observe the improvement.

Both parallelization and pinned memory buffers bring substantial improve-
ments in speed and have proven critical for performance. Compression of the

Figure 4. Comparison of the memory vs. wall time trade-off achieved by CPU offloading
and sequential gradient checkpointing. The x axis represents the relative memory reduc-
tion obtained from the baseline model. The y axis represents the relative increase in-
curred in Wall time to achieve this memory reduction.

Table 2. Speed-ups achieved by the pinned memory buffers and parallelization techniques.

Operation Time (ms) Rel. Improvement

Baseline 560 0%

Pinned memory 355 −36.6%

Parallelization 236 −21.2%

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 318 Journal of Software Engineering and Applications

hidden states to either sparse representations or lower precision encodings may
bring similar speed-up and would be very interesting to investigate in future work.
We expect that simply converting the hidden activations to FP16 before sending
them to the host device should further reduce the data transfer time by half.

5.3. Architecture Comparison

In this section, we compare the memory gains and time overhead achieved
through CPU offloading on different popular architectures (Table 3).

Both ResNet architectures and MobileNet [10] feature batch normalization
layers, for which we used the invertible operation of [18]. Invertible batch nor-
malization layers further reduce the memory consumption with little time over-
head, which explains the slightly better trade-off of ResNet architectures. On the
other hand, the MobileNet architecture uses depth-wise convolutions instead of
the regular convolution layers used in both VGG and ResNet architectures.
Depth-wise convolutions have lower arithmetic intensity [22] than convolution
layers, i.e.; for input activations of similar size, they perform less, hence faster,
operations. As computations are performed faster while the data transfer time
remains constant, CPU offloading of depth-wise convolutions incurs a more
important overhead. This result highlights the fact that CPU offloading works
best for computationally intensive layers.

5.4. Discussion

The memory/time trade-off achievable by CPU offloading is a function of the ra-
tio between computation and data transfer speed. This ratio varies with the spe-
cific hardware being run on, the algorithm used for the convolutions, as well as
the efficiency of their implementation.

On the software side, the experiments presented in this paper were run with
state-of-the art cudnn implementations of the winograd convolution algorithm
through the PyTorch framework [21]. On the hardware side, we ran experiments
on a single Nvidia Titan X GPU connected to the host via a 6 GB/s bandwidth
connection, which we believe to be representative of a typical deep learning stu-
dent/researcher’s workstation.

Table 3. Memory vs. time trade-off achieved by different architectures. The Wall Time
Overhead column shows the additional time needed to achieve the given memory reduc-
tion (the lower the better). Memory Reduction represents the reduction of peak memory
usage achieved with CPU offloading (the higher the better).

Architecture Wall Time Overhead Memory Reduction

VGG16 19.5% 32.5%

VGG19 21.0% 36.9%

Resnet18 17.6% 54.4%

Resnet50 15.3% 56.8%

MobileNet 63.2% 67.8%

https://doi.org/10.4236/jsea.2019.128019

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 319 Journal of Software Engineering and Applications

The exact trade-offs achieved will differ depending on the specific hardware
and software used in different systems, as well as the parallelization strategy used
for CPU offloading. However, the fact that data transfers between CPU and GPU
can be efficiently parallelized with the GPU computations means that memory
gains can be achieved with minimal time overhead on any system given an ap-
propriate parallelization strategy.

Searching for an optimal parallelization strategy given a fixed computational
graph and hardware system is a very interesting problem left open to investigate.
In this paper, we provide a proof of concept by showing that even a rather naive
parallelization strategy with minimum optimization leads to a competitive
memory/time trade-off relatively to the well-established method of gradient
checkpointing.

6. Conclusion

Convolutional Neural Networks have become the backbone of computer vision
systems. Despite their great success, one major drawback of these models is their
intense resource consumption: Training CNNs needs highly optimized imple-
mentations leveraging all possible hardware resources. In this paper, we pro-
posed to leverage GPU-CPU communication, an under-utilized resource in typ-
ical CNN training pipelines, to alleviate the GPU bottleneck in training CNNs.
Our experiment on a standard single-GPU work station shows a more effective
memory/wall time trade-off than gradient checkpointing. Our approach is or-
thogonal to other resource optimization approaches such as pruning and quan-
tization so these approaches can easily be combined in future work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998) Gradient-Based Learning

Applied to Document Recognition. Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791

[2] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with
Deep Convolutional Neural Networks. Proceedings of the 25th International Con-
ference on Neural Information Processing Systems, Volume 1, Lake Tahoe, 3-6 De-
cember 2012, 1097-1105.

[3] Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization.

[4] Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R. and Dahl, G.E.
(2018) Measuring the Effects of Data Parallelism on Neural Network Training.

[5] McCandlish, S., Kaplan, J., Amodei, D. and OpenAI Dota Team (2018) An Empiri-
cal Model of Large-Batch Training.

[6] You, Y., Gitman, I. and Ginsburg, B. (2017) Large Batch Training of Convolutional
Networks.

https://doi.org/10.4236/jsea.2019.128019
https://doi.org/10.1109/5.726791

T. Hascoet et al.

DOI: 10.4236/jsea.2019.128019 320 Journal of Software Engineering and Applications

[7] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K.
(2016) SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and < 0.5
MB Model Size.

[8] Molchanov, P., Tyree, S., Karras, T., Aila, T. and Kautz, J. (2016) Pruning Convolu-
tional Neural Networks for Resource Efficient Inference.

[9] Frankle, J. and Carbin, M. (2018) The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks.

[10] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,
B., Houston, M., Kuchaiev, O., Venkatesh, G., et al. (2017) Mixed Precision Train-
ing.

[11] Jacob, B., Kligys, S., Chen, B., Zhu, M.L., Tang, M., Howard, A., Adam, H. and Ka-
lenichenko, D. (2018) Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 2704-2713.
https://doi.org/10.1109/CVPR.2018.00286

[12] Wu, S., Li, G.Q., Chen, F. and Shi, L.P. (2018) Training and Inference with Integers
in Deep Neural Networks.

[13] Martens, J. and Sutskever, I. (2012) Training Deep and Recurrent Networks with
Hessian-Free Optimization. In: Neural Networks: Tricks of the Trade, Springer,
Berlin, 479-535. https://doi.org/10.1007/978-3-642-35289-8_27

[14] Chen, T.Q., Xu, B., Zhang, C.Y. and Guestrin, C. (2016) Training deep nets with
sublinear memory cost.

[15] Gomez, A.N., Ren, M.Y., Urtasun, R. and Grosse, R.B. (2017) The Reversible Resi-
dual Network: Back-Propagation without Storing Activations. 31st Conference on
Neural Information Processing Systems, Long Beach, 2214-2224.

[16] Jacobsen, J.-H., Smeulders, A. and Oyallon, E. (2018) i-RevNet: Deep Invertible
Networks.

[17] Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017) Densely Con-
nected Convolutional Networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 4700-4708.
https://doi.org/10.1109/CVPR.2017.243

[18] Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks
for Biomedical Image Segmentation. In: International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, Springer, Berlin, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28

[19] Rota Bulò, S., Porzi, L. and Kontschieder, P. (2018) In-Place Activated BatchNorm
for Memory-Optimized Training of DNNs. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018,
5639-5647. https://doi.org/10.1109/CVPR.2018.00591

[20] Howard, A.G., Zhu, M.L., Chen, B., Kalenichenko, D., Wang, W.J., Weyand, T.,
Andreetto, M. and Adam, H. (2017) MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications.

[21] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.M., Des-
maison, A., Antiga, L. and Lerer, A. (2017) Automatic Differentiation in PyTorch.
31st Conference on Neural Information Processing Systems, Long Beach, 1-4.

[22] Wu, B.C., Wan, A., Yue, X.Y., Jin, P., Zhao, S.C., Golmant, N., Gholaminejad, A.,
Gonzalez, J. and Keutzer, K. (2018) Shift: A Zero Flop, Zero Parameter Alternative
to Spatial Convolutions. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, 18-22 June 2018, 9127-9135.
https://doi.org/10.1109/CVPR.2018.00951

https://doi.org/10.4236/jsea.2019.128019
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2018.00591
https://doi.org/10.1109/CVPR.2018.00951

	Reducing the Memory Cost of Training Convolutional Neural Networks by CPU Offloading
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Preliminaries
	4. Propose Method
	4.1. Framework
	4.2. Parallelization
	4.3. Data Transfer Optimization

	5. Experiments
	5.1. Memory vs. Wall Time Trade-Off
	5.2. Ablation Study
	5.3. Architecture Comparison
	5.4. Discussion

	6. Conclusion
	Conflicts of Interest
	References

