

Dissipative Properties of ω -Order Preserving Partial Contraction Mapping in Semigroup of Linear Operator

Akinola Yussuff Akinyele, Kamilu Rauf*, Aasa Moses Adebowale, Omosowon Jude Babatunde

Department of Mathematics, University of Ilorin, Ilorin, Nigeria Email: olaakinyele04@mail, *krauf@unilorin.edu.ng, aas amoses@yaoo.com, omosowonjude@yahoo.com

How to cite this paper: Akinyele, A.Y, Rauf, K., Adebowale, A.M. and Babatunde, O.J. (2019) Dissipative Properties of ω -Order Preserving Partial Contraction Mapping in Semigroup of Linear Operator. *Advances in Pure Mathematics*, **9**, 544-550. https://doi.org/10.4236/apm.2019.96026

Received: March 5, 2019 **Accepted:** June 25, 2019 **Published:** June 28, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

This paper consists of dissipative properties and results of dissipation on infinitesimal generator of a C_0 -semigroup of ω -order preserving partial contraction mapping (ω -OCP_n) in semigroup of linear operator. The purpose of this paper is to establish some dissipative properties on ω -OCP_n which have been obtained in the various theorems (research results) and were proved.

Keywords

Semigroup, Linear Operator, Dissipative Operator, Contraction Mapping and Resolvent

1. Introduction

Suppose X is a Banach space, $X_n \subseteq X$ a finite set, $(T(t))_{t\geq 0}$ the C_0 -semigroup that is strongly continuous one-parameter semigroup of bounded linear operator in X. Let ω -OCP_n be ω -order-preserving partial contraction mapping (semigroup of linear operator) which is an example of C_0 -semigroup. Furthermore, let $Mm(\mathbb{N})$ be a matrix, L(X) a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, F(x) a duality mapping on X and A is a generator of C_0 -semigroup. Taking the importance of the dissipative operator in a semigroup of linear operators into cognizance, dissipative properties characterized the generator of a semigroup of linear operator which does not require the explicit knowledge of the resolvent.

This paper will focus on results of dissipative operator on ω -*OCP_n* on Banach space as an example of a semigroup of linear operator called C_0 -semigroup.

Yosida [1] proved some results on differentiability and representation of one-parameter semigroup of linear operators. Miyadera [2], generated some

strongly continuous semigroups of operators. Feller [3], also obtained an unbounded semigroup of bounded linear operators. Balakrishnan [4] introduced fractional powers of closed operators and semigroups generated by them. Lumer and Phillips [5], established dissipative operators in a Banach space and Hille & Philips [6] emphasized the theory required in the inclusion of an elaborate introduction to modern functional analysis with special emphasis on functional theory in Banach spaces and algebras. Batty [7] obtained asymptotic behaviour of semigroup of operator in Banach space. More relevant work and results on dissipative properties of ω -Order preserving partial contraction mapping in semigroup of linear operator could be seen in Engel and Nagel [8], Vrabie [9], Laradji and Umar [10], Rauf and Akinyele [11] and Rauf *et al.* [12].

2. Preliminaries

Definition 2.1 (C_0 -Semigroup) [9]

 C_0 -Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 $(\omega$ - $OCP_n)$ [11]

Transformation $\alpha \in P_n$ is called ω -order-preserving partial contraction mapping if $\forall x, y \in \text{Dom}\alpha : x \le y \implies \alpha x \le \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that T(t+s) = T(t)T(s) whenever t, s > 0and otherwise for T(0) = I.

Definition 2.3 (Subspace Semigroup) [8]

A subspace semigroup is the part of A in Y which is the operator A_* defined by $A_*y = Ay$ with domain $D(A_*) = \{y \in D(A) \cap Y : Ay \in Y\}$.

Definition 2.4 (Duality set)

Let X be a Banach space, for every $x \in X$, a nonempty set defined by $F(x) = \left\{x^* \in X^* : (x, x^*) = ||x||^2 = ||x^*||^2\right\}$ is called the duality set.

Definition 2.5 (Dissipative) [9]

A linear operator (A, D(A)) is dissipative if each $x \in X$, there exists $x^* \in F(x)$ such that $Re(Ax, x^*) \leq 0$.

2.1. Properties of Dissipative Operator

For dissipative operator $A: D(A) \subseteq X \rightarrow X$, the following properties hold:

a) $\lambda - A$ is injective for all $\lambda > 0$ and

$$\left\| \left(\lambda - A \right)^{-1} \right\| \le 1/\lambda \left\| y \right\|$$
(2.1)

for all *y* in the range $rg(\lambda - A) = (\lambda - A)D(A)$.

b) $\lambda - A$ is surjective for some $\lambda > 0$ if and only if it is surjective for each $\lambda > 0$. In that case, we have $(0,\infty) \subset \rho(A)$, where $\rho(A)$ is the resolvent of the generator A.

c) *A* is closed if and only if the range $rg(\lambda - A)$ is closed for some $\lambda > 0$.

d) If $\operatorname{rg}(A) \subseteq D(A)$, that is if A is densely defined, then A is closable. its closure A is again dissipative and satisfies $\operatorname{rg}(\lambda - A) = \operatorname{rg}(\lambda - A)$ for all $\lambda > 0$.

Example 1

2×2 matrix $\left[M_m(\mathbb{N}\cup\{0\})\right]$ Suppose

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$$

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^t & e^{2t} \\ e^{2t} & e^{2t} \end{pmatrix}$$

 3×3 matrix $\left[M_m \left(\mathbb{N} \cup \{0\} \right) \right]$ Suppose

	(1	2	3)
4 =	1	2	2
	(-	2	3)

and let $T(t) = e^{tA}$, then

$$e^{tA} = \begin{pmatrix} e^{t} & e^{2t} & e^{3t} \\ e^{t} & e^{2t} & e^{2t} \\ I & e^{2t} & e^{3t} \end{pmatrix}$$

Example 2

In any 2×2 matrix $[M_m(\mathbb{C})]$, and for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Also, suppose

$$A = \begin{pmatrix} 1 & 2 \\ - & 2 \end{pmatrix}$$

and let $T(t) = e^{tA_{\lambda}}$, then

$$e^{tA_{\lambda}} = \begin{pmatrix} e^{t\lambda} & e^{2t\lambda} \\ I & e^{2t\lambda} \end{pmatrix}$$

Example 3

Let $X = C_{ub}(\mathbb{N} \cup \{0\})$ be the space of all bounded and uniformly continuous function from $\mathbb{N} \cup \{0\}$ to \mathbb{R} , endowed with the sup-norm $\|\cdot\|_{\infty}$ and let $\{T(t); t \ge 0\} \subseteq L(X)$ be defined by

$$\left[T(t)f\right](s) = f(t+s)$$

For each $f \in X$ and each $t, s \in \mathbb{R}_+$, it is easily verified that $\{T(t); t \ge 0\}$ satisfies Examples 1 and 2 above.

Example 4

Let X = C[0,1] and consider the operator Af = -f' with domain $D(A) = \{f \in C'[0,1] : f(0) = 0\}$. It is a closed operator whose domain is not dense. However, it is dissipative, since its resolvent can be computed explicitly as

$$R(\lambda, A)f(t) = \int_0^t e^{-\lambda(t-s)}f(s) ds$$

for $t \in [0,1]$, $f \in C[0,1]$. Moreover, $||R(\lambda, A)|| \le \frac{1}{\lambda}$ for all $\lambda > 0$. Therefore (A, D(A)) is dissipative.

2.2. Theorem (Hille-Yoshida [9])

A linear operator $A: D(A) \subseteq X \to X$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

- 1) A is densely defined and closed,
- 2) $(0, +\infty) \subseteq \rho(A)$ and for each $\lambda > 0$

$$\left\|R\left(\lambda,A\right)\right\|_{L(X)} \le \frac{1}{\lambda}$$
(2.2)

2.3. Theorem (Lumer-Phillips [5])

Let X be a real, or complex Banach space with norm $\|\cdot\|$, and let us recall that the duality mapping $F: X \to 2^x$ is defined by

$$F(x) = \left\{ x^* \in X^*; (x, x^*) = ||x||^2 = ||x^*||^2 \right\}$$
(2.3)

for each $x \in X$. In view of Hahn-Banach theorem, it follows that, for each $x \in X$, F(x) is nonempty.

2.4. Theorem (Hahn-Banach Theorem [2])

Let V be a real vector space. Suppose $p: V \in [0, +\infty]$ is mapping satisfying the following conditions:

- 1) p(0) = 0;
- 2) p(tx) = tp(x) for all $x \in V$ and real of $t \ge 0$; and
- 3) $p(x+y) \le p(x) + p(y)$ for every $x, y \in v$.

Assume, furthermore that for each $x \in V$, either both p(x) and p(-x) are ∞ or that both are finite.

3. Main Results

In this section, dissipative results on ω -*OCP_n* as a semigroup of linear operator were established and the research results(Theorems) were given and proved appropriately:

Theorem 3.1

Let $A \in w$ -OCP_n where $A: D(A) \subseteq X \to X$ is a dissipative operator on a Banach space X such that $\lambda - A$ is surjective for some $\lambda > 0$. Then

1) the part A, of A in the subspace $X_0 = D(A)$ is densely defined and generates a constrain semigroup in X_0 , and

2) considering X to be a reflexive, A is densely defined and generates a contraction semigroup.

Proof

We recall from Definition 2.3 that

$$A_* x = A x \tag{3.1}$$

for

$$x \in D(A_*) = \left\{ x \in x \in D(A) : Ax \in X_0 \right\} = R(\lambda, A) X_0$$
(3.2)

Since $R(\lambda, A)$ exists for $\lambda > 0$, this implies that $R(\lambda, A)_* = R(\lambda, A_*)$, hence

$$(0,\infty) \subset \rho(A_*)$$

we need to show that $D(A_*)$ is dense in X_0 .

Take
$$x \in D(A)$$
 and set $x_n = nR(n, A)x$. Then $x_n \in D(A)$ and

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} R(n, A) A x + x = x,$$

since $||R(n,A)|| \le \frac{1}{n}$. Therefore the operators nR(n,A) converge pointwise on D(A) to the identity. Since $||nR(n,A)|| \le 1$ for all $n \in \mathbb{N}$, we obtain the convergence of $y_n = nR(n,A)y \to y$ for all $y \in X_0$. If for each y_n in $D(A_*)$,

the density of $D(A_*)$ in X_0 is shown which proved (i). To prove (ii), we need to obtain the density of D(A).

Let $x \in X$ and define $x_n = nR(n, A)x \in D(A)$. The element y = nR(1, A)x, also belongs to D(A). Moreover, by the proof of (i) the operators nR(n, A)converges towards the identity pointwise on $X_0 = \overline{D(A)}$. It follows that

$$y_n = R(1, A)x_n = nR(n, A)R(1, A)x \rightarrow y \text{ for } n \rightarrow \infty$$

Since X is reflexive and $\{x_n : n \in \mathbb{N}\}$ is bounded, there exists a subsequence, still denoted by $(x_n)_{(n\in\mathbb{N})}$, that converges weakly to some $z \in X$. Since $x_n \in D(A)$, implies that $z \in D(A)$.

On the other hand, the elements $x_n = (1-A)y_n$ converges weakly to z, so the weak closedness of A implies that $y \in D(A)$ and $x = (1-A)y = z \in \overline{D(A)}$ which proved (ii).

Theorem 3.2

The linear operator $A: D(A) \subseteq X \to X$ is a dissipative if and only if for each $x \in D(A)$ and $\lambda > 0$, where $A \in \omega$ -OCP_n, then we have

$$\left| \left(\lambda_{1} - A \right) x \right| \geq \lambda \left\| x \right\| \tag{3.3}$$

Proof

Suppose A is dissipative, then, for each $x \in D(A)$ and $\lambda > 0$, there exists $x^* \in F(x)$ such that $Re(\lambda x - Ax, x^*) \le 0$. Therefore

$$\left\|x\right\|\left\|\lambda x - Ax\right\| \ge \left|\left(\lambda x - Ax, x\right)\right| \ge Re\left(\lambda x - Ax, x\right) \ge \lambda \left\|x\right\|^{2}$$

and this completes the proof. Next, let $x \in D(A)$ and $\lambda > 0$.

Let $y_{\lambda}^* \in F(\lambda x - Ax)$ and let us observe that, by virtue of (3.3), $\lambda x - Ax = 0$ $\Rightarrow x = 0$.

So, in this case, we clearly have $Re(x^*, \lambda x - Ax) = 0$. Therefore, by assuming that $\lambda x - Ax \neq 0$. As a consequence, $y^*_{\lambda} \neq 0$, and thus

$$z_{\lambda}^{*} = \frac{y_{\lambda}^{*}}{\left\|y_{\lambda}^{*}\right\|}$$

lies on the unit ball, *i.e.* $||z_{\lambda}^{*}|| = 1$. We have $(\lambda x - Ax, z_{\lambda}^{*}) = ||\lambda x - Ax|| \ge \lambda ||x|| \implies Re(x, z_{\lambda}^{*}) - Re(Ax, z_{\lambda}^{*}) \le \lambda ||x|| - Re(Ax, z_{\lambda}^{*})$ hence $Re(Ax, z_{\lambda}^{*}) \le 0$

and $Re(z_{\lambda}^{*}, x) \ge ||x|| - \frac{1}{\lambda} ||Ax||$. Now, let us recall that the closed unit ball in X^{*} is weakly-star compact. Thus, the net $(z_{\lambda}^{*})_{\lambda>0}$ has at least one weak-star cluster point $z^{*} \in X^{*}$ with

$$z^* \parallel \le 1 \tag{3.4}$$

From (3.4), it follows that $Re(Ax, z^*) \le 0$ and $Re(x, z^*) \ge ||x||$. Since $Re(x, z^*) \le |(x, z^*)| \le ||x||$, it follows that $(x, z^*) = ||x||$. Hence $x^* = ||x|| z^* \in F(x)$ and $Re(Ax, x^*) \le 0$ and this completes the proof.

Proposition 3.3

Let $A: D(A) \subseteq X \to X$ be infinitesimal generator of a C_0 -semigroup of contraction and $A \in \omega$ - OCP_n . Suppose $X_* = D(A)$ is endowed with the graph-norm $|\cdot|_{D(A)}: X_* \to \mathbb{N} \cup \{0\}$ defined by $|u|_{D(A)} = ||u - Au||$ for $u \in X_*$. Then operator $A_*: D(A_*) \subseteq X_* \to X_*$ defined by

$$\begin{cases} D(A_*) = \{x \in X_*; Ax \in X_*\} \\ A_*x = Ax, \text{ for } x \in D(X_*) \end{cases}$$

is the infinitesimal generator of a C_0 -semigroup of contractions on X_* .

Proof

Let $\lambda > 0$ and $f \in X_*$ and let us consider the equation $\lambda u - Au = F$ Since A generates a C_0 -semigroup of contraction [6], it follows that this equation has a unique solution $u \in D(A)$.

Since $f \in X_*$, we conclude that $Au \in D(A)$ and thus $u \in D(A_*)$. Thus $\lambda u - A_*u = f$. On the other hand, we have

$$\left| (\lambda I - A_*)^{-1} f \right|_{D(A)} = \left\| (I - A) (\lambda I - A)^{-1} f \right\|$$

$$= \left\| (\lambda I - A)^{-1} (I - A) f \right\| \le \frac{1}{\lambda} \| f - Af \| = \frac{1}{\lambda} |f|_{D(A)}$$
(3.5)

which shows that A_* satisfies condition (ii) in Theorem 2.2. Moreover, it follows that A_* is closed in X_* .

Indeed, as $(\lambda I - A)^{-1} \in L(X_*)$, it is closed, and consequently $\lambda I - A_*$ enjoys the same property which proves that A_* is closed.

Now, let $x \in X_*$, $\lambda > 0$, $A \in \omega$ -*OCP_n* and let $x_{\lambda} = \lambda x - A_* x$. Clearly $x_{\lambda} \in D(A_*)$, and in addition $\lim_{\lambda \to \infty} |x_{\lambda} - x|_{D(A)} = 0$ Thus, $D(A_*)$ is dense in X_* by virtue of Theorem 2.2, A_* generates a C_0 -semigroup of contraction on X_* . Hence the proof.

4. Conclusion

In this paper, it has been established that ω -OCP_n possesses the properties of dissipative operators as a semigroup of linear operator, and obtaining some dis-

sipative results on ω -OCP_n.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Yosida, K. (1948) On the Differentiability and Representation of One-Parameter Semigroups of Linear Operators. *Journal of the Mathematical Society of Japan*, 1, 15-21. <u>https://doi.org/10.2969/jmsj/00110015</u>
- Miyadera, I. (1952) Generation of Strongly Continuous Semigroups Operators. *To-hoku Mathematical Journal*, 4, 109-114. <u>https://doi.org/10.2748/tmj/1178245412</u>
- [3] Feller, W. (1953) On the Generation of Unbounded Semigroup of Bounded Linear Operators. Annals of Mathematics, 58, 166-174. <u>https://doi.org/10.2307/1969826</u>
- Balakrishnan, A.V. (1960) Fractional Powers of Closed Operators and Semigroups Generated by Them. *Pacific Journal of Mathematics*, 10, 419-437. https://doi.org/10.2140/pjm.1960.10.419
- [5] Lumer, G. and Phillips, R.S. (1961) Dissipative Operators in a Banach Space. *Pacific Journal of Mathematics*, 11, 679-698. https://doi.org/10.2140/pjm.1961.11.679
- [6] Hille, E. and Phillips, R.S. (1981) Functional Analysis and Semigroups. American Mathematical Society, Providence, Colloquium Publications Vol. 31.
- Batty, C.J.K. (1994) Asymptotic Behaviour of Semigroup of Operators. Banach Center Publications, 30, 35-52. <u>https://doi.org/10.4064/-30-1-35-52</u>
- [8] Engel, K. and Nagel, R. (1999) One-Parameter Semigroup for Linear Evolution Equations. Graduate Texts in Mathematics Vol. 194, Springer, New York.
- [9] Vrabie, I.I. (2003) C₀-Semigroup and Application. Mathematics Studies Vol. 191, Elsevier, North-Holland.
- [10] Laradji, A. and Umar, A. (2004) Combinatorial Results for Semigroups of Order Preserving Partial Transformations. *Journal of Algebra*, 278, 342-359. <u>https://doi.org/10.1016/j.jalgebra.2003.10.023</u>
- [11] Rauf, K. and Akinyele, A.Y. (2019) Properties of ω -Order-Preserving Partial Contraction Mapping and Its Relation to C₀-Semigroup. *International Journal of Mathematics and Computer Science*, **14**, 61-68.
- [12] Rauf, K., Akinyele, A.Y., Etuk, M.O., Zubair, R.O. and Aasa, M.A. (2019) Some Results of Stability and Spectra Properties on Semigroupn of Linear Operator. *Advances of Pure Mathematics*, **9**, 43-51. <u>https://doi.org/10.4236/apm.2019.91003</u>