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1. Introduction

Some inequality were in their reigns such as Wirtinger’s, Holder’s, Cauchy’s,

Minkwoski’s, Hardy’s and Opial’s inequalities. Opial [1] established an inequali-
ty involving integral of a function and it’s derivatives as follows:

Theorem 1.1. Let 1(c)eC’'[0,4] be such that n(0)=n(A)=0, and
77(0) > (O,/i) . Then, the following inequality holds:.

, A,
i In(@)n' (@)do <2 [ (' (o)) do (1.2)
in (1.2), the constant % is the best possible.

This inequality and it’s generalisations have various applications in the theo-
ries of differential and difference equations.

In [2], Olech simplified the proof and noted that the positive requirement of
77(0-) in (1.2) is unnecessary and that inequality (1.2) holds absolutely conti-

nuous in [0,4]. He however, demonstrated the following result:
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Theorem 1.3. Let 1(y) be absolutely continuous in [0,p] such that

n(0)=n(p)=0 and n(y)>0 in (0,p) with n(y)eC'[0,p]. Then the
following inequality holds.

[ n(r)n'(r)dy ngop(ﬂ’(ﬂ)2 dy. (1.4)

In [3], Hardy obtained the following result:
Theorem 1.5. If A>1,p>0, and @ (&)= .[Oxp(é)df, then

() a<( )

A
unless p =0. The constant (%j is the best possible.

[P (x)dx (1.6)

0

By using Holder’s inequality, Beesack [4] gave a refinement of Opial-type in-
equalities by establishing the conditions under which the weighted Opial-type of
(1.2) holds

(ChE beor u(x)dx)“*q <c([r@f u(x)dx); (17)

for all /with /(a)=0, where p>1,g>0 and 0<s< p. The case of negative

values of p,q and swas also considered.

One of the special cases of (1.7) when g=s=u(t)=v(x)=1 and p=2 is:
b , b by, 2
[RUES L (x)|dx£EI0 |1 (x)[ dx (1.8)

and the weighted Hardy inequality is

i

If s=0,then (1.7) reduces to weighted Hardy inequality (1.9).
In [5], Imoru and Adeagbo-Sheikh established the following result:

[ F()de ' U(x)dx)q < C(_[:|f(t)dt|p u(t)); (1.9)

Theorem 1.10. Let 5 be continuous and non-decreasing on [a, ],
0<a<pf<owo, with n(x)>0 for x>0, 1<oc<g<wn and f(x) be
non-negative Lebesgue-Stieltjes integrable with respect to n(x) on [a,B]. If

O Is a real number such that g <6<0, then
q

{Lf né?-q(x)(J;f(odn(r))"dn(x)}"

(1.11)
<C B so-1 o é
< C(af0..0)| [ (x)[n(x) £ (+)] dn(x) |
where
C(a,p,0,q,5)
q(lfo') (o2 % o+dq = = q(i_]) (1'12)
o) e o) n(a)) o
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Oguntuase [6] presented an integral inequality by using Hélder’s inequality to
obtain an integral inequality that has Opial’s and Hardy’s inequalities as special
cases. However, he observed that constant (1.12) at the right hand side was
wrongly written and obtained a better constant as stated below:

Theorem 1.13. Let n be continuous and non-decreasing on [a, ﬂ] ,
0<a<f<wo, with n(x)>0 for x>0. Let gq2021 and f(x) be
non-negative and Lebesgue-Stieltjes integrable with respect to g(x) on [a,B].

Suppose S Is a real number such that 2 25<0 then
q

007 ([0 anto) |

1 (1.14)
< C(ap.0vg.8) [In(x)" ™ £ (x) an(x)]7
where
C(a,p,0.q,5)
4(i=o) é o+8q -5 -5 o) (1.15)
R P P R VU R O

In [7], Adeagbo-Sheikh and Fabelurin follow the trend by using Jensen’s and
Minkowski’s integral inequalities to establish a result that generalized (1.14) as
follows:

Theorem 1.16. Let g be a continuous function and non-decreasing on [a,b],
0<a<b<ow,with g(x)>0 for x>0.Suppose that p>q=1,
0<qg+s<p, §>0 and f(x) is non-negative, non-decreasing and Lebes-
gue-Stieltjes integrable with respect to g(x) on [a,b]. Then

11 000] 707 3 (a3 555,20

L
q+s

(1.17)
1
: 1
< C(pagus 0| [ £ (e) w (1) (r) |
where
M7 B o (q+s)qu
Ul(x):g(x) p 1[g(x) a—g(b) b} 7o,
pq(1+r)‘)71
(1) =ele) 5,
1 pa—(q+s)+p p
C s> 35 = 57 d :
(p.q.5.6) [ ] » LJFJ an (1.18)

B(p.q.5.5.8(a))

q+s
()‘(q+s) pq(1+5)_ 5 7
=C(p.q.5,6)g(a) » { :g(t) preant a)f(t)p dg(t)}

Throughout what follows, unless otherwise stated, we shall assume 7 to be

continuous, non-negative and non-decreasing. Furthermore, fis assumed to be a
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non-negative integrable function with respectto y .

The inequality on time scale was introduced by Hilger [8] in order to unify
discrete and continuous analysis. Hence, a time scale is an arbitrary non empty
closed subset of real numbers. Thus, the real numbers, integers, natural numbers
and non negative integers are examples of time scales. However, little work has
been done on Opial’s inequality on time scales.

A time scale T is an arbitrary nonempty closed subset of the set R of all
real numbers. Let T be the topology inherits from standard topology on R.
For teT,if t<supT, we define the forward jump operator o:T — T by

o(t)=inf{r>t:7eT}eT

while if #>inf T, the backward jump operator p:T — T is defined by
p(t)=sup{r<t:reT}eT

If o(t)>1,we say tis right scattered, while if o(r)<t, we say tis left scat-
tered.

If o(t)=1t,we say tis right dense, while if o (¢)=1r, we say tis left dense.

Throughout this paper, we let:

a) R=(-o0,+®);

b) T isa time scale and;

¢) an interval means the intersection of a real interval with the given time
scale.

If /:T—>R,then f°:T—R isdefined by

f7(t)=f(o(t)), forallzeT.

A mapping f:T — R is called rd-continuous if it satisfies:

a) f iscontinuous at each right-dense point or maximal element of R;

b) the left-sided lim _ f(x)=f (l’) exists at each left-dense point tof T;

¢) an interval means the intersection of a real interval with the given time
scale;

d) C,(T,R)={f:T— R,is an rd-continuous function };

o T = {T —{m} if T has a left-scattered maximal point m_

El

T, otherwise
HIf f:T—>R,then f7:T—>R isdefined by
17(1)=71(e(1))
Let x:T—R and fix reT*, then we define x* (t) to be the number

(provided it exists) with the property that for any given ¢ > 0, there is a neigh-
borhood Uof #such that

[x(e(0)=x(s)]-x* ()[e(e)=s] < £le (1) -5,

forall seU.Wecall x*(¢) the delta derivative of x(¢) at £ It can be shown
thatif x:T—> R iscontinuousat te7 and tisright scattered, then

vy Hle()=x(0)
()= o(t)-t
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A function F:T—R is an anti-derivative of f:T >R if F*(r)= f(r)
for all +eT".In this case, we define the integral of fby

[[£()A(e)=F(0)-F(s)

for s,reT".

The objective of this paper is to obtain a new integral inequality which is an
extension of Theorem 1.1, Theorem 1.3, Theorem 1.5 and Theorem 1.13.

Indeed, we shall show that Theorem 1.1 in its modified form leads to some
extensions, variants and a new generalization of a class of inequalities which are
related to Hardy’s and Opial’s integral inequalities. Moreover, we shall examine
the case when 7 =1.

In fact, some extensions of Hardy’s inequality due to Imoru [9] are shown to
be immediate consequences of the modified form of Theorem 1.3.

The methodology adopted shall be the following:

Let [B,a]eT and p,7,7,7,7,n€T . Suppose AeC, ([,b’,a]) and
R e([ﬂ,a]T,R) , 20, 20, y,n,0,6>1, A be non-decreasing and
—0<a< fB<w. Suppose ¢ has a continuous inverse ¢ ' which is necessari-

ly concave, then
Jp(r2)8a(z)| [ 0" (p(r2))00(2)
[[a2() ) [;a2(x)

which can be written in the form:

SR

j;’p(r,z)ﬁ A(x)< (j;A,a,(Z))lfli U;’p(r,z)nlzg A/I(;()j (1.19)

and for 0<7 <1. The later inequality is the Jensen’s inequality for convex func-

tions and putting convex function ¢(7)=¢" in (1.19) yields:
p(r.x) = (B ()™ 1 (2)™
and

20 (x)=x(z) """ A(x)

However, the validity of the left hand side of (1.19) solely depends on the right
hand side.

2. Statement of the Main Result

In this section, we shall show the main result in the following theorems:
Theorem 2.1. Let [B,a|eT and p,t,y,x,7.1m€7T. Suppose

AeC, ([,B,a]) and Re ([,B,a]T ,R) .Let x(y) and f(y) beabsolutely

continuous and non-decreasing on [0,;(] and 0<0< y <o with K(}() >0

for y>0 and y2n=1, n>0, >0 and 6>0. AeC,([B.a]) and

1
Re([ﬂ,a]T,R) with IZp(T,;()EdA(;()<oo and
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1-— 1
(ZdA(Z)) ”[J';p(r,;()wgdA(l)] <o . If 0<n<1 then we have,

==

) [ rwam)] )]

g[1_1(5+1)]7( U j; [K(a)”f? k) }i (22)

oy +n

><|:K-(a)l—r(§+1) _K_(ﬂ)lr(éﬂ)]””_l [IZK(Z)T d

whenever 721 or 7<0. The inequality is reversed if 0<7 <1. The inequa-

lity is strict unless either 7=1 or x=0.
]_J
n

The constant factor [1 -7(5+ 1)}

{K(a) v ok(w) }’ [’((“)H(M) —x(p) JT

is valid throughout.

is the best possible when the term

2.1. Remark

Let y,6eT,é<y,peC,(T) and n=0=1.By applying Cauchy’s inequality
with exponent conjugates @ and 7, we obtain the following results.

(j;xm)” ([2r(2)ax
(] e i

s[ 1 J{K(a)&ﬁ”_,((w)”ﬁ“}yx(ﬁplW(I)A(l))w

oy +1

X(Ll o (1)1 (X)A(Z)J

2.2. Remark

(2.3)

Let y,6eT,é<y,peC,(T) andobserve that when T =R, taking r=1 in
(2.3), then (2.3) reduces to Oguntuase’s result.

The modified Minkowski integral inequalities (2.5) and (2.6) are stated in
Opic and Kufner [10] on page 21 and 22 as follows:
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Lemma 2.4. Let K(x,y) be a non negative measurable function on
(a,b)x(c,d) andlet r>1 Then,

Dh UdK (x’y)dy}r dx}l < dehK ’ (x,y)dyJ:l (2.5)

If K(x,y)=H(x)G(y) where xe(a,b) and ye(c,d) then (2.5) reduc-

es to

[ Jlo@)|[[#(r)ar] dx}’ <[m)| J.jG(x)dx} 0.6

The proof of our main results will depend essentially on the following lem-
mas:

Lemma 2.7. Let [f,a]eT and p,7,y,y,n€T. Suppose AecC, ([ﬂ,a])
and Re([ﬁ,a]T,R) with

1
ij(r,;{)@ dA(y) <

which satisfied the following inequality:

1

_[Z(K(ﬂ)570g K(;{)Wg(l+5) f(z)wgn )ﬁ K(Z)—r(ms) A(}()
= J. ,7 K 1+b) f(Z)K(Z)—r(lﬂ)‘) A(l) (28)

<x(p)n Iﬁf(z)A(ﬂc)

and the other side of (1.19) implies the following:
Lemma 2.9. Let [B,a]|eT and p,7,y,%.7,n€T. Suppose AeC,, ([ﬂ,a])
and R e ([ﬁ,a]T ,R) with

;28 (2) (2)) (Ipw)m%( )j <o

which also satisfied the inequality:

::\~

1 1

(I;K(Z)—T(HJ) A(Z))F; [(K(,B)ém K(Z)rw;('ﬂf) f(}()wg” )E K(Z)-T(H&) A(Z)jn

[ >)”7(

1
nr(1+65)

foete) ()™ 1) sy 60|

< ( 7(1+5)

_ [1—1((5“)]%‘1 [1(a) "

e )

(ﬂ)l 75+1:| l

n
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n-1 771

< [1 -7(5+ 1)]7 [K(a)l‘f((m) _ K(ﬁ)l—r(éﬂ) }7

7(n-o)(1+6)

< (B UZ"(l) - S(x) A(z)j;

(2.10)

2.3. Remark

The Proof of Lemma 2.7 is immediate from the analysis of Lemma 2.9 and hence
omitted.

Proof of Theorem

The proof follows from Lemma 2.7 and Lemma 2.9 by combining (2.8) and

(2.10) with further simplification as:

<8 [ 07 (2)a(x) |
7(1-n) r(1=n)

<[i-e(e+0] 7 [k(a) " —x(p)" ] 7 (2.11)

< (B)1 [Lj"(l) o f(2) A(Z)]

integrate both sides of (2.11) with respectto A(y) fromOto y

n

) [ ra] sw)]

< |:1_T(5+1):|(1—77) [K(a)(lff(m)) _K(ﬂ)(lﬂ'(dﬂ))

} j;(

combining (2.6), (2.8) and (2.10) we have the following inequality:

Tok(B)n (2.12)

EE

()7 f(z)"AmJ”A(w)

1[50 0]
{n-0)(1+9)

<[i-e(6+)] " [Ix(2) = £(2)

17 1r(5+1 1—e(s+1)) 77D
~[1-7(5+1)] [K(a)< O _ () >>]

7(n-o)(1+6) %

[ s () 0] a0

<t (5 [ v ]

Sy +n

(2.13)
7(n-o)(1+6)

X[K(a)(l—r(ﬁﬂ)) _K_(ﬂ)(l—‘r((Sﬂ)) }'i-l J.ZK(Z) . f()()” A(Z)

¢
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which implies

==

) [ a@)] aw)

< [1_7(5“)]'7[ U J; [K(a)‘s’;” _K(,,,)Tf (2.14)

2.4. Remark

Let «(B)=¢,7 =n,& x,p€C, (T). The above inequality becomes

(s [ nata) |aw))
(e et e ot s 1800)

3. Discussion of the Results

We refined some existing results on an integral inequality of Hardy-type on

Time-scale and obtained the best possible constant by employing modified

Minkowski integral inequalities with some standard lemmas. The results ex-

tended and generalized some earlier results in literature.
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