@, American Journal of Computational Mathematics, 2019, 9, 81-96
@%?® scientific e .
Q http://www.scirp.org/journal/ajcm
‘ ‘ Research :
9% Publishing ISSN Online: 2161-1211
(2 ISSN Print: 2161-1203

The 2D MHD Systems with Vertical Dissipation
and Vertical Dissipation Magnetic Diffusion

Xiaoting Yang

Department of Mathematics, Jinan University, Guangzhou, China
Email: 1020146612@qq.com

How to cite this paper: Yang, X.T. (2019)  Abstract
The 2D MHD Systems with Vertical Dissi-
pation and Vertical Dissipation Magnetic ~ In this paper, we study the global regularity of the classical solution of the 2D

Diffusion. American Journal of Computa-  incompressible magnetohydrodynamic equation with vertical dissipation and
tional Mathematics, 9, 81-96.

vertical magnetic dissipation. We show that any solution of the second
https://doi.org/10.4236/ajcm.2019.92007

component (u2 , bz) has a global L*"-bound, where r satisfies 1<r <oo
Received: May 9, 2019

Accepted: June 23,2019
Published: June 26, 2019

and the boundary does not grow faster than /rlogr as rincreases.

Keywords
Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative

MHD Equation, Global Regularity, Vertical Dissipation

Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/ 1. Introduction

The generalized MHD system is
U +U-Vu=-Vp+b-Vb-vA®u,
b, +u-Vb=b-Vu-xA*b, (1)
V.u=V-b=0.

1
where v,x,a, >0, A= (—A)E , u denotes the velocity field and b denotes the
magnetic field. The magnetohydrodynamic (MHD) systems [1] control the

dynamics of velocity and magnetic fields in conductive fluids such as plasma and
reflect the basic laws of physical conservation.

In recent years, the MHD equations with partial dissipation regularity
problem have attracted considerable interests. For example, the n-dimensional
MHD Equation (1), when the coefficient satisfies

1 n n
oa>—+—, >0, a+p21+—,
2 4 p p 2

it has been proved that the solution has global regularity [2]. Wu [3] has been
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proved the 2D GMHD admits a global regularity for a three-case:
aZ%,ﬂZl; OSa<%,2a+ﬂ>2; a=>2,p=0.

And it is also proved that the condition satisfying v =0, #>1 has a global
smooth solution with the direction of the magnetic field that remains sufficiently
smooth. Cao, Regmi and Wu [4] have been proved that the 20 MHD with
horizontal dissipation and horizontal magnetic diffusion in horizontal
component of any solutions has a global regularity. The global regularity of the
class solution of the MHD equation with magnetic diffusion and mixed partial
dissipation is established by Wu [5]. In [6], the global existence and uniqueness
of the smooth solution of 2D micropolar fluid flow with zero angular viscosity
have been proved. Other related articles can be seen in [7] [8] [9], etc.

In this paper, we study the 2D MHD systems with vertical dissipation and

vertical dissipation magnetic diffusion, namely
U +U-Vu=-Vp+adiu+hb-Vb,
b, +u-Vb=0a2b+b-Vu, )
V.u=0, V-b=0.

In this case, we only get the global L*" -bound of the solution in the y-direction,
and the global regularity problem for the complete directional solution has not
been achieved.

In the following article, let w: =u+b, this will provide us with convenience.
We have a symmetric equation by (2), namely

BW +(W V)W =-Vp+aiw,
oW +(W* ~V)W‘ =-Vp+aoiw, (3)
V-w'=V-w =0.

The new Equation (3) consists of two vectors, which is more complicated in
the calculation process, therefore, we use fractionally derivative triple product
estimation [4] to solve this difficulty. This paper takes Cao and Wu recent study
of two-dimensional partially dissipated Boussinesq equation [8] as an example to
discuss the influence of known vertical component (Uz,bz) Lebesgue norm on
global regularity. And in Section 4, we obtain the main Theorem 3, which proves
that ||(u2,b2 )"2r <Cyrlogr for 2<r<ow . In fact, in Section 2 we get
Theorem 1, which is about the solution of Equation (2) bounded by Lebesgue in
the y-direction. The sameness of Theorem 1 and Theorem 3 is that boundedness
is related to the r, but in Theorem 1, we get the case of I =1, and Theorem 3
has a slower bounded change with the increase of r.

The rest of this article is divided into four parts. In Section 2, we prove the
global bounded for ||(u2 ,b, )"2r , and the boundedness depends on the index of r.
In Section 3, we show the global bounded for ||p||q and _[OT "p(r) ZHS dr with
s€(0,1). In Section 4, we prove that the solution of (2) in y-direction has a

global Lebesgue bound. In Section 5, we prove the bounded condition of
(u,,b,) under the L{L; norm.
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2. A Global Bound in the Lebesgue Spaces

In this section, we prove the classical solution of (2) at the p-direction exists
globally bounded in L*" norm. The boundedness obtained here depends on the
index of . We have the following theorem.

Theorem 1. Assume that (uy,b,)e H? (RZ) and u|_ =u,b|l_ =by,
(u,b) be the corresponding solution of (2). For any 1<t <w, (U,,b,) obeys
global bound

[(uB,)],, <€, @

where C, and C, are constants depending on ||(u0,b0 )"Zr only.

To prove the Theorem 1, we need to estimate the global bounded under L
norm.

Lemma 1. Let (u,b,)eH? (RZ) and let (u,b) be the corresponding
solution of (2). Then, for ant 1t >0, (u,b) obeys the

Ju +[p(t)[; +2 j; [o,u(z);dr+2 j; [0:b(2)|; d7 < g s + |l

Here we omit the proof of Lemma 1 and now begin to prove Theorem 1.

Proof Taking the product of the second component of the first equation of (3)
2r—

with wj |wj ’ , and integrating with respect to space variable, we obtain
1 dy e 2] qer-2 lLg2r-2
gl +(2r—1)”62w2 wy|" T dx=(2r=1) [ po,w; jwy | " dx, (5)
note that

2r—

[(w - v)w;w; “dx=0.

w,

By Holder’s and Sobolev’s inequalities, and using Young’s inequality, we got
(2[‘ _]-)_‘.pazwz+

<[[vel.,

2r-2

i
wy | dx

r-1 r-1

2r
r-1

+
2

A

A

r-1 r-1

+
2

sCr||Vp||% 0,Wj W

2r !

2(r-1

r-1 ( )
2r ,

2r-1
<

W2*|

0, Wy

w,

[ +cr vl
2 r+l

where Cis a constant independent of r. In order to bound the pressure, we take

the divergence of (3), we get

—Ap =0, (w;azw; + W, 0,W, ) +0, (w;c’izwz+ + W, 0,W, ) (6)
Since, the Riesz transform [10] has bounds for any 1< p <o on L", we have

||Vp||27r1 < ||w2’azwl+
r+

o

o + ||w2+ GATA
r+l

o + ||w2’ 0,W,
r+l

el (

o + ||w2+ 0,W,
r+l

2r
r+l

< ||w;

+ +
0,W] "2 +||62W2

"
W,

o0 +[oxve], )
2 ||, 22 |,

Consequently,
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2 2(r—1)
A

29 R

2 2 2 2
+ + ~ ~ ~ +
<(Jeucl; +||a L I A || eloawal) (el los ], ) il

i)l

Based on the above estimates, we get

S

_2r
< ||W2 2r

rOIt||w +(2r=1) o, wy |

<o (el bl ooe el el -l
Similarly,

Tl vizry lwzl H

s cr’(Juel, )( i [ o ; o]l

Combine these two inequalities to get

( w, ) 2r-1 ( |W +[o,w; [w; [ Zj
T dt 2 2
<cr’ (IIWE i Yl +loovs |+ loaws [ +fouva )
Following the Gronwall's inequality, we obtain
el ol
("W2 Zr A (0) :)

Xexp(Cf lease [ +loaw [+ lowwe [ +loavelfJoe)
According to Lemma 1, get (4). o

3. Global Bounds for the Pressure
In this section, we show the solution of the first components (ul, bl) hasa L?

-bound with r=2 or r =3, and establish the pressure has a global bound.

The results can be stated as follows.
Theorem 2. Assume that (uj,by)eH? (RZ) and let (u,b) be the

corresponding solution of (2)
l(u.b)(®)[,, <C. r=23, (8)
forany T>0,and t<T,
lp(o, <c. [ p(e)f or<c ®
where 1<q<3 and se(0,1), and Cis a constant related to T and initial value.

Here we use two calculus inequalities of the following lemma.
Lemma 2. 4] Assume that f e*(R*), o,f e '(R?*) and 0,f e *(R?),
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then

1 1
I <Clon i - f 2 (10)
1

1 1 1
It <ClfRlotI; 1o- 15 - (1)

Proof. We use the symmetric Equation (3) to prove the case of r=2 in
2
Theorem 2. Take the inner product of the first Equation (3) with w, |W1+ | , we

obtain

watl v aoame o ox=3fpa; e o a2
Using V-w’" =0 and integrate by parts, we get
[ oy |w |2 dx
=—[po,w; |W1+ |2 dx
= j52 pw; |W1*|2 dx + ZI pW; 6, W, W, dx
=1,+2l,,
by Hélder’s and Sobolev’s inequalities,

|1, = _[ pw; 0, wy dx < | p, ||W2+ "4 ||62W1*w1+ "2

<Clwpla ], oo, )
According to (7),
0l =l o ) bl e ),
Therefore, by Young’s inequality,
(R R e (T e T
(fooss [ +loo0s ] +foouc | +fo.ve )
Tobound I,, we first apply Holder inequality,
Il <lopls oz , (v )], (14
According to Lemma 2 and V-w" =0,
(w )’ <clo, (w )’ f o, (w ) } <Clw;o,w ||§ ||wfazw;||1%. (15)
According to (7), we get
oo el (o], e el (o ooel)
< (o, + oL, o], + foawr], )
Therefore
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ol (el + o, = Joow |, oo 2 o
S LG R (A R (7)
4
el (el +fw ) o [ oowi -
Therefore, recalling Theorem 1 and Sobolev embedding theorem, we get a
global bound for "Wl+ "4
il foave Fwe f o
<o+ e[ +3) oo [+ oo )
4
wCfclf el s, ) o [ foms -

Similarly, we can be established bound for "W{ "4 . To prove the L°-bound in
(8), we get from (3) that

1dyy . -
sarllLelell)
= SJ p(|wf|4 A +|W1’ |4 AA )dx.

2
Llowlll +5]w [ o, w
Wl 2W1 2+ Wl 2W1

2

Note that
5 p(|w;|4 o+ [ 81W1‘)dx
=-5[p (|w1*|4 o5 +|w; [ o,m; )dx
:5J'82p(|wl*|4 w; +|w | W;)dx
+20] p(|w;|3 0w w; +|w | azw;w;)dx.

Using Holder’s inequality, (6) and Lemma 2, we obtain

4
3 -
S "62 p”E { "W2 ||36J
19 3
+ 2 +
< ~ _
<C(|wel, + el ) (low], +lezw[,)
X[
) 4
_ _ 9
<Cliwy || +|jw O,W'|| +|0,w
2 |l3e 2 lse 270 2 27 2 5
8 4 8 C d
+ + - ~
| o 2 o |2+ e |2 o [ "

The same can be proved that by Holder’s inequality and (6), we get

.[62 p(|w1*|4 W, +|W1’ |4 W, )dx

4
3|z 3
N _
o 7 o o + o |

3

W+|| +
| 236

4 4 4 4 4

3|y 3|9 3|9 _13][e Bl ~13

+ + +

ouw |7 o [we [P [l T +ou o | Joa e [ o |
1 2 1 2

4
9
2

2

3 3
.
[ ]

B
+
2

W,

4
3lls 3
" _
0 [wy [+, |we |

2
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3
Fuat
O,W,' W, +

Jol

+
Wy

PBoa
wl| 0,W; Wz)dX

< + +Za + + — 726 — —
—"p"e Wi [l (W | O2Wa || W [l |[Wa | (W | O [ W ||
2 2
<Cljw;y +|W’|| )("8 w* +||8 W’" )
( 2l 2l 270 Iz 27 2
+ +2 oW + - -2 0w ~
g [l | oo | ws |+ | (v | oamg | wal), |
2 2

Therefore, by Young’s and Gronwall’s inequalities,
6 6 t
(I e €)1

We now proved the inequality (9), taking the divergence of the first two

2 PP 2 B
0, 2+ |W1| o0,W;

W

Wy

zjdz'SC. (18)
2

equations in (3), we get
—Ap = V-(W’ -VW*).
Following the finiteness of Riesz transforms on L, we have

Joll, <Clw].

Zq'
For 1<q<3, according to Theorem 1 and (8),

bounded, thus || p||q <C.
Recall that the operator A° is defined through the Fourier transform [11],

w
2q

and "W’” is
2q

namely
KH()=lef (o)
Combining (6), Hardy-Littlewood-Sobolev inequality [12] and the boundedness
of Riesz transforms in L2, we obtain

Ap| <

A (=AY al(w;azw; +w2*62W1’)

2 2

+

A (-A)" 8, (w;azw; +w2*62W2’)

2
< “A’(H) (wy 0,5 +w;0,w; )

, +”A*(l—s) (wz’ﬁzwz+ +W, 0,W, )”2 (19)

—~ + + — - + + —~
<C ||W262wl + W, 0,W, ||q +||W262W2 + W, 0,W, ||q

<C(Jow], +||52W_||2)( w2+ wy ||2J'
1-s 1-s
with 1 = 1+1_—S and Cis a constant independent of s. i
q 2 2

4. An Improved Global Lebesgue Bound

From the conclusions of Sections 2 and 3, we have the main theorem of this

paper.
Theorem 3. Assume that (u,,b))eH? (Rz) be the corresponding solution
of(2). Let 2<r <w, then

||(u2,b2)(t)||2r < B, (t)/rlogr +B,, (20)

where B, isasmooth function of t and B, depends only on "(u[J by)

or°
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Before proving the Theorem 3, we first describe the lemma that will be used.

Lemma 3. [4] Let qe[2,oo) and SE(%,I:|. Assume f,g,@lgeLz(Rz),

he X (Rz) and Ajhel® (RZ), Then,

[ fane| <], ol lo.all,” Il (21)
where p and y aregiven by
1 2s-1)(q-2 25s-1)(gq-1
1, (@2 (DY -

2 2(2s-1)(q-1)+2" 7 (2s-1)(q-1)+1’
and A5 denotes a fractional with respect to vertical dissipation and is defined by
Ash(x,)=[e |5 h(s (23)

Lemma 4. [8] Let f e HS(RZ) and B(O,R) denote the ball centered at
zero with radius R and by yy ) the characteristic function on B(0,R) with
Re(0,0) and se(0,1). Write

f= T fwith T =7 (o 7T ) and T = F(( o)) 7). (24)

where F and F™ denote the Fourier transform and the inverse Fourier
transform. We have the following estimates for f and f .

1) For a pure constant C, (independent of s)
7], < =R

2) For any 2<(<o satistying 1—S—E<O, there is a constant C,
q

(=2)° (25)

independent of s, g, R and f such that

[l <car” I

(26)

HS RZ

Details can be seen in [8], we have omitted here.
Lemma 5. Let 1<(q<x. Let f L (R”) and let T be defined as in (24).
Then, there exists a constant C depending on q only such that

|71, <cll,-

Next we prove the Theorem 3.

Proof. According to Theorem 1, we have
1dy .
2r dt

2r 2y 2r-2

W Co, @)

+(2r—1).[|82w2+

dx = (2r 1) [pa,w;

2r

with r > 2. The right side of Equation (27) will be estimated using a different
method. First, we fix R>0 and write

(2r-1)[po,w  dx

=(2r-1) [pa,w;
=J,+J,,

N dx+(2r 1) [po,w;  dx
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where P and P asdefined in (24). To estimate J, and J,,let

J5-1 5

<s<l 2<Qg<-—,
2 2

E+—< <1+L
2 2(2s-1) =i

(28)

By Holder’s and Young’s inequalities, we obtain

|3 = (2r-2)]p],

r-1 r-1
+
W2

w,

0, Wy

2

2 2r-1
+_
4

2

s(2r—1)||5||i W H 0,Wj Wy i

Applying Lemma 4, we have

A CO 1-s

ol <—=-R"|p|,s. (29)
I, <2 ol
where C, is a constant independent of s. In the rest of the proof, we focus on
whether a constant is bounded uniformly as s —1 . Using the interpolation

inequality, we have

r-1

[(ws )2'72 dx < [ = (30)

In summary, we obtain
2

N . r-1
A (Wz ) ,

where C, isindependent of s. Now we estimate J,, apply Lemma 3 to obtain

+
W,

"
W,

2r

2r-1
4

c? 2r2_ar
+1—°(2r—1)R2(1’5) [p 1 (31)
-S

2r

2
r-1
2

[ <

+
W,

"
W,

2
Hs

P 1-p

N r-1
0, (w2 )
2
where sand gsatisfy (28), y and p are given explicitly in terms of sand ¢
_ (2s-1)(g-1) 1, (2s-1)(q-2)

r-1 1-y . r-1

|3,| <C(2r-1)[0,w; |w; AP (Iwg

19 a0l 2

S G /A s e A , 32
(2s-1)(a-1)+1" "2 2[(25-1)(q-1)+1] 42
and Cis bounded uniformly as s —1 . According to (30), we get
Pl r2-2r
w | " < wi (L wg ][ e (33)
2 A - 2 2 2 or )
By Holder’s inequality,
N 1-p 2 (A=) %(1—/))
0,(ws) | " = (=1 (o) (i) o]
(r-2) 5
B N 2 ) 2(r-2 ) 2(r—2) 2
=(r-1y p{j(azwz)r-l(azwz) r-1 (Wz) dxj
. p 2(r-1) 2 (r_ziz(_ll_)p)
=(r-1) 'D||62W2+ = (J'(wg) (azw;) dx) :
By Young’s inequality
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P r2-2r

1—
|3,|<C(2r-1)(r-1)"" ||62W2+ w1

r-1

g (r-2)1-p)
 (Jom (o)
_ - 2pley), 2
s2r4 Li(om ) (we )" adxrc(ar-)(r-1) = 2

2(1-p Zp(fZ*ZF) 2y(r-1) 2(1- )(r -1)

2l 7 1By AP,

W2
where Cis again bounded uniformly as s — 1", and we make
o=(r-1)-(1-p)(r-2)=1+pr-2p. (35)

For further estimation, we spilt | f)"z(qil) into two parts and bound one of

1
—+
2

AP

=7
Il »

(o3

them by Lemma 4. Moreover, we getany 0< <1,

e 1—3—% Vi
[1Bllsy =10y 1Ly < CillBlEicsy 2w e

1

—Ss— |
<Cllpley 4 [plls

qu

(36)

Owing to the condition of sand ¢ in (28), this boundary allows us to generate

R(Hﬁjﬁ with [1—s—q];

25/ <2 (2 ) () o

j B <0. Inserting (36) in (34) yields

o) (r— . 1),2 (r-1)
+C(2r—1)(r—1)2(1 pa)( . R[l ) q:]!’ . z
2(1-p) Zp(rhzr) [27 (r-1) ] 2}/( 1)+2(1—y)(r—1)
<Jowi, - [0l loll ’

where Cis bounded uniformly as s —1 . We choose S so that the sum of the
powers of ||62W2+ "2 and of |p
2(1- 2y(r-1) 2(1- -1
1-p)  y2(r-1) 20-7)(r-1)

o o

ys 1s equal to 2, namely

=2.

Recalling (32) and (35), we have

2s-1)(2q-3)-1
,_(25-1)(2a-3)1 -
(29-2)(2s-1)
The condition in (28) ensures that 0< <1, then
2;/(r—1) 2(17;/ r-1

-1 ,
o sc("azw;2

||8 w2

2
HS |*

For f given by (37), we have

9] < 5 (2 ) i )

21p)r)) (1t |p2(D 2p
sc(ar-1)(r-1) - R w7 (38)
2y(r-1) 2p(r 2r
(1-5) L2
ol = (Jesl] 1ok sl <
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Combining (27), (31) and (38) we have
1d

2r 2 2r-2

N 2r-1 N .
orathel T ”62"\’2 w| o dx
Cg 2 2 2r®—4r
s ﬁ(zr _1) Rz(lis) " Pllys W; ;1 W; er—l
2(1-p)(r-1) [1_5_ 1 J 521 2 (39)
+C(2r—l)(l‘—l) o R gq-1 o W;r 20
2p rz—Zr)

o

2
Hs

with a constant C; is independent in sand Cis bounded uniformlyas s—1".
Let

W,

(1715‘)M 112
UPley = (I} +[p

2r

that is,

2(1-s)(1-p)(r-1)

) (1—s)a+ﬂy[s—l+$](r—1)

R*9) = (r-1 (40)
Using (32), (35) and (37) to simplify this index and get
2(1-s)(1-p)(r-1) _ 2(1-s)(q-1)
-1 "
(1—s)a+ﬂ7[s—l+qllj(r—l) q-2+(r-1)"(1-s)(a-1)
Let
_ 2(1-s)(q-1) (1)
q-2+(r-1)"(1-s)(q-1)
and therefore R = (r —1)9 . Obviously, § >0 as s—1,and
I ETAVAT ) w
1-s qg-2 r-1)6 (q-2)6
Furthermore,
2 _ 2p(r?—2r
20041 oo, Msm—z. (43)
r-1 o
For generality, we assume "WZ+ "2r >1. Following (39) and get
d 2 C 0
—(wW | <=A(t)(2r-1)(r-1)", 44
U, < aycer-1r-1 ()
where C is bounded uniformly as 6 — 0", and
2 + 2 + 2 (1’ﬁ)2y(r71) +12 2
A = ol o o 7 Ty = (loaws]f 1ol )

Since (44) holds for any 6> 0, we set
oo 1
log(r—1)
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we get

a
dt

C
N SZA(t)(Zr—l)Iog(r—l). (45)

IR
2

Choose the right @, and according to Theorem 3, A(t) is integrable at any

time interval. This completes the proof of Theorem 3. m

5. Conditional Global Regularity

This section estimates the global boundedness of the vertical component u,
and b, of "(u,b)”H2 under the LfL‘;J norm. We have the following theorem.

Theorem 4. Assume (ug,b,)e HZ(RZ) and (u,b) be the corresponding
solution of (2). If

J: "(uZ’bz)('[')"jO dr <o

forsome T >0, then "(u,b)"H2 is finite on [O,T].

We divide the proof of the theorem into two parts.

>
5.1. H' in Terms of H(UZ’bZ)Hqu’;
In this section, we estimate that the solution has a H'-bound, and we have the
following proposition.

Proposition 5. Assume (uy,b,)e H? (Rz) and let (u,b) be the
corresponding solution of (2). Then, forany T >0 and t<T,

ColY(Juz () +pa (), )
a0, <GP 0
where C, depends on T and the initial data only and C, is a pure constant.
Proof. Taking the inner product of the first equation of (3) with Aw" and
integrating by parts, we find
L9 b
2 dt

2 2
+||avW+ S RSP RIS i o
> 2 2 1 2 3 4 5 6

where
I, = j@lwl‘alwz*ﬁlwgdx, I, = J'alwz‘ﬁzwfalwfdx,
Iy = jalw;azw;alw;dx, I, = fazw[alwfazwfdx,
I = jazw;alw;azw;dx, lg = Iazwgazwfazwfdx.

Using the anisotropic Sobolev inequalities [5] and V-w" =V-w™ =0, we can

be bounded as follows,
1| = |, w; 0,w 8,05 o
= ZUWZ_ oW D, WE dx‘

<clue] lows

0,, W,
62w

2

<glvaumis el fom

2
2!
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- + +
I1,| = ”alwz@zw1 oW, dx|
1 1 1 1
- + + + +
<Clowg | oowg 2 Jorw: 2 o |2 Jor0ws 2
1 1
_ — + (2 + + 1|2
=Cl[vwa | oo [z foawi [ orws
- + +
<C|vug | Joow ], [vorui],
1 2 R 2
<gvow |, +clvw [ Joow .
8 2 2 2
— + +
|13 = Halwzazw2 oW; dx|
< Hauw; W, O, W, dx| + |—j61w2‘ W, Oy, W, dx|
+ - + — +
<clw; ] (lowve], oo |, +low | fowvall)

1 2 2 2 1 2 2 2
<Z|Vow, || +Clwi|| oWl +=|Vo,wi| +Clwi| [[o,ws ]l ,
8 22 |, 2l 172721, T'g 22, 2 |1, 1912 ||,

e Uazw;alwfazwfdx‘

1 1 1 1
<Clo,w || [o,w (12 10,,w ||2 |6, w; |[2 [|6,,W |12
= 21211212122121212

— + +
<Cloaw [ v, [vo.u],

1 + A A
<2pvea ol I

w1

= Uazwl’alwz*ézwgdx‘
<], ocle oo | fove e oo
< Cllowi |, [vwz] vz,
<gIvom [ +clo.u [ fowsl;.
16| = Uazwgazwfazwfdx‘
1 1 1 1
<Clouwz, [o.u |7 0w |7 Jorwe [ o
<Cleawe ], Jorwi ], Vo]
<glvo.nc [ +clo [ vuc
Similarly, we can estimate Vw™ . Combining them yields
d _ _
sillvw o+ ww )+ (lva.w [ +|vaw )
<C{fouw [} fow [ +fwa . +fwe ([ [ o] )

According to Gronwall’s inequality, get (VU,Vb) has a L’-bounded.
Combining with the Lemma 1 to got (46).

W,

O
5.2. Proof of Theorem 4

In this section, we use the global bounds of Proposition 5 to prove the
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completion of the Theorem 4.
Proof. Taking the inner product of the first equation in (3) with A’w* and
integrating by parts, we find

2

%%"AW* "+ [o,aw

= f A(W- .vW+)-Aw+dx. (48)

=
We decompose the nonlinear term into different parts and estimate it using

anisotropic dissipation. We write
IA(W_ ~VW*)-w*dx =K, +K, +K;,
with
K, = I(Aw‘ -Vw*)-Aw*dx, K, = 2f<alw‘ -Valw*)AW*dx,
K, = 2_[(62W_ ~V62W*)~Aw+dx.
We further divide K, into four parts, K, =K, +K;, +K;; +K,,, where
Ky = [(Aw o) ) awsdx, K, = [(Awgo,w; ) Aw;dx,
K = I(Awgazwf)Awfdx, Ky = I(Awgazwg)Aw;dx,
Applying Hélder’s inequality and V-w" =0, after integration by parts we get

|Ky|= ‘—_[(AW{&’ZW;)AWfdx

< UA@ZW{W;AWl+

dx +|.[AW1‘W2*A82w1*dx|

<C

2
o0

+
W,

a0, Jang

+C
2

+
W,

|A62wl+

AW’”
2 112

2 2
+ ||AWl || .
2 2

0

< {Jaou [ +a0.m

)l (Jos

Similarly, we obtain

.
W,

1Ky g4i8(||Aazwg||§ aous )+ (Jaws ] +Jav ;).

To bound K, and K, we use anisotropic Sobolev inequality and

Proposition 5, we obtain

1 1 1 1
+ ~ 2 ~112 +2 +2
K = C s |, w2 oy [z o |2 Jorws
1 1 1 1
+ ~ |2 ~||2 2 2
SC"AW2 2 Aw, "2 "Aazw2 "2 "VW2 2 |V62W2 2
1 IR LR R . L2
g—"Aazw2 || +C||V62w2 Aw, || +C||VW2 Aw, |l
48 2 2 2 2 2

1 1 1 1
+ —I5 ~o + 1o + |2
Kool < € [0 ] w0, [ w7 aowe

2

1 1 1 1
<cfo |, fve oo f oot oo

2

< %("Aazwg [+ Jao,m;

z)+ cllo,w

2 IR .
v ], +aws

)

Combining with the estimates, we obtain
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Ko< S {Jacw ]} +Jacw

(e

K, and K, can be estimated in a similar way and here we will omit the

2 2
+
2 0

i)+ c (||va2w;

+
W,

+ ||Vw2+

+ ||82W+
2

2 2
+aw )
2 2

details. Combining all of these estimates and applying Gronwall’s inequality, we

have
8w oo | .
<[ o ) Jaw o )

where

5 <[] oo o], o
Similarly,

28 o o .
<[ o ) o v )

and

2 2 2
B, = Vo, +|we . +[wal, +fo.w];.

combines with (50) and (49), we get

(s )+ (Jozw [ oo [

d
dt
<(+8) s [ ).

Applying Gronwall’s inequality and (4), (8), (47), we can prove that the
solution (u,b) in (2) has a global H”-bound. This completes the proof of
Theorem 4. o

6. Conclusion

According to Wu [4], in this paper, we prove that the solution of the system (2)
has regularity in the vertical direction. In order to get this result, we need to
make a corresponding estimate of the pressure to prove that it’s bounded.

Especially in the case of IOT "(uz,b2 )"i dt <o, the solution has regularity in
[0.7].
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