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Abstract 
To Statisticians, the structure of the extreme levels which exist in the tails of 
the ordinary distributions is very important in analyzing, predicting and fo-
recasting the likelihood of an occurrence of extreme event. Extreme events 
are defined as values of the event below or above a certain value called thre-
shold. A well chosen threshold helps to identify the extreme levels. Several 
methods have been used to determine threshold so as to analyze and model 
extreme events. One of the most successful methods is the maximum product 
of spacing (MPS). However, there is a problem encountered while modeling 
data through this method in that the method breaks down when there is a tie 
in the exceedances. This study offers a solution to model data even when it 
contains ties. In the study, a method that improved MPS method for deter-
mining an optimal threshold for extreme values in a data set containing ties 
was derived. The Generalized Pareto Distribution (GPD) parameters for the 
optimal threshold were derived and compared to GPD parameters deter-
mined through the standard MPS model. The study improved the standard 
MPS methodology by introducing the concept of frequency and used Genera-
lized Pareto Distribution (GPD) and Peak over threshold (POT) methods as 
the basis of identifying extreme values. The improved MPS models and the 
standard models were applied to Nairobi Securities Exchange (NSE) trading 
volume data to determine the GPD parameters for different sectors registered 
in NSE market and their performance compared. It was realized that the im-
proved MPS model performed better than the standard models. This study 
will help the Statisticians in different sectors of our economy to model ex-
treme events involving ties. 
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1. Introduction 

Certain values in the tails of any distribution, represent extreme events and they 
are pointers to eventuality. The values in the tails are rare, few, but can have a 
big impact on the conclusion arrived at by the analysts. Different sectors of our 
life experience Extreme events and here we mention just but a few. According to 
[1] and [2] Extreme low production in agriculture results to famine if the agri-
culture depends on rainfall. This means that the amount of rain experienced in 
that region was too low that crops dried up [3] or very high rainfall that it de-
stroyed all crops that had been planted. [4], studying extreme rainfall in a 
mountainous region and [5] studying extreme rainfall in West Africa did ob-
serve that, how low or high the amount of rainfall depends on the threshold at-
tached to the rainfall in that region. In insurance industries [6], while discussing 
tools in finance and insurance, noted that extreme high claims by the customers 
that can be very dangerous for the company while extreme low claims by the 
customers can be very beneficial for the company’s profit. This means that there 
is a critical level that the insurance company would wish it is not surpassed and 
if it is, according to [7], it must be prepared for this eventuality. Very high emis-
sions of the waste products from the manufacturing industries are harmful to 
the environment and ozone layer. However, countries must continue to indu-
strialize or expand their industries for economic prosperity. Extreme value 
theory (EVT) is a tool which attempts to provide us with the best possible esti-
mate of the tail area of the distribution [8]. While working on the importance of 
the tail dependence in Bivariate frequency analysis, noted that there are two 
principal kinds of model for extreme values. The oldest group of models is the 
block maxima models. According to [9] and [10] the block maxima/minima 
methods are fitted with the generalized extreme value (GEV) distribution. A 
more modern group of models is the peaks-over-threshold (POT) models; these 
are models for all large observations which exceed a high threshold. According 
to [11], theory of extreme value, the block of maxima of a sequence of identically 
and independently distributed (iid) random variables in the limits follows a ge-
neralized extreme value (GEV) distribution. At the same time, [10] showed that 
the excesses over a high threshold for these random variables, followed a Gene-
ralized Pareto distribution (GPD) using peak over threshold (POT) method. [12] 
proposed that choosing an optimal threshold is similar to choosing the number 
of upper order statistics and that a compromise between bias and variance has to 
be reached. The most successful method of determining the threshold of a GPD 
is the Maximum Product of Spacing (MPS). The Maximum Product of Spacing 
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(MPS) was introduced originally by [13] as one method of determining thre-
shold. This general method is based on spacings (that is, the gaps between suc-
cessive order statistics). A threshold approach for peaks over threshold using 
MPS was carried out by [14] and noted that the selection of a threshold is an 
important and challenging problem [15]. While studying traditional estimation 
methods and MPS in Generalized Inverted Exponential Distribution found out 
that MPS outperformed MLE and least square (LSE) methods on the basis of K-S 
distance and Akaike Information Criterion (AIC). While trying to compare the 
methods for parameter estimation for univariate continuous models [16], sug-
gested that MPS is useful in estimating parameters for univariate continuous 
models with a shift at the origin. He also noted that MPS method would be an 
alternative method when MLE method encounters numerical difficulties in some 
parametric models [17]. While comparing parameter estimation for Generalized 
Power Weibull (GPW) proposed the use of MPS as compared to MLE and Baye-
sian to estimate the parameters of the GPW. However, the MPS method is sensi-
tive to ties [18]. This study improved the MPS method so that it is able to handle 
any data even if it contains ties.  

Maximum Product of Spacing (MPS) Methodology 

According to [13], maximum spacing estimators are sensitive to closely spaced 
observations, and especially ties. In cases of ties, some scholars have suggested 
that one value of each tie is taken [18]. Let 1 2, , , nx x x  be a random sample of 
independent observations from a continuous distribution 

0
Fθ  belonging to 

,Fθ θ ∈Θ . Applying the probability transform ( ).Fθ  to the order statistics

1, 2, ,n n n nx x x≤ ≤ ≤  yields ( ) ( ) ( )0, 1, 1,0 1n n n nF x F x F xθ θ θ +≡ ≤ ≤ ≤ ≡ . We de-
fine the spacings as the gaps between the values of the distribution function at 
adjacent ordered points  

( ) ( ) ( )1i i iD F x F xθ θθ −= −                    (1) 

for 1,2, , 1i n= + . The maximum spacing estimator 0θ  was defined as value 
that maximizes the logarithm of the geometric mean of sample spacings.  

( )ˆ arg max nS
θ

θ θ
∈Θ

=                        (2) 

where  

( ) ( ) ( ) ( )( )

( )

1
1 2 1

1

1

ln

1 ln
1

n
n n

n

i
i

S D D D

D
n

θ θ θ θ

θ

+
+

+

=

= ⋅

=
+ ∑



             (3) 

This maximum spacing estimator is sensitive to the ties. That is, for any  

1i m i m ix x x+ + −= = =  

Then  

( ) ( ) ( )1i m i m iD D Dθ θ θ+ + −= = =  

This, therefore, collapses the standard MPS method proposed by [13]. 
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2. Methodology 
2.1. Improved MPS Methodology 

Let 1 2, , , nx x x  be a random sample of independent observations from a con-
tinuous distribution 

0
Fθ  belonging to ,Fθ θ ∈Θ  [19]. Applying the probabili-

ty transform ( ).Fθ  to the order statistics 1, 2, ,n n n nx x x≤ ≤ ≤  yields
( ) ( ) ( )0, 1, 1,0 1n n n nF x F x F xθ θ θ +≡ ≤ ≤ ≤ ≡ . We define the spacings as the gaps 

between the values of the distribution function at adjacent ordered points  

( ) ( ) ( )1i i iD F x F xθ θθ −= −                    (4) 

for 1,2, , 1i n= + . The maximum spacing estimator 0θ  was defined as value 
that maximizes the logarithm of the geometric mean of sample spacings.  

( )ˆ arg max nS
θ

θ θ
∈Θ

=                        (5) 

where  

( ) ( ) ( ) ( )( )1
1 2 1ln n

n nS D D Dθ θ θ θ+
+= ⋅   

The modified MPS method proposed here is to use grouped data frequency 
table. Let 1 2, , , nx x x  occur 1 2, , , nf f f  times respectively. The geometric 
mean is given by  

( )1 2

1
1

1 2
1

n i
n Nf ff f N

n i
i

G x x x x
=

 = ⋅ =   
∏

 

This implies that  

1

1ln ln
n

i i
i

G f x
N =

= ∑                         (6) 

This leads to the modified MPS method as  

( ) ( ) ( ) ( )( ) ( )11 2
1

1
1 2 1

1

1ln ln
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n
n

ff fn
n n i i

i
S D D D f D
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= ⋅ =
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In case 1 2 1 1nf f f += = = = , then we go back to the standard MPS. The 
Spacings are such that ( )

1
1

n

i
i

D θ
=

=∑ . Under MPS, ( )iD θ ’s are defined as:  

( ) ( )1 1: ,nD F xθ θ=  

( ) ( ) ( ): 1:, ,i i n i nD F x F xθ θ θ−= −  

( ) ( )1 :1 ,n n nD F xθ θ+ = −  

Therefore, Equation (7) can be partitioned as: 

( ) ( ) ( ) ( )1 1 1 1
2

1; , , ln ln ln
1

n

n i i i n n
i

S x f D f D f D
n

θ ε σ θ θ θ+ +
=

 = + + 
+  

∑    (8) 

2.2. Estimation of Generalized Pareto Distribution Using the  
Modified MPS Method 

To estimate the parameters, we substitute the GPD  
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( )

1

1 1 , 0
; ,

1 exp , 0

x u

G x
x u

ε
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−
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into the MPS method Equation (8)  

2.2.1. Case 1: When 0ε ≠  
Let  
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which leads to  
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ε εθ θ
ε ε

σ σ

− −

− −   −    = + − +      
      

           (11) 
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To optimize the function ( ), ,nS θ ε σ , we partially differentiate it with respect 
to ,θ ε  and σ  to obtain;  

31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nε ε ε ε+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑           (16) 

31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nσ σ σ σ+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑           (17) 
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31 2
1 1

2

1 0
1

n

i n
i

KK KS f f f
nθ θ θ θ+

=

∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂ 

∑           (18) 

2.2.2. Case 2: When 0ε =  
Let  

1
1 1 exp

xD θ
σ

 −  = − −  
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1exp expi i
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x x
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θ θ
σ σ
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And  
*
1 1lnK D=                           (22) 

*
2 lnK P=                           (23) 

where t 1exp expi ix x
P

θ θ
σ σ
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To optimize the function ( ), ,nS θ ε σ , we partially differentiate it with respect 
to ,θ ε  and σ  to obtain;  

*

** *
31 2
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i n
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KK KS f f f
nσ σ σ σ+

=

 ∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂  
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** *
31 2

1 1
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1 0
1

n

i n
i

KK KS f f f
nθ θ θ θ+

=

 ∂∂ ∂ ′ = + + = 
+ ∂ ∂ ∂  

∑           (26) 

3. Market Data 

The models 16, 17, 18, 25 and 26 were coded in r-software and used to analyze the 
market volume data. Market data was sought from one company from each of the 
twelve (12) sectors trading in the Nairobi Securities Exchange (NSE), namely 
Agricultural (Sasini), Automobile and Accessories (Sameer Group), Banking 
(KCB), Commercial and Services (Kenya Airways), Construction and Allied (East 
African Cables), Energy and Petroleum (Kenol Kobil), Insurance (Kenya Re), In-
vestment (Centum company), Investment Services (NSE), Manufacturing and Al-
lied (East African Breweries), Telecommunication (Safaricom) and Real Estate In-
vestment (Stanlib Fahari I-Reit). This was daily trading data for a period of three 
years (2016 to the end of 2018). Real market data contains ties and the first part of 
the analysis in this study was to check on this fact. This was done in Excel using 
pivotal tables by analyzing the volumes traded each day for the three years. The 
number of observations for volume traded in each company analyzed and the cor-
responding number of repetitions (ties) summarized as indicated in Table 1. 

https://doi.org/10.4236/ojs.2019.93023


P. Murage et al. 
 

 

DOI: 10.4236/ojs.2019.93023 333 Open Journal of Statistics 
 

Table 1. Company data and number of repetitions. 

Company Number of Observations Number of Repetitions 

Centum 592 75 

East African Breweries 699 131 

East African Cables 711 378 

Kenya Airways 634 83 

Kenya Commercial Bank 739 21 

KenolKobil 635 62 

Kenya Reinsurance 729 182 

Nairobi Securities Ltd 591 183 

Safaricom 592 6 

Sasini 711 450 

Sameer 395 203 

Stanlib 431 185 

Claims Data 237 119 

 
From Table 1, it was observed that all companies had some repetitions. These 

repetitions are synonymous to ties. Company’s such as Sasini, Sameer, Stanlib, 
Kenya-Re and East African Cables had fairly many repetitions (ties). The densi-
ties of the data distribution in different sectors, were plotted as shown in Figure 
1. This was done to assess the distribution of the volume data and assess whether 
the data had extreme values. 

The y-axis of Figure 1 represent the density of the volume data while the x-axis 
represent the volume of the traded securities. The densities of all the companies 
are right skewed and indicate the tendencies of having extreme values in the right 
tail. These densities are very similar to the gamma density. Gamma density is 
right skewed and therefore contains extreme values in the right tail. All the sec-
tors were therefore observed to contain extreme values in their right tail which 
served as a justification to subject our data to extreme value analysis using GPD 
and POT. The data were then subjected to both the standard MPS model and the 
improved models 16, 17, 18, 25 and 26, to determine the GPD parameters. Back 
testing techniques was used to assess the efficiency and consistency of these pa-
rameters and Akaike Information Criterion (AIC) was used to test the suitability 
of the derived model. The results are as indicated in Tables 2-13. 

3.1. Investment Sector 

The Company had 592 volume trading points. From Table 2, the exceedances 
above the threshold determined through the standard model, was 30 while the 
exceedances over the threshold determined through the improved model was 26. 
The standard two parameter model and standard three parameter model yielded 
the same number of exceedances above their respective thresholds. The propor-
tion of the exceedances above the threshold was also the same. The improved 
two and three parameter models also yielded the same number of exceedances. 
The proportion of the exceedances above the threshold was also the same for the 
improved two and three parameter models. The scale parameter of the standard 

https://doi.org/10.4236/ojs.2019.93023


P. Murage et al. 
 

 

DOI: 10.4236/ojs.2019.93023 334 Open Journal of Statistics 
 

models was 392,000 and that of improved model was 404,000. In this case, the 
scale parameter of the improved model was higher than that of the standard 
model. The shape parameter in the standard model was 0.0679 while that of the 
improved model was 0.0612. In this case, the shape parameter of the improved 
model was lower than that of the standard model.  

 

 
Figure 1. The densities for the market data from the NSE (Share volumes).  
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Table 2. MLE and MPLE Estimates-Centum. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 820,065.217 864,608.8765 820,085.0487 864,598.9 

No. above threshold 30 26 30 26 

Proportion above 0.0507 0.0503 0.0507 0.0503 

Scale Estimate 3.92E+05 4.04E+05 3.92E+05 4.04E+05 

Scale standard error 1.05E+05 1.16E+05 1.05E+05 1.16E+05 

Shape Estimate 6.79E−02 6.16E−02 6.79E−02 6.16E−02 

Shape standard error 1.95E−01 2.08E−01 1.95E−01 2.08E−01 

Asymptotic var-cov.scale 1.09E+10 1.33E+10 1.09E+10 1.33E+10 

Asymptotic var-cov.shape 3.80E−02 4.33E−02 3.80E−02 −1.65E+04 

Deviance 832.3728 723.0676 832.3695 723.0689 

Penalized Deviance 832.4959 723.1747 832.4927 723.1761 

AIC 836.3728 727.0676 836.3695 727.0689 

Penalized AIC 836.4959 727.1747 836.4927 727.1761 

 
Table 3. MLE and MPLE Estimates-East African Breweries (EABL). 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 1,025,741.62 1,058,458.097 1,025,775.349 1,058,460.419 

No. above threshold 35 29 35 29 

Proportion above 0.0501 0.0511 0.0501 0.0511 

Scale Estimate 4.65E+05 5.23E+05 4.65E+05 5.23E+05 

Scale standard error 5937.1688 8.40E+03 5.94E+03 8400.6126 

Shape Estimate 1.31E−01 5.71E−02 1.31E−01 5.71E−02 

Shape  
standard error 

0.1567 0.1367 0.1567 0.1367 

Asymptotic var- cov.scale 3.53E+07 7.06E+07 3.53E+07 7.06E+07 

Asymptotic var- cov.shape −4.01E+01 1.87E−02 2.46E−02 2.46E−02 

Deviance 982.4578 821.3793 982.452 821.379 

Penalized Deviance 982.7215 821.5269 982.7158 821.5266 

AIC 986.4578 825.3793 986.452 825.379 

Penalized AIC 986.7215 825.5269 986.7158 825.5266 
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Table 4. MLE and MPLE Estimates-East African Cables (EAC). 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 107,940.9 209,150.4 107,967.3 209,135.6 

No. above threshold 36 17 36 17 

Proportion above 0.0506 0.0511 0.0506 0.0511 

Scale Estimate 1.42E+05 149300 1.42E+05 1.49E+05 

Scale standard error 3.27E+04 4.65E+04 32691.52 4.65E+04 

Shape Estimate −4.60E−02 −0.175 −4.58E−02 −1.75E−01 

Shape standard error 1.59E−01 2.00E−01 0.159 2.00E−01 

Asymptotic var-cov.scale 1.07E+09 2.16E+09 1.07E+09 2.16E+09 

Asymptotic var-cov.shape 2.53E−02 4.00E−02 2.53E−02 4.00E−02 

Deviance 926.075 438.3711 926.0622 438.374 

Penalized Deviance 926.075 438.3711 926.0622 438.374 

AIC 930.075 442.3711 930.0622 442.374 

Penalized AIC 930.075 442.3711 930.0622 442.374 

 
Table 5. MLE and MPLE Estimates-Kenya Re-Insurance. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 1,166,453.64 1,504,595.999 1,166,456.859 1,504,609.093 

No. above threshold 37 28 37 28 

Proportion above 0.0508 0.0512 0.0508 0.0512 

Scale Estimate 1.35E+06 1.40E+06 1.35E+06 1.40E+06 

Scale standard error 3.08E+05 3.58E+05 3.08E+05 3.58E+05 

Shape Estimate −4.15E−02 −8.24E−02 −4.15E−02 −8.24E−02 

Shape standard error 1.58E−01 1.73E−01 1.58E−01 1.73E−01 

Asymptotic var-cov.scale 9.49E+10 1.28E+11 9.49E+10 1.28E+11 

Asymptotic var-cov.shape 2.48E−02 3.01E−02 2.48E−02 3.01E−02 

Deviance 1.12E+03 848.127 1118.66 848.1265 

Penalized Deviance 1118.661 848.127 1118.66 848.1265 

AIC 1122.661 852.127 1122.66 852.1265 

Penalized AIC 1122.661 852.127 1122.66 852.1265 
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Table 6. MLE and MPLE Estimates-Kenya Commercial Bank (KCB). 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 7,162,924 6,967,732 7,162,925 6,967,755 

No. above threshold 37 36 37 36 

Proportion above 0.0501 0.0501 0.0501 0.0501 

Scale Estimate 4.50E+06 4.70E+06 4.50E+06 4.70E+06 

Scale std error 1.08E+06 1.14E+06 1.08E+06 5931.723 

Shape Estimate 7.23E−02 5.42E−02 7.23E−02 5.42E−02 

Shape standard error 1.76E−01 1.76E−01 1.76E−01 0.1408 

Asymptotic var-cov.scale 1.18E+12 1.29E+12 1.18E+12 3.52E+07 

Asymptotic var-cov.shape 3.11E−02 3.09E−02 3.11E−02 1.98E−02 

Deviance 1207.36 1177.986 1207.36 1177.986 

Penalized Deviance 1207.491 1178.078 1207.491 1178.078 

AIC 1211.36 1181.986 1211.36 1181.986 

Penalized AIC 1211.491 1182.078 1211.491 1182.078 

 
Table 7. MLE and MPLE Estimates-Kenol. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 6,707,831.85 7,239,959.124 6,707,844.136 7,239,940.507 

No. above threshold 32 29 32 29 

Proportion above 0.0504 0.0506 0.0504 0.0506 

Scale Estimate 3.22E+07 3.50E+07 3.22E+07 3.50E+07 

Scale standard error 1.01E+07 1.15E+07 5931.6417 1.15E+07 

Shape Estimate 5.57E−01 5.61E−01 5.57E−01 5.61E−01 

Shape standard error 2.75E−01 2.90E−01 0.2923 2.90E−01 

Asymptotic var- cov.scale 1.01E+14 1.32E+14 3.52E+07 1.32E+14 

Asymptotic va-cov.shape 7.57E−02 8.40E−02 8.54E−02 8.40E−02 

Deviance 1152.255 1049.732 1152.255 1049.732 

Penalized Deviance 1153.961 1051.414 1153.961 1051.414 

AIC 1156.255 1053.732 1156.255 1053.732 

Penalized AIC 1157.961 1051.414 1157.961 1055.414 
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Table 8. MLE and MPLE Estimates-Kenya Airways (KQ). 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 998,460.871 1,140,889.615 998,448.5253 1,140,928.481 

No. above threshold 32 28 32 28 

Proportion above 0.0505 0.0508 0.0505 0.0508 

Scale Estimate 9.27E+05 9.06E+05 9.27E+05 9.06E+05 

Scale standard error 2.42E+05 2.57E+05 5932.8333 2.57E+05 

Shape Estimate 9.13E−02 1.21E−01 9.13E−02 1.21E−01 

Shape standard error 1.93E−01 2.12E−01 0.1418 2.12E−01 

Asymptotic var- cov.scale 5.86E+10 6.58E+10 3.52E+07 6.58E+10 

Asymptotic var-cov.shape 3.72E−02 4.49E−02 2.01E−02 4.49E−02 

Deviance 942.79 823.3371 942.791 823.3344 

Penalized Deviance 942.9646 823.5743 942.9655 823.5717 

AIC 946.79 827.3371 946.791 827.3344 

Penalized AIC 946.9646 827.5743 946.9655 827.5717 

 
Table 9. MLE and MPLE Estimates-NSE. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 573,942.146 1,025,881.322 573,933.6022 1,025,908.743 

No. above threshold 30 21 30 21 

Proportion above 0.0508 0.0515 0.0508 0.0515 

Scale Estimate 8.14E+05 6.06E+05 8.14E+05 6.06E+05 

Scale standard error 5933.39 2.07E+05 2.12E+05 2.07E+05 

Shape Estimate 2.09E−02 2.24E−01 2.09E−02 2.24E−01 

Shape standard error 0.186 2.67E−01 1.86E−01 2.67E−01 

Asymptotic var-cov.scale 3.52E+07 4.28E+10 4.51E+10 4.28E+10 

Asymptotic var-cov.shape 1.17E−02 7.14E−02 3.47E−02 7.14E−02 

Deviance 876.5707 599.1953 876.5713 5.99E+02 

Penalized Deviance 8.77E+02 599.668 876.5999 599.6657 

AIC 880.5707 603.1953 8.81E+02 603.1929 

Penalized AIC 603.1953 603.668 880.5999 603.6657 
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Table 10. MLE and MPLE Estimates-Safaricom. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 26,193,609.9 26,206,498.57 26,193,619.03 26,206,476.71 

No. above threshold 30 30 30 30 

Proportion above 0.0507 0.0512 0.0507 0.0512 

Scale Estimate 1.23E+07 1.23E+07 1.23E+07 1.23E+07 

Scale standard error 5931.6563 3.13E+06 4194.3092 5931.6563 

Shape Estimate −3.39E−02 −3.32E−02 −3.39E−02 −3.32E−02 

Shape standard error 0.1361 1.77E−01 0.1361 0.1363 

Asymptotic var-cov.scale 3.52E+07 9.79E+12 1.76E+07 3.52E+07 

Asymptotic var- cov.shape 1.85E−02 3.12E−02 1.85E−02 1.86E−02 

Deviance 1039.625 1039.565 1039.625 1039.565 

Penalized Deviance 1039.625 1039.565 1039.625 1039.565 

AIC 1043.625 1043.565 1043.625 1043.565 

Penalized AIC 1043.625 1043.565 1043.625 1043.565 

 
Table 11. MLE and MPLE Estimates-Sameer. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 77,951.3706 133,216.7968 77,957.31698 133,211.3589 

No. above threshold 20 10 20 10 

Proportion above 0.0506 0.0521 0.0506 0.0521 

Scale Estimate 1.86E+05 2.98E+05 1.86E+05 2.98E+05 

Scale standard error 6.73E+04 1.40E+05 6.73E+04 1.40E+05 

Shape Estimate 3.07E−01 1.12E−01 3.07E−01 1.12E−01 

Shape standard error 2.92E−01 3.52E−01 2.92E−01 3.52E−01 

Asymptotic var-cov.scale 4.53E+09 1.97E+10 4.53E+09 1.97E+10 

Asymptotic var-cov.shape 8.54E−02 1.24E−01 8.54E−02 1.24E−01 

Deviance 522.5111 271.8956 522.5093 271.896 

Penalized Deviance 523.1935 272.0439 523.1918 272.0443 

AIC 526.5111 275.8956 526.5093 275.896 

Penalized AIC 527.1935 276.0439 527.1918 276.0443 
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Table 12. MLE and MPLE Estimates-Sasini. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 99,341.6073 276,597.6868 99,345.1023 276,579.6752 

No. above threshold 36 14 36 14 

Proportion above 0.0506 0.0536 0.0506 0.0536 

Scale Estimate 3.97E+05 7.29E+05 3.97E+05 7.29E+05 

Scale standard error 1.08E+05 3.01E+05 8396.617 1.19E+04 

Shape Estimate 3.33E−01 1.96E−01 3.33E−01 1.96E−01 

Shape standard error 2.22E−01 3.20E−01 0.204 2.87E−01 

Asymptotic var-cov.scale 1.17E+10 9.07E+10 7.05E+07 1.41E+08 

Asymptotic var-cov.shape 4.94E−02 1.02E−01 4.16E−02 8.21E−02 

Deviance 992.7757 405.158 992.7747 405.1589 

Penalized Deviance 993.624 405.5148 993.6231 405.5156 

AIC 996.7757 409.158 996.7747 409.1589 

Penalized AIC 997.624 409.5148 997.6231 409.5156 

 
Table 13. MLE and MPLE Estimates-Stanlib. 

 Two parameter Three parameter 

Estimate Standard Improved Standard Improved 

Threshold 102,597.003 163,127.5551 102,620.9575 163,119.5884 

No. above threshold 22 13 22 13 

Proportion above 0.051 0.0528 0.051 0.0528 

Scale Estimate 4.64E+05 7.08E+05 4.64E+05 7.08E+05 

Scale standard error 1.66E+05 3.12E+05 1.66E+05 3.12E+05 

Shape Estimate 4.15E−01 2.64E−01 4.15E−01 2.64E−01 

Shape standard error 3.02E−01 3.51E−01 3.02E−01 3.51E−01 

Asymptotic var-cov.scale 2.76E+10 9.75E+10 2.76E+10 9.75E+10 

Asymptotic var-cov.shape 9.09E−02 1.23E−01 9.10E−02 1.23E−01 

Deviance 612.3207 374.8657 612.3172 374.8661 

Penalized Deviance 613.3434 375.3727 613.3402 375.3731 

AIC 616.3207 378.8657 616.3172 378.8661 

Penalized AIC 617.3434 379.3727 617.3402 379.3731 
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3.2. Manufacturing Sector 

In this sector, we considered East African Breweries Company because it was the 
most active desk in NSE in the manufacturing sector. The standard two parameter 
model and the standard three parameter model had 35 exceedances over their 
respective threshold (Table 3). The proportion of the exceedances above their 
thresholds was also the same. The improved two parameter model and the im-
proved three parameter model had 29 volumes exceeding the respective thre-
sholds. The proportion of these exceedances was 0.0511. The scale parameter of 
the standard models was 465,000 while that of the improved model was 523,000, 
implying that the scale parameter of the improved model was higher than that of 
the standard model. The shape parameter of the standard model was 0.131 and 
that of the improved model was 0.0571. The shape parameter of the improved 
model was lower than that of the standard model.  

3.3. Construction Sector 

The most active company in NSE from this sector was East African Cables Com-
pany. On this basis, we considered it in our analysis. The two parameter standard 
model in Table 4 had 36 volumes exceeding the threshold of 107,940.8638 while 
the three-parameter standard model had 36 volumes exceeding a threshold of 
107,967.3084. The number exceeding the threshold represented a proportion of 
0.0506. The improved two parameter model yielded a threshold of 209,150.4401 
above which there were 17 exceedances as compared to the three parameter im-
proved model which yielded a threshold of 209,135.6041 above which there were 
17 exceedances. The proportion of the exceedances in the two parameter im-
proved model and three parameters improved model were 0.0239. The scale pa-
rameter of the standard model 142,000 and that of the improved model was 
149,300 meaning that the improved model had a higher scale parameter than the 
standard model. The shape parameter of the standard model was −0.046 and 
that of the improved model was −0.175 meaning that the shape parameter of the 
improved model was lower than that of the standard model.  

3.4. Insurance Sector 

We considered Kenya Reinsurance from this sector because it was the most ac-
tive company in the NSE trading. In Table 5, the two parameter standard model 
yielded a threshold of 1,166,453.636 and above it, there were 37 excesses which 
represented a proportion of 0.0508. The three parameter standard model yielded 
a threshold of 1,166,456.859 with 37 excesses above it representing a proportion 
of 0.0508. The two parameter improved model yielded a threshold of 1,504,595.999 
with 28 excesses above it representing a proportion of 0.0508 while the three pa-
rameter improved model yielded a threshold of 1,504,609.093 with 28 excesses 
above it. This represented a proportion of 0.0512. The scale parameter of the stan-
dard model was 1,350,000 and that of the improved model was 1,400,000. This 
means that the scale parameter of the improved model was higher than that of the 
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standard model. The shape parameter of the standard model was −0.0415 and that 
of the improved model was −0.0824. This means that shape parameter of the im-
proved model was lower than that of the standard model.  

3.5. Banking Sector 

Kenya Commercial Bank was the most active company from the banking sector 
in the trading in NSE. We, therefore, considered it to help us visualize the beha-
viour of the trading in NSE concerning this sector. In Table 6, the threshold of 
the two parameter standard MPS model was 7,162,924.498 with 37 volumes 
above it. This represented a proportion of 0.0501. The threshold of the two pa-
rameter improved MPS model was 6,967,731.98 with 36 volumes above it. This 
represented a proportion of 0.0501. The two proportions were the same. The 
three parameter standard model yielded a threshold of 7,162,925.148 and 37 ex-
cesses over it. The three parameter improved MPS model yielded a threshold of 
6,967,754.69 with 36 volumes above it. The proportion above the threshold in 
both models was 0.0501. The scale parameter of the two types of models were 
also the same. The shape parameter of the standard model was 0.0723 and that 
of the improved model was 0.0542. The shape parameter of the improved model 
was lower than of the standard model.  

3.6. Energy and Petroleum 

Kenol Kobil happens to be one of the most busy desks in NSE and therefore we 
considered it in this sector in order to visualize the happenings in this sector In 
Table 7, the two parameter standard MPS model yielded a threshold of 
6,707,831.854 with 32 volume points exceeding it, constituting a proportion of 
0.0504. The three parameter standard model yielded a threshold of 6,707,844.136 
with 32 volume points exceeding it, making a proportion of 0.0504. The two pa-
rameter improved model yielded a threshold of 7,239,959.124 giving rise to 29 vo-
lume points above it. The three-parameter improved model yielded a threshold of 
7,239,940.507 with 29 volume points above it. The two improved models yielded 
the same number of exceedances and had the same proportion of 0.0506 of ex-
ceedances over the threshold. The scale parameter of the standard model was 
32,200,000 and that of the improved model was 35,000,000. The scale parameter of 
the improved model was higher than that of the standard model. The shape para-
meter of the standard model was 0.557 while that of the improved model was 0.561 
meaning that the shape parameter of the improved model higher than that of the 
standard model. 

3.7. Commercial and Services 

In this sector, the most active company was Kenya Airways (KQ) and on this 
strength, we included it in our analysis. Table 8 indicates that the two parameter 
standard model had a threshold of 998,460.8711 while the three parameter stan-
dard model had a threshold of 998,448.5453. Both of these models had 32 exceed-

https://doi.org/10.4236/ojs.2019.93023


P. Murage et al. 
 

 

DOI: 10.4236/ojs.2019.93023 343 Open Journal of Statistics 
 

ances of the volume points contributing to a proportion of 0.0505. The two para-
meter improved model yielded a threshold of 1,140,889.615 while the three para-
meter improved model yielded a threshold of 1,140,928.481. These two im-
proved models had 28 volume points of exceedances over the respective thre-
shold which measured to a proportion of 0.0508. The scale parameter of the 
standard parameter was 927,000 and of the improved model was 906,000. The 
scale parameter of the standard model was higher than that of the improved 
model. The shape parameter of the standard model was 0.0913 and that of the 
improved model was 0.121. The shape parameter of the improved model was 
higher than that of the standard model. 

3.8. Investments Service 

In Table 9, the threshold of the two parameter standard model was 573,942.1563 
with 30 exceedances while its counterpart three parameter standard model 
yielded a threshold of 573,933.6022 with 20 exceedances. These two models had 
exceedances contributing to a proportion of 0.0508. The two parameter im-
proved model yielded a threshold of 1,025,881.322 with 21 exceedances. The 
three parameter improved model had a threshold of 1,025,908.743 with 21 ex-
ceedances. The exceedances over the threshold in the two improved models 
contributed to a proportion of 0.0515. The threshold of the improved models 
was higher than those of the standard models. The number above the threshold 
is lower in case of improved models compared to the standard models. The scale 
parameter of the standard model was 814,000 and that of the improved model 
was 606,000. The scale parameter of the improved model was lower than that of 
the standard model. The shape parameter of the standard model was 0.0209 
while that of the improved model was 0.224. The shape parameter of the im-
proved model was higher than that of the standard model.  

3.9. Telecommunication Sector 

The threshold of a two parameter standard model in Table 10 was 26,193,609.89 
with 30 exceedances. The three parameter standard model had a threshold of 
26,193,619.03 with 30 exceedances in both cases; the proportion of exceedances 
was 0.0507. The two parameter improved model had a threshold of 26,206,498.57 
while that of the three-parameter improved model had a threshold of 26,206,476.71 
with 30 exceedances. In both improved models, the proportion of the exceed-
ances over the threshold was 0.0512. The threshold obtained in the improved 
models were higher than that obtained from the two standard models. The scale 
parameters were the same for the standard and improved models. Interestingly, 
the shape parameters were also the same for standard and improved models.  

3.10. Automobiles and Accessories 

The most active counter in this sector was Sameer group of companies. We 
therefore analyzed the Sameer Company’s data to visualize the happenings 
within this sector. In Table 11, the threshold of the two parameter standard 
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models was 77,951.37064 with 20 exceedances. The three parameter standard 
model had a threshold of 77,957.31698 with 20 exceedances. The two models had 
exceedances contributing a proportion of 0.0506. The two parameter improved 
model had a threshold of 133,216.7968 with 10 exceedances. The three-parameter 
improved model had a threshold of 13,311.3589 with 10 exceedances. The two 
improved models had a proportion of 0.0521 in exceedances. The improved mod-
els gave higher thresholds than those of the standard models. The scale parame-
ter of the standard model was 186,000 while that of the improved model was 
298,000. The scale parameter of the improved model was higher than that of the 
standard model. The shape parameter of the standard model was 0.307 while 
that of the improved model was 0.112 meaning that the shape parameter of the 
improved model was lower than that of the standard model.  

3.11. Agricultural Sector 

In this sector, we considered using Sasini Company since it was the most busy 
company in the sector. In Table 12, the threshold of the two parameter standard 
model was 102,597.0028 with 22 exceedances while the three parameter standard 
model was 102,620.9575 with 22 exceedances. Both of these models had exceed-
ances of a proportion of 0.051. The threshold of the two parameter improved 
model was 163,127.5551 with 13 exceedances. The threshold of the three para-
meter improved model was 163,119.5884 with 13 exceedances. The exceedances 
in the two models constituted a proportion of 0.0536. The threshold obtained 
through improved MPS model was higher than that obtained through the stan-
dard MPS model. The scale parameter of the standard model was 397,000 while 
that of the improved model was 729,000. This indicates that the scale parameter 
of the improved model was higher than that of the standard model. The shape 
parameter of the standard model was 0.333 while that of the improved model 
was 0.196 meaning that the shape parameter of the improved model was lower 
than that of the standard model.  

3.12. Real Estate 

The threshold of a two parameter standard model was 1,025,977.0028 with 22 
exceedances Table 13. The threshold of the three parameter standard model was 
102,620.9575 with 22 exceedances. The two models had a proportion of  0.051 
in exceedances. The threshold of the two parameter improved model was 
163,127.5551 with 13 exceedances. The threshold of the three parameter im-
proved model was 163,119.5884 with 13 exceedances. The proportion of the ex-
ceedances in the two improved models was 0.0528. The threshold obtained 
through the improved MPS model was higher than that obtained through the 
standard model. The number of volume of the excesses was lower for improved 
model as compared to standard model. The scale parameter of the standard 
model was 464,000 while that of the improved model was 708,000, implying that 
the scale parameter of the improved model was higher than that of the standard 
model. The shape parameter of the standard model was 0.415 and that of the 
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improved model was 0.264 meaning that the shape parameter of the improved 
model was lower than that of the standard model. 

4. Conclusions 

This study helped to improve the MPS model by introducing the concept of f to 
both two parameter and three parameter MPS models [16] [17] [18]. An inves-
tigation was done to determine whether the NSE trading volume data contained 
ties 1. Interestingly, all companies in all the sectors listed in the NSE trading 
platform, contained ties. This fact reinforced the importance of this study. The 
improved two parameter and three parameter MPS models were developed to 
take care of data that would contain ties. These models were compared with 
their standard MPS models by comparing their performance in the NSE trade 
volume data Tables 2-13. In all the tables, the improved models yielded a higher 
threshold as compared to the threshold obtained through the standard MPS 
models. The number of exceedances was lower in the case of improved models 
as compared to the standard models. When the scale parameter was big for the 
improved model, the shape parameter was small as indicated in Tables 2-6, and 
Tables 10-13. When the scale parameter was small, the shape parameter was big 
as indicated in Table 7 and Table 8. For the telecommunication sector 
represented by Safaricom, Table 9 had scale parameters for the two types of 
models being the same and so the shape parameters were also the same. The de-
viance statistics of the improved models were lower than those of the standard 
models. The AIC criterion was lower in case of the improved models as com-
pared to the standard MPS models. Whenever there are two or more competing 
models, the model with the lower deviance statistics and lower AIC criterion 
happens to be the best model. These two statistics, helps us to conclude that the 
improved model performs better than the standard models. Therefore the im-
proved MPS model is the best method to model the data and to determine the 
threshold for different companies in different sectors because there is a high li-
kelihood of company’s data to contain ties. Improved MPS model has the ad-
vantage of modeling the data whether it contains ties or not because when 

1f = , the improved model reduces to the standard MPS model. 
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