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Abstract 
This paper focuses on the development of a hybrid method with block exten-
sion for direct solution of initial value problems (IVPs) of general third-order 
ordinary differential equations. Power series was used as the basis function 
for the solution of the IVP. An approximate solution from the basis function 
was interpolated at some selected off-grid points while the third derivative of 
the approximate solution was collocated at all grid and off-grid points to 
generate a system of linear equations for the determination of the unknown 
parameters. The derived method was tested for consistency, zero stability, 
convergence and absolute stability. The method was implemented with five 
test problems including the Genesio equation to confirm its accuracy and 
usability. The rate of convergence (ROC) reveals that the method is consis-
tent with the theoretical order of the proposed method. Comparison of the 
results with some existing methods shows the superiority of the accuracy of 
the method. 
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1. Introduction 

The focus of this article is to find an approximate solution on a given interval to 
third order initial value problems (IVP) of the type 

( ) ( ) ( )( ) ( ) ( ) ( ), , , , ,a b cy x f x y x y x y x y x y xα α α′′′ ′ ′ ′′= = = =        (1) 

where [ ],x a b∈ ⊂   and ( ) ( ) ( ) ( )( ), , , , ny x f x y x y x y x′ ′′ ∈ . In recent time, 
direct numerical solution of (1) without reduction to equivalent first-order 
initial value problems (see:[1] [2] [3] [4] [5]) has become subject of research by 
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several authors. This method was extensively discussed in ([6] [7] [8] [9] [10]) to 
mention but a few, they developed Linear Multistep Method (LMM) which 
mode of implementation is Predictor-Corrector form for the solution of initial 
value problems of ordinary differential equations of the type (1). As reported by 
[10] [11], the major drawback of this approach of implementation is that the 
methods are not self-starting and thus required the development of predictors 
which are usually of lower order, hence reducing the accuracy of the methods.  

Recently, in order to remove the difficulties usually encountered by adopting 
this mode of solution, researchers ([1] [11]-[22]) have proposed direct methods 
other than Predictor-Corrector methods whose modes of implementation are in 
block-by-block manner which was first introduced by Milne [23] as a starting 
step for predictor-corrector. This monumental success has greatly removed the 
burden of developing predictors and hence resulted in methods of uniform 
orders that yielded more accurate results. The block-by-block technique has also 
made it easier to handle the general type of (1) which has been a major concern 
in the past years.  

The quest for numerical methods with better accuracy has also led to the 
introduction of hybrid linear multistep methods which have recorded high 
success since its introduction. These successes motivated us to propose a hybrid 
method with block extension for the solution of (1). 

In the next section, we discuss in detail the derivation of the proposed method 
with its implementation in block mode, followed by analysis of the proposed 
method to establish the numerical stability, numerical example to demonstrate 
the efficiency advantages of the proposed method and subsequently. Conclusion 
was drawn on the performance of the proposed method when applied to solve 
the numerical examples. 

2. Mathematical Formulation  

In order to obtain a numerical formula for the approximate solution of (1), the 
function  

( )
( ) 1c i

v
v

v
y x g x

+ −

= ∑                           (2) 

is considered as the basis where x  is continuous within the interval [ ],a b , c 
and i denote collocation and interpolation points respectively. Variable vg ’s are 
coefficients to be determined. The third derivative of (2) equated to (1) is given 
as  

( )
( )( ) ( )

1
31 2 , , ,

c i
v

v
v

v v v g x f x y y y
+ −

− ′ ′′− − =∑               (3) 

Evaluating (2) at 2 4 6, , ,
8 8 8n vx x v+= = , (3) at 

2, 0 1
8n vx x v+

 = =  
 

 using 

n kx x
h

τ +−
=  yield the following interpolation and collocation matrix  
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XA B=                              (4) 
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8
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4 8 128

0 0 0 6 24 60 120 210

X

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 

 



.  

where ( ), ,n v n v n v n vf f x y y+ + + +′ ′′= , ( )n v n vy y x+ +≈ . Solving the matrix Equation 
(4) for coefficients vg ’s and substituting into (2) yields after some simplification 
the continuous method  

( ) ( ) ( )

( ) ( ) ( )

3
1 1 1 1 3 3 0 1 1
4 4 2 2 4 4 4 4

1 1 3 3 1 1
2 2 4 4

nn n n n

nn n

y x y y y h x f x f

x f x f x f

ζ ζ ζ
+ + + +

+
+ +


= + + + Θ +Θ




+Θ +Θ +Θ 


     (5) 

with the following coefficients:  
2

1
4

8 10 3ζ τ τ= − +  

2
1
2

16 16 3ζ τ τ= − + −  

2
3
4

8 6 1ζ τ τ= − +  

( )( )( )( )4 3 2
0

1 4 1 2 1 4 3 512 1472 1360 400 7
322560

τ τ τ τ τ τ τΘ = − − − − + − +  
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( )( )( )( )4 3 2
1
4

1 4 3 2 1 4 1 512 1248 688 258 203
80640

τ τ τ τ τ τ τΘ = − − − − − + + −  

( )( )( )( )4 3 2
1
2

1 4 3 2 1 4 1 512 1024 240 272 147
53760

τ τ τ τ τ τ τΘ = − − − − + + +  

( )( )( )( )4 3 2
3
4

1 4 3 2 1 4 1 512 800 16 62 7
80640

τ τ τ τ τ τ τΘ = − − − − − + + +  

( )( )( )( )4 3 2
1

1 4 1 2 1 4 3 512 576 16 48 7
322560

τ τ τ τ τ τ τΘ = − − − − + + +  

Evaluating the continuous scheme (5) at 0,1τ =  and its first and second 
derivatives at 0τ =  yield two discrete, one first and second derivatives 
schemes. These can be represented in a block matrix finite difference form as  

0 1 2 2 3 3 3
,0 ,1 ,2 ,3 ,0 ,1m m m m m mY Y h Y h Y h HF h HFϒ = ϒ + ϒ + ϒ + +          (6) 

where T denotes the transpose,  
107 103 43 47

64512 107520 107520 645120
83 1 13 19

5040 168 5040 40320 ;
1863 243 45 81
35840 35840 7168 71680

34 1 2 1
315 210 105 504

H

 − − 
 
 − −
 =  

− − 
 
 − 
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0 0 0 140320
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         = ϒ =      
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3. Analysis of the Proposed Method 

This section presents analysis of the proposed method (6) vis-a-vis the order, 
consistency, zero-stability and convergence.  

The linear operator associated with the block method (6) is  

( ) ( )0 1 2 2 3 3 3
,0 ,1 ,2 ,3 ,0 ,1; m m m m m mL y x h Y Y h Y h Y h HF h HF= ϒ − ϒ + ϒ + ϒ + +      (7) 

where ( )y x  is an arbitrary function which is continuously differentiable on 
[ ],a b . Following Lambert [5] and Fatunla [20], the term in (6) can be written as 
a Taylor series expansion about the point x to obtain the expression,  

( ) ( ) ( ) ( ) ( )2
0 1 2; ,p p

pL y x h c y x c hy x c h y x c h y x′ ′′= + + + + +          (8) 

where the constant coefficients , 0,1, 2,pc p =   are given as follows: 

0 k u v wc ζ ζ ζ ζ= + + +  

1 k u v wc k u v wζ ζ ζ ζ= + + +  

( )2 2 2 2
2

1
2! k u v wc k u v wζ ζ ζ ζ= + + +  

( ) ( )3 3 3 3
3 0

1 1
3! 0!k u v w k u v wc k u v wζ ζ ζ ζ= + + + − Θ +Θ +Θ +Θ +Θ  

( ) ( ) ( )4 4 4 4
4

1 1
! 3 !k u v w k u v wc k u v w k u v w

p p
ζ ζ ζ ζ= + + + − Θ + Θ + Θ + Θ

−
 

  

( )

( ) ( )3 3 3 3

1
!

1 , 4,5,
3 !

p p p p
p k u v w

p p p p
k u v w

c k u v w
p

k u v w p
p

ζ ζ ζ ζ

− − − −

= + + +

− Θ + Θ + Θ + Θ =
−



 

Going by Lambert [5], the mutistep collocation method (6) has order p if  

( ) ( )1
0 1 3; 0 , 0, 0p

p pL y x h h c c c c+
+= = = = = ≠     

Therefore 3pc +  is the error constant and ( )3 3
3

p p
p nc h y x+ +
+  is the principal 

local truncation error at point nx . The order of the proposed method (6) and 
the corresponding error constant are as reported in Table 1. 

Definition 1 (consistency). 
The proposed method (6) is said to be consistent if the order of method is 

greater than or equal to one, that is if 1p ≥ . In addition to   
1) ( )1 0ρ =  and  

 
Table 1. Order of accuracy and error constant of the proposed method. 

Scheme  Order Error constant 

 1
4

n
y

+
 5 1.55 06E −  

(6) 1
2

n
y

+
 5 3.39 07E −  

 3
4

n
y

+
 5 5.26 08E −  

 1ny +  5 8.28 07E −  
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2) ( ) ( )1 1ρ σ′ =  where ( )zρ  and ( )zσ  are 1st and 2nd characteristics 
polynomial respectively.  

Definition 2 (Zero-stability). 
The block method (6) is said to be zero-stable if the roots  

( ) ( )

0
det

k
i k i

i
z zρ −

=

 = ϒ  
∑                         (9) 

satisfies 1, 1, ,iz i k≤ =   and the roots with 1iz = , the multiplicity must not 
exceed one. Applying (9) to the proposed method (6) yields the following  

( ) ( )3

0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 1 10 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 1

z z
z zz z zz z

z z

ρ

−     
     −= − = = −     −     

−          

  (10) 

This result shows that the method is zero-stable.  
Definition 3 (convergence). 
The necessary and sufficient condition for the proposed method (6) to be 

convergent are that it must be consistent and zero-stable according to Dahlquist 
see [5]. Hence, by definitions 4 and 5 the method is convergent. 

Stability Domain of the Proposed Method   

In order to study the stability domain of the proposed method (6), the test 
equations 

y yλ′ =                              (11) 
2y yλ′′ =                              (12) 

and 
3y yλ′′′ =                             (13) 

are applied to the block method (6) with z yλ=  and η  represents the roots 
of the first characteristic polynomial of the block method (6). This is then 
reformulated as a general linear method as discussed in [24]. The partition 
( ) ( )1 2 1 2s s s s+ × +  matrix is expressed in the form 

( )3

1 1i i

Y A V h f y

Y B U Y+ −

    
    =     
        

                       (14) 

where  

0 0 0 0 0
113 107 103 43 47

71680 64512 107520 107520 645120
331 83 1 13 19

,40320 5040 168 5040 40320
331 1863 243 45 81

40320 35840 35840 7168 71680
31 34 1 2 1

840 315 210 105 504

A

 
 

− − 
 
 − − =
 
 − −
 
 

−  
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113 107 103 43 47
71680 64512 107520 107520 645120

31 34 1 2 1
840 315 210 105 504

B

 − − 
=  
 −  

 

( )
TT

1 1 3 1
4 2 4

0 1 0 0 0 0 0
, , ,

0 1 1 1 1 1 1 n nn n n
U V f y f f f f f +

+ + +

    
= = =     
     

 

1 1
4 41 1

1

,n n
i i

n n

y y
Y Y

y y

+ +
+ −

+

   
   = =
   
   

 

By solving the stability function  

( ) ( )( )1, m m mp z I v zB I zA Uη η −= − + −             (15) 

yields the polynomial   

( )

4 3 4 2

3 2

4 3 2

2835 4737600 50591 417312000

134158720 145871596800 124853944320000
20808990720000 124853944320000,

315 9 15040 1324800 396361728000

z z z z
z z

zp z
z z z

η η η

η
ηη

 + + +
 
− − + 

 − − =
+ + + 

 
 
  

 (16) 

(16) and its derivatives are then plotted in the MATLAB environment given the 
stability region displayed in Figure 1. 

Definition 4 (Lambert and Watson [25]). 
Method (6) is P-stable if its interval of periodicity is ( )0,∞ . It is clearly  

 

 
Figure 1. This figure depicts the region of absolute stability of the 
proposed method generated by plotting Equation (16). 
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shown in Figure 1 that the block method (6) is P-stable.  

4. Numerical Example 

Example I 
The first numerical example to be considered is the oscillatory problem  

( ) ( ) ( )3sin , 0 1, 0 0, 0 2, 0.1y x y y y h′′′ ′ ′′= = = = − =  

with the theoretical solution  

( )
2

3cos 2.
2
xy x x= + −  

This example was solved by [11] [15] [18] [26]. The numerical solution, exact 
solution and absolute error generated by the proposed method when applied to 
example I are as presented in Table 2. The last column of the Table shows the 
errors generated by method in [26] when applied to example I. It is obvious 
from the table that the proposed method is better in term of accuracy when 
compared with the method in [26]. 

Example II 
The second example considered is the special third order problem  

( ) ( ) ( )e , 0 3, 0 1, 0 5, 0.1xy y y y h′′′ ′ ′′= = = = =  

with the theoretical solution  

( ) ( ) 22 2 exy x y x x= = + +  

Source: [26]. The solution curve is shown in Figure 2.  
Example III 
Another example considered is a general third order problem  

( ) ( ) ( )

22 9 18 18 18 22,
0 2, 0 8, 0 12, 0.1

y y y y x x
y y y h
′′′ ′′ ′+ − − = − − +

′ ′′= − = − = − =
 

with the theoretical solution  
 

Table 2. Results of Example I solved with the proposed method. 

X-value Exact Result Computed Errors Error [26] 

0.1000 0.990012495834077020 0.990012495834030842125648 4.645616E(−14) 1.743050e−14 

0.2000 0.960199733523725120 0.960199733523539455437233 1.854379E(−13) 1.082467e−13 

0.3000 0.911009467376818090 0.911009467376402269866494 4.157891E(−13) 2.711165e−13 

0.4000 0.843182982008654940 0.843182982007919653122556 7.355953E(−13) 5.079270e−13 

0.5000 0.757747685671117830 0.757747685669975944913026 1.142203E(−12) 8.164580e−13 

0.6000 0.656006844729034370 0.65600684472903489172286 1.632248E(−12) 1.199707e−12 

0.7000 0.539526561853464590 0.539526561851263593901655 2.201685E(−12) 1.654343e−12 

0.8000 0.410120128041495670 0.410120128038650431437839 2.845831E(−12) 1.674639e−10 

0.9000 0.269829904811992540 0.269829904808433956143307 3.559413E(−12) 3.336392e−10 

1.0000 0.120906917604417960 0.120906917600082534334178 4.336618E(−12) 5.001723e−10 
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Figure 2. Solution curve obtained by our method and the ex-
act solution of example II. 

 

( ) 3 2 22e e 1.x xy x x−= − + + −  

The theoretical solution at 1x =  is ( )1 40.0357385631387227899630y − . 
The errors were obtained at 1x =  using our method at a fixed step-size 

0.1;0.05;0.025;0.0125;0.00625h = . The numerical results are compared with 
those of [27]. For this example, the maximum error was compared with those 
reported in [18] in Table 3 for 0.01h =  and it was observed that our method 
perform better. The ROC, computed solutions and maximum error of the 
proposed method are reported in Table 4. The Table also shows the performance 
of our method as compared with method in [27]. 

Example IV 
General nonlinear third order equation  

( ) ( ) ( ) ( )2 , 0 1, 0 1 2, 0 0.1, 0.1y y xy y y y y h′′′ ′ ′′ ′ ′ ′′= + = = = =  

with the theoretical solution  

( ) 1 21 log
2 2

xy x
x

+ = +  − 
 

is also considered. Source: [28]. Figure 3 is the graph of the solution of this 
problem. 

Application to solve nonlinear Genesio equation 
The chaotic Genesio equation reported in [17] given as  

( )( )y y y f y xα β′′′ ′′ ′= − − +  

with  

( )( ) ( ) ( )2f y x y x y xγ= − +  

( ) ( ) ( ) [ ]0 0.2, 0 0.3, 0 0.1, ,y y y x a b′ ′′= = − = ∈  

where 1.2, 2.92α β= =  and 6γ =  are the positive constants that satisfied  
αβ γ<  
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Table 3. Results of Example III solved with the proposed method. 

b h Method Step Maximum Error 

  Proposed method 30 9.6015e(−17) 

  BHCM 34 7.48e(−17) 

 0.01 Adams 100 6.40e(−10) 

  Olabode 34 8.89e(−13) 

  Adesanya 25 1.75e(−14) 

 
Table 4. Results of Example III solved with the proposed method. 

h y Max. Error Error in [27] ROC 

0.1 −40.0357384989252357390316 6.421349E(−8) 1:340886(−03) - 

0.05 −40.0357385621393199701503 9.994028E(−10) 9:258900(−05) 6.00 

0.025 −40.0357385631231226524929 1.560014E(−11) 6.075364(−06) 6.00 

0.0125 −40.0357385631384791804478 2.436095E(−13) 3.889526(−07) 6.00 

0.00625 −40.0357385631387191829967 3.606966E(−15) 2.460220(−08) 6.08 

 

 
Figure 3. Solution curve of example IV obtained by the 
proposed method. 

 
for the solution to exist. The solution of this problem is presented in Figure 4(a) 
and Figure 4(b) in the intervals [ ]0,10  and [ ]0,100  respectively.  

5. Conclusion  

In this work, hybrid method with block extension for the direct solution of third 
order ordinary differential equations has been proposed. Numerical examples 
are considered to demonstrate the efficiency advantage of the method especially 
the Genesio equation which is chaotic in nature. The analysis, stability and 
numerical examples revealed that the proposed method is efficient for direct 
solution of third order ordinary differential equations.  
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Figure 4. Solution curve of the Genesio equation for 1.2, 2.92α β= =  and 6γ =  for 
step size 0.1h =  within [0, N]: (a) N = 10 and (b) N = 100. 
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