
Int. J. Communications, Network and System Sciences, 2019, 12, 49-58
http://www.scirp.org/journal/ijcns

ISSN Online: 1913-3723
ISSN Print: 1913-3715

DOI: 10.4236/ijcns.2019.124005 Apr. 30, 2019 49 Int. J. Communications, Network and System Sciences

Scalable Distributed File Sharing System:
A Robust Strategy for a Reliable Networked
Environment in Tertiary Institutions

Emmanuel N. Ekwonwune1, Bright U. Ezeoha2

1Department of Computer Science, Imo State University, Owerri, Nigeria
2Department of Computer Science, Abia State Polytechnic, Aba, Nigeria

Abstract
The bane of achieving a scalable distributed file sharing system is the centra-
lized data system and single server oriented file [sharing] system. In this pa-
per, the solution to the problems in a distributed environment is presented.
Thus, inability to upload sizeable files, slow transportation of files, weak secu-
rity and lack of fault tolerance are the major problems in the existing system.
Hence, the utmost need is to build a client-server network that runs on two or
more server systems in order to implement scalability, such that when one
server is down, the other(s) would still hold up the activities within the net-
work. And to achieve this reliable network environment, LINUX network
operating system is recommended among others as a preferred platform for
the synchronization of the server systems, such that every user activity like
sending of internal memos/mails, publication of academic articles, is repli-
cated; thereby, achieving the proposed result. Hence, Scalable Distributed File
Sharing System provides the robustness required to having a reliable intranet.

Keywords
Distributed System, Architecture, Files Sharing, Distributed File System,
Replication, Reliability, Transparency, Data Access Interfaces,
Fault Detection, Fault Tolerance, Cache Consistency, Scalability

1. Introduction

Information and its security are what drive the speed of technological inventions
in this contemporary age—Information Technology Age. Hence, technology has
penetrated into every facet of living which includes education, commerce, mili-

How to cite this paper: Ekwonwune, E.N.
and Ezeoha, B.U. (2019) Scalable Distri-
buted File Sharing System: A Robust Strat-
egy for a Reliable Networked Environment
in Tertiary Institutions. Int. J. Communica-
tions, Network and System Sciences, 12,
49-58.
https://doi.org/10.4236/ijcns.2019.124005

Received: October 15, 2018
Accepted: April 27, 2019
Published: April 30, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ijcns
https://doi.org/10.4236/ijcns.2019.124005
http://www.scirp.org
https://doi.org/10.4236/ijcns.2019.124005
http://creativecommons.org/licenses/by/4.0/

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 50 Int. J. Communications, Network and System Sciences

tary, health, law, etc. The internet as a tool offers the possibility of global infor-
mation sharing and collaboration [1]. Computer storage is an increasingly im-
portant part of the internet; hence, ensuring the security and integrity of stored
data is a crucial need. Therefore, it has been observed that distributed file shar-
ing system is poorly embraced and or applied in developing countries such as
Nigeria, unlike in global and multi-national companies like Google that have
predominantly developed its full concept. Nigerian academic institutions are not
left out in this seeming prevailing challenge, considering the regular growth and
movement of data there: the full automation of academic activities such as the
dissemination of internal memos/mails and research papers/articles within the
school-owned distributed environment (local area network) has become a nearly
impossible task because of the challenges distributed file system presents.

However, a closer study of this “all important” technological invention, Dis-
tributed File System (DFS) shows that it presents a variety of challenges that
cannot be ignored. Though, it is seen as and has become a normal part of our
daily life, it presents scalability problem (especially when a server is to be
mounted or dismounted) and slow transportation of files because of traffic and
security. It is obvious that attacks by intruders and insiders have led to billions of
naira in lost revenue and expended effort to fix the problems. Most organiza-
tions, some academic institutions inclusive, rely heavily on their distributed
computing environment, which usually consists of workstations and a shared file
system. This file system is often stored on a “centralized file server” that is ma-
naged by a system administrator who has access to the whole file system, leaving
the data vulnerable to anyone who can prove (legitimacy or otherwise) that he is
the administrator. Recently also, network-attached disks have begun to replace
traditional centralized storage systems. In such systems, disks are attached di-
rectly to a network and rely upon their own security rather than the server’s
protection. Yet, this arrangement makes security more difficult because the disk
is directly exposed to potential attacks instead of being hidden behind a single
server.

Furthermore, existing file sharing system and their access control models have
been challenged by the scale and administrative complexity of the internet. Ex-
ample of such a system is the network file sharing (NFS). And such systems
share the property that a relatively small set of users have read/write access to
files as current access control systems rely on authentication requiring that a us-
er is known to the system [1].

More so, it is obvious that no client should be concerned or affected by back-
end issues (i.e. server faults and activities such as mounting new, and dismount-
ing of existing server). Unfortunately, this problem is the order of the day. Once
a server fails within an intranet, every activity at all clients ends halts; hence, a
better and lasting solution to these resultant challenges is in urgent need. And
Scalable Distributed File Sharing System is the answer.

This paper, therefore, recommends the use of two or more servers in order to

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 51 Int. J. Communications, Network and System Sciences

achieve scalability of the Distributed File Sharing System with LINUX network
operating system. Thus, the institutional workflow will not be halted when a
server goes down because there is a fall back server which keeps the network
system/environment running.

This paper has been organized as follows: Section 1 contains the Introduction
for the needed background knowledge, Section 2 talks about the Theoretical
Framework based on the views of other authors about this research area, Section
3 contains the Summary of this paper, Conclusion is contained in Section 4, and
Section 5 is the Recommendation.

2. Theoretical Framework

File sharing can mean distribution of access to physical or electronic files. A
good example is the transferring of documents or files to certain staff of an or-
ganization for a common purpose either by hand or storage devices such as flash
disk, CD-ROM, or hard disk.

However, file sharing almost always means sharing files in a network, even if
it is in a small local area network (LAN) [2]. It is the practice of distributing or
providing access to digital media, such as computer programs, multimedia (au-
dio, images and video), documents, or electronic books [3]. It is the public or
private sharing of computer data or space in a network with various levels of
access privilege [2]. Hence, file sharing involves two or more persons (comput-
ers, better put) to access or use a file either to read or write, or both. Therefore, it
highlights the practice of sharing or offering access to digital information or re-
sources, including documents, multimedia (audio/video), graphics, computer
programs, images and e-books. It is the private or public distribution of data or
resources in a network with different levels of sharing privileges.

Distributed File System (DFS) supports the sharing of information in the form
of files throughout the intranet. And it allows users to store and access remote
files like in a local way, but from any computer within the intranet. Thus, it is a
client/server-based application that allows clients to access and process data
stored on the server as if it were on their own computer [4] [5]. When a user ac-
cesses a file on the server, the server sends the user a copy of the file, which is
cached on the user’s computer while the data is being processed and is then re-
turned to the server. Ideally, a distributed file system organizes file and directory
services of individual servers into a global directory in such a way that remote
data access is not location specific but is identical from any client. And all files
are made accessible to all users of the global file system, and the organization is
hierarchical and directory based. It offers us a file system that stores its data on a
server, and its data can be accessed and used as though it were on a local node.
The Distributed File System makes it convenient to share information and files
among users on a network in a controlled and authorized way. And the server
allows the client users to share files and store data just like they are storing the
information locally. However, the server has full control over the data and gives

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 52 Int. J. Communications, Network and System Sciences

access control to the clients.

2.1. Factors that Influence Performance of Distributed Files
System over Traditional Client/Server System

The purpose of a distributed file system (DFS) is to allow users of physically dis-
tributed computers to share data and storage resources by using a common file
system [5]. And, unlike the traditional client/server solutions, better perfor-
mance can be achieved in a distributed file system. And factors that influence the
better performance of distributed file system include:

1) Instead of storing data on a single server, data can be stored on several
nodes. This is known as replication.

2) The system is always available each moment a client connects to it. This is
reliability.

3) The system has the capability to serve the clients’ request at every log in an
instance. This is referred to as availability.

4) Data is not lost but secured given that it is not stored on a single server.
Compared to a traditional client/server system where the data are stored on

one server, the unique security feature of a distributed file system is that impor-
tant or frequently required data in distributed file system can be stored on sever-
al nodes (nodes means a computer operating in a Distributed File System) [6].
This is called “replication”. Replication can be used for achieving better system
performance and, or “reliability” of the system. The data in a distributed file sys-
tem are more protected from a node failure. If one or more nodes fail, other
nodes are able to provide all functionality. This property is also known as
“availability” or “reliability”. The difference between availability and reliability is
simple: availability means that the system can serve clients request at a moment
when the client connects to the system. Reliability means that the system is
available all the time when the clients connect to it. Files can also be moved
among nodes. This is typically invoked by an administrator, and it is done for
improving a load balancing among nodes. The users should be unaware of where
the services are located and also the transferring from a local machine to a re-
mote one should also be transparent. In a distributed file system, this property is
known as transparency. If the capacity of the nodes is not enough for storing
files, new nodes can be added to the existing distributed file system to increase
its capacity. And this is known as “scalability”. A client usually communicates
with the distributed file system using the local area network (LAN).

2.2. Key Features of a Distributed File System

A distributed file system is expected to exhibit three basic features that will en-
sure reliable and secured file sharing environment among many others; namely
transparency, fault-tolerance, and scalability.

1) Transparency: Users should access the system regardless of where they log
in, be able to perform the same operations on the distributed file system and lo-

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 53 Int. J. Communications, Network and System Sciences

cal file system, and should not care about faults because of the distributed nature
of the file system; thanks to fault tolerance mechanisms. Also, Transparency can
be viewed in terms of performance. In this way, data manipulations should be at
least as efficient as on conventional file systems. In other words, the complexity
of the underlying system must be hidden to users: The end-user does not need to
know how the system is designed, how data is to be located and accessed, and
how faults are detected [7]. And the features that ensure transparency are:

a) Naming: this is a mapping between a local name and a physical location of
a data. For example, in a classic file system, clients use logical name (textual
name) to access a file which is mapped to physical disk blocks. And in a distri-
buted file system, server’s names holding the disk on which data is stored must
be added. The distributed file system must respect location transparency: details
of how and where files are stored are hidden to clients. Furthermore, multiple
copies of files may exist, so mapping must return a set of locations of all of the
available copies. The distributed file system should be location independent: the
logical name should not change even if the file is moved to another physical lo-
cation. To do so, allocation tables or sophisticated algorithms are used to pro-
vide a global namespace structure that is the same namespace for all clients.

b) Data Access Interfaces: Clients can create, read, write, delete files without
thinking about the complex mechanisms of the underlying system which per-
forms operation and must be provided with an access to the system with the help
of simple tools. Here are some examples of such tools:

i) Command Line Interface (CLI) which is used to access files with traditional
UNIX command.

ii) Java, CC++, other programing languages and REST (Web-based) API can be
used for graphic interface like the window explorer.

iii) Users can be allowed to mount (attach) remote directories to their local
file system: thus, accessing remote files as if they were stored in a local device.
The FUSE mechanism or the UNIX mount command are some examples.

c) Caching: This is a technique which consists in temporally storing requested
data into the client’s memory. Distributed file systems use caching to avoid addi-
tional network traffic and CPU consumption caused by repeated queries on the
same file and thus, increase performance. When a data is required for the first
time, a copy is made from the server that holds this to the client’s main memory.
Thus, for every future request of this data, the client will use the local copy,
avoiding communication with the server and disk access. This feature is related
to performance transparency since requests can be quickly performed, hiding
data distribution to users with this technique. However, when a data is changed
the modification must be propagated to the server and to any other client that
has cached the data [7].

Thus, a cache in the computer system is seen as a component which stores
data that were requested, hence can be potentially used in the future [6]. When
the cached data are requested, the response time is shorter than when the data

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 54 Int. J. Communications, Network and System Sciences

are not in a cache and must be downloaded. The cached data can be stored in
RAM for fast access and/or on Hard disk. A cache can be on both sides of com-
munication. On the server side, the cache is usually located in RAM. On the
client side, the cache can be located in RAM or on hard disk. On the server side,
if file content is cached, cache mechanism spares time because there is no need
to access file content from hard disk. On the client side, if the client requests file,
cache mechanisms spare time because there is no need to communicate with a
server. Client-side caching is also sometimes called client initiated replication.
Client cache can also provide so-called offline cache. This means that the client
can access the file from cache after disconnection from the server. Offline cache
is often stored on hard disk; offline caching mechanism is used in CODA.

d) Fault Detection: A fault-tolerant system should not be stopped in case of
transient or partial failures. Faults considered are network and server failures
that make data services unavailable, data integrity and consistency when several
users concurrently access data. In other words, this is the ability to detect over-
loaded servers, correct behavior of a server or corrupted data, and make decision
to correct these faults. In a distributed file system, faults must be detected by the
system, using minimum resources before being corrected, so that users would
not be aware that such faults occur. All machines communicate together in a
transparent manner by exchanging small messages. For example, the report al-
lows servers managing the namespace to know what data are held by which sev-
er. Since data are always in movement, this allows the system to identify which
data is lost and needs to be moved or recopied when a server becomes unavaila-
ble or overloaded. Another message is heartbeats which are used to confirm the
server’s availability. If one does not send heartbeats for a time, it is moved to
quarantine, and report messages are used to apply the correct decision [7].

2) Fault Tolerance: Faults considered are network and server failures that
make data and services unavailable, data integrity and consistency when several
users concurrently access data. Therefore, a fault-tolerant system should not be
stopped in case of these transient or partial failures: In distributed file systems,
network and server failure are the norms rather than the exception. Tools must
be deployed to maintain and ensure that data are always available, to guarantee
query processing in case of faults. Integrity and consistency of data must also be
taken into account since mechanisms like caching or replication are provided.

Moreover, some features to ensure fault tolerance are:
a) Replication and Placement Policy: in order to make data always available,

even if a server crashes, distributed file systems use replication of files by making
several copies of data on different servers. When a client requests a data, he
transparently accesses one of the copies. To improve fault tolerance, replicas are
stored on different servers according to a placement policy. For example, repli-
cas can be stored on different nodes, on different tracks, at different geographi-
cal locations, so that if a fault occurs anywhere in the system, data is still availa-
ble.

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 55 Int. J. Communications, Network and System Sciences

b) Synchronization: in distributed file systems, synchronization between cop-
ies of data must be taken into account. When a data is rewritten, all of its copies
must be updated to provide users with the latest version of the data. Three main
approaches exist:

i) In the synchronous method, any request on modified data is blocked until
all the copies are updated. This ensures the users access the latest version of the
data, but delays query executions.

ii) In the second method called asynchronous, requests on modified data are
allowed, even if copies are not updated. This way, requests could be performed
in a reasonable time, but users can access an out-of-date copy.

iii) The last approach is a trade-off between the first two in the semi-asynchronous
method, requests are blocked until some copies, but not all, are updated. For
example, let’s assume there are file copies of a data, a request on this data will be
allowed once three copies will be updated. This limits the possibility to access
out-of-date data while reducing delay for query executions.

c) Cache Consistency: this is the same problem as synchronization—how to
update all copies of a data in cache when one of them is modified. Data can be
cached to improve the performance of the system which can lead to inconsisten-
cies between copies when one of them is changed by a user. These modification
needs to be propagated to all copies and data in cache to provide users an
up-to-date version of them. To avoid this problem, different approaches are used:

i) Write Only/Read Many (WORM): this is the first approach to ensure con-
sistency only. Once a file is created, it cannot be modified. Cached files are in
read-only mode. Therefore, each read reflects the latest version of the data.

ii) A second method is transactional locking which consists in obtaining a
read lock on the request data, so that any other user cannot perform or write on
data, or updating a write lock in order to prevent any reads or writes on the disk.
Therefore, each read reflects the latest write, and each write is done in order.

iii) Another Approach Is Leasing: It is a contract for a limited period between
the server holding the data and the client requesting this data for writing. The
lease is provided when the data is requested, and during the lease the client is
guaranteed that no other user can modify the data. The data is available again if
the lease expires or if the client releases its right. For future read requests, the
cache is updated if the data has been modified. For future write requests, a lease
is provided to the client if allowed (that is, no lease exists for this data or the
rights are released).

d) Load Balancing: this is the ability to auto-balance the system after adding
or removing servers. Tools must be provided to recover lost data, to store them
on other servers or to move them from a host device to a newly added one.
Communication between machines allows the system to detect server failures
and server overload. And to correct these faults, servers can be added or re-
moved. When a server is removed from the system, the later must be able to re-
cover the lost data and to store them on other servers. When a server is added to

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 56 Int. J. Communications, Network and System Sciences

the system, tools for moving data from a host server to the newly added server
must be provided. Users do not have to be aware of this mechanism. Usually,
distributed file systems use a scheduled list in which they put data to be moved
or recopied. Periodically, an algorithm iterates over this list and performs the
deserved action. For example, CEPH uses a function called “Controlled Replica-
tion under Scalable Hashing” (CRUSH) to randomly store new data, move a
subject of existing data to new storage resources and uniformly restore data from
removed storage resources.

3) Scalability: This is the ability to efficiently leverage large amounts of servers
which are dynamically and continuously added in the system [7]. Contrary to
common knowledge of a distributed file system, this implies that this system can
involve more than one server within a Local Area Network for a better perfor-
mance in file sharing. A practical instance is a situation where two or more serv-
ers are used within a networked environment: when one server in the intranet is
down, operations and services of the distributed file system are expected not to
stop but be synchronized and virtually transferred to the other server(s); hence,
scalability. Therefore, scalable distributed file sharing system is made possible by
the decentralization of server files within the intranet such that they do not re-
side only in one server.

However, this is the bane of the full implementation of Distributed File Sys-
tem in most institutions in Nigeria given that we use only a centralized and sin-
gle server network [7].

2.3. Implementing Scalability in Distributed File Sharing System

As earlier stated about the closer study of this relevant technological solution,
Distributed File System (DFS) shows that it presents a variety of challenges that
cannot be ignored. And the key problem it presents is scalability (especially
when a server is to be mounted or dismounted). Therefore, the extra factors to
consider while implementing scalability include:

1) Number of servers: Recall that scalability implies that there are more than
one server systems in the distributed environment, and no client should be down
when a server within the network fails given that other servers are still up and
files are being replicated into each of them. Hence, the number of servers assures
and maintains the availability and reliability of an intranet.

2) Operating System: Among other network operating systems, LINUS is
recommended considering its robustness and shield against viruses.

2.4. Characteristics of a Scalable Distributed File System

Scalable client/server system has the following characteristics
1) Clients are no more affected by back-end issues such as server failure.
2) The front-end application can be accessed on any computer system within the

network; hence, defeating the problem of unwanted and unauthorized accessibility.
3) Security of network (or organizational) data is assured.

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 57 Int. J. Communications, Network and System Sciences

4) Clients will experience easy transportation of their files within the network
environment.

The server engines are developed to communicate among the entire comput-
ers within the network; hence, offering and ensuring transparency.

3. Summary

With rapid increasing tasks/ workload(s) and workflow(s) in our present day es-
tablishments, and the challenges posed to the existing file sharing systems and
their access control models by the internet, there is a need for a scalable file sys-
tem. These days, big institutions desire to have an automated workflow that
would help eliminate the tedious manual processes of communicating and shar-
ing files/mails. Scalable distributed file sharing system is thus, a potential candi-
date. Among all the file systems, network file system (NFS) is the most proven
technique. In this paper, each user/client within the network can access the or-
ganization’s network system as though the files are resident on his local system.
Also, two or more servers can be used in order to achieve scalability of the Dis-
tributed File System. Thus, the institutional workflow is not halted when a server
goes down because there is a fall back server which keeps the network sys-
tem/environment running.

This paper has thus far achieved its objective as stated which is to propose the
implementation of “scalability” feature of distributed file sharing system, as a
solution to the Distributed File System (DFS) problems earlier mentioned.

4. Conclusion

The transition from traditional centralized storage system and poor file system
(network attached disks) to a scalable Distributed File System has been pre-
sented in this paper. The challenge of scalability, especially when a server is to be
mounted or dismounted, and slow transportation of files can be eliminated with
the introduction of a decentralized server-based system by the use of two or more
servers that run synchronously. And when scalability is achieved, clients will no
longer be affected by the back-end issues such as a server failure. The system will
also guarantee an easier/quicker transportation of files among client systems.

5. Recommendation

It is highly recommended that organizations such, Nigerian tertiary institutions
adopt and implement the use of two or more server nodes when building their
intranet system in order to achieve a scalable distributed file sharing system
which is a robust and more reliable networked environment for every 21st-century
organization.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/ijcns.2019.124005

E. N. Ekwonwune, B. U. Ezeoha

DOI: 10.4236/ijcns.2019.124005 58 Int. J. Communications, Network and System Sciences

References
[1] Wikipedia (2019) History of Information Technology.

http://openbookproject.net/courses/intro2ict/history/history.html

[2] Rouse, M. (2005) File Sharing.
https://searchmobilecomputing.techtarget.com/definition/file-sharing

[3] Wikipedia (2017) File Sharing.
https://en.wikipedia.org/wiki/File_sharing

[4] Rouse, M. (2005) Distributed File System.
https://searchwindowsserver.techtarget.com/definition/distributed-file-system-DFS

[5] Levy, E. and Silberschatz, A. (1990) Distributed File Systems: Concepts and Exam-
ples. ACM Computing Surveys, 22, 321-374.
https://doi.org/10.1145/98163.98169

[6] Bžoch, P. (2012) Distributed File System. http://www.google.com

[7] Depardon, B., Le Mahec, G. and Séguin, C. (2013) Analysis of Six Distributed File
Systems. Research Report, 44 p.

https://doi.org/10.4236/ijcns.2019.124005
http://openbookproject.net/courses/intro2ict/history/history.html
https://searchmobilecomputing.techtarget.com/definition/file-sharing
https://en.wikipedia.org/wiki/File_sharing
https://searchwindowsserver.techtarget.com/definition/distributed-file-system-DFS
https://doi.org/10.1145/98163.98169
http://www.google.com/

	Scalable Distributed File Sharing System: A Robust Strategy for a Reliable Networked Environment in Tertiary Institutions
	Abstract
	Keywords
	1. Introduction
	2. Theoretical Framework
	2.1. Factors that Influence Performance of Distributed Files System over Traditional Client/Server System
	2.2. Key Features of a Distributed File System
	2.3. Implementing Scalability in Distributed File Sharing System
	2.4. Characteristics of a Scalable Distributed File System

	3. Summary
	4. Conclusion
	5. Recommendation
	Conflicts of Interest
	References

