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Abstract 
 
An experimental investigation of the jet nanofluids impingement heat transfer characteristics of mini-channel 
heat sink for cooling computer processing unit of personal computer is performed. The experiments are 
tested under the real personal computer operating conditions: no load and full load conditions. The experi- 
ments are performed for the following ranges of the parameters: coolant flow rate varies from 0.008 to 0.020 
kg/s, the nozzle diameter is set to 1.00, 1.40, 1.80 mm, the distance nozzle-to-fins tip is 2.00 mm, the channel 
width of the mini-channel heat sink is 1.00 mm. The nanofluids with suspending of TiO2 particles in base 
fluid are used as a working fluids. It was observed that the average CPU temperatures obtained from the jet 
nanofluids impingement cooling system are 3.0%, 6.25% lower than those from the jet liquid impingement 
and from the conventional liquid cooling systems, respectively. However, this cooling system requires higher 
energy consumption. 
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1. Introduction 
 
In order to ensure reliable operation, the PCs or electro- 
nics devices must be operated in the specific temperature 
ranges which the exceeding maximum allowable tem- 
perature is the serious problem of these devices. There are 
many techniques to dissipate the generated heat. The de- 
velopment of the miniaturized technology, mini and mi- 
cro-components has been introduced as one of heat transfer 
enhancement techniques. The study of a single phase heat 
transfer of the various geometrical heat sinks for cooling 
electronic devices are reported by Zhange et al.,[1]; Yu 
[2]; Peles [3]; Kosar and Peles [4]; Yakut et al. [5]; Mo- 
hamed [6]. Didarul [7] investigated the heat transfer and 
fluid flow characteristics of finned surfaces. Chein and 
Chuang [8] applied the thermoelectric with microchannel 
heat sink by using nanofluids as coolant for cooling elec- 
tric components. Jeng and Tzeng [9] experimentally studied 
the pressure drop and heat transfer of a square pin-fin ar- 
ray. These studies indicated that the various geometrical 
heat sinks are possible for cooling electronics devices. 

The most frequently used coolants in the heat transfer 

devices study are air, water, and fluoro-chemicals. However, 
the heat transfer capability is limited by the working fluid 
transport properties. One of the methods for the heat transfer 
enhancement is the application of additives to the work- 
ing fluids to change the fluid transport properties and flow 
features. Therefore, in order to further enhance thermal per- 
formance of heat transfer devices, the use of nanofluids 
is proposed. The numerous papers presented on the sin- 
gle phase convective heat transfer of nanofluids, boiling 
heat transfer of nanofluids and heat transfer enhancement 
using nanofluids are continuously reviewed by Duang- 
tongsuk and Wongwises [10]; Trisaksri and Wonwises 
[11]; Godson et al. [12]. However, improving the cooling 
performance had been continuously performed by using 
the jet liquid impingement technique. Thermal perform- 
ance of a pin-fin heat sink with various geometrical with 
impingement cooling was considered by Kobus and Oshio 
[13]; Li et al. [14]. Geedipalli et al. [15] simulated the com- 
bination heating of food using microwave and jet im- 
pingement by coupling Maxwell’s equation. Sung and Mu- 
dawar [16,17] studied the jet impingement single-phase 
and two-phase heat transfer characteristics. Reasonable 
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agreement was obtained between the predicted results 
and the measured data. Koseoglu and Baskaya [18] used 
a Laser Doppler Anemometry to observe the jet flow field 
and turbulence on heat transfer characteristics. The jet heat 
transfer enhancement from a flat surface was simulated 
by Katti and Prabhu [19]; Kanna and Das [20]; Cirillo 
and Isopi [21]. Goodro et al. [22] considered effects of the 
hole spacing on the spatially-resolved jet array impinge- 
ment heat transfer. Jeng et al. [23] and Hewakandamby 
[24] investigated the jet air flow and heat transfer be- 
haviors of the rotating heat sink and oscillation imping- 
ing jet. Nguyen et al. [25] studied the enhanced heat transfer 
with of nanofluids in a confined and submerged imping- 
ing jet on a flat, horizontal and circular heated surface. 
Koseoglu and Baskaya [26] experimentally and numeri- 
cally investigated the impinging jet heat transfer. Chang 
et al. [27] studied the jet-array impingement heat transfer 
in a concentric annular channel with rotating inner cyl- 
inder. Sharif and Banerjee [28] applied the k- turbu- 
lence model to analyze the heat transfer of the confined 
slot-jet impingement on a moving plate. Whelan and Ro- 
binson [29] used the jet liquid impingement for cooling 
the electronics devices. Several studies showed that ther- 
mal conductivity of the nanofluids is higher than that of 
the base fluids and therefore great potential for the enhan- 
cement of heat transfer. 

As mentioned above, the numerous papers presented 
the study on the heat transfer and pressure drop in the mini- 

and micro-channel, nanofluids heat transfer enhancement, 
jet impingement heat transfer characteristics. However, only 
one work [25] reported the passive and active heat trans- 
fer enhancement techniques by using the jet nanofluids 
impingement heat transfer characteristics of the heat sinks. 
Therefore, the present work focus on the experimental study 
of the jet nanofluids impingement heat transfer characte- 
ristics of the mini-rectangular fin heat sink for cooling com- 
puter processing unit (CPU) of personal computer (PC) 
based on the real operating conditions of PC. This is be- 
cause it has an excellent chemical and physical stability, 
a safe material for human, produced commercially avai- 
lable products, and cheap. The TiO2 nanoparticles are used 
in the present experiments. The results obtained from the 
jet nanofluids impingement cooling system are compared 
with those from the jet liquid impingement and the con- 
ventional liquid cooling systems. 
 
2. Experimental Apparatus and Method 
 
2.1. Test Loop 
 
This paper primary tries to investigate the jet nanofluids 
impingement heat transfer of the mini-rectangular chan- 
nel heat sinks for CPU of PC. A schematic diagram of 
the experimental apparatus is shown in Figure 1. The test 
loop consists of a set of ultrasonic system, cooling nan- 
ofluids loop and data acquisition system. The close-loop 
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Figure 1. Schematic diagram of experimental apparatus. 
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of nanofluids consists of a 10−3 m3 storage tank, pump, 
and the flow rate measurement system. After the tempe- 
ratures of the nanofluids are cooled to achieve the desired 
level, the nanofluids is pumped out of the storage tank, 
passed through the mini-rectangular fin heat sink, and re- 
turned to the storage tank. The flow rates are varied dur- 
ing a set of experiments with the help of a dimmerstat 
connected to the pump. The flow rates of the cooling na- 
nofluids are controlled by adjusting the valve and meas- 
ured by collecting the nanofluids with the precise cylin- 
der for a period of time during 15 min and the nanofluids 
mass is measured by an electronic weight scale. The ma- 
ximum variation of the mass flow rate of nanofluids as 
determined by such simple technique has been estimated 
to be ±3.5%. The nanofluids with suspending TiO2 nano- 
particles in base fluids are used as working fluids. An aver- 
age spherical particle size of TiO2 nanoparticles is about 
21 nm. In the present study, the base fluids are the de- 
ionized water. The nanofluids are prepared by ultrasonic 
method with the constant nanoparticles concentration of 
0.4% by volume without using surfactant. The heat sink 
is fabricated from the block of copper by the wire elec- 
trical discharge machine (WEDM) with the channel width 
of 1.00 mm. In order to minimize thermal resistance be- 
tween the CPU-cooling block, cooling block-heat sink, a 
thin film of high thermal conductivity grease is applied at 
their junction interface. In Figure 1, the type T copper- 
constantan thermocouples with an accuracy of 0.1% of full 
scale are employed to measure the temperatures at various 
positions. The CPU temperature is measured by two type-T 
copper-constantan thermocouples. All thermocouples are 
pre-calibrated with dry box temperature calibrator. 
 
2.2. Experimental Method  
 
Nanofluids were used as coolant in the present experiments. 
The nanofluids were pumped into the mini-rectangular 
fin heat sink which installed on the CPU of PC in the 
normal direction with the base bottom as shown on Fig- 
ure 2 and then returned to the storage tank. Experiments 
were conducted with various cooling nanofluids flow rates 
and operating condition of PC. The supplied load into the 
CPU was adjusted to achieve the desired level by setting 
the operating conditions of PC: no load and full load con- 
ditions. The energy consumption of the PC was measured 
by the watt-hour meter. The temperatures at each position 
and energy consumption were recorded in the period time 
of 200 minutes. Data collection was carried out using a 
data acquisition system (Data Taker). 
 
3. Data Reduction 
 
The heat transfer into the nanofluids is calculated from: 

 

Figure 2. Schematic diagram of the inlet and outlet posi-
tions of the coolant. 
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where  is the temperature of the heat sink. b

The average base temperature of the heat sink can be 
calculated from: 
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where b  is the base temperature of the heat sink, T CPUT  
is the CPU temperature, in  is the heat flux,  is the 
base thickness of the heat sink and  is the thermal 
conductivity of the heat sink. 

q L

hsk

The Nusselt number based on the nozzle diameter is 
calculated from the following equation: 

nozzle

nf

hD
Nu

k
               (5) 

where Nu  is the Nusselt number and  is the 
diameter of the nozzle. 

nozzleD

The thermal conductivity of the nanofluids is calculated 
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from Yu and Choi [30] using the following equation: 
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where nf  is the thermal conductivity of the nanofluids, 

w  is the thermal conductivity of the base fluid and 
k

k pk  
is the thermal conductivity of the nanoparticles. 

The density of the nanofluids is calculated from Pak 
and Cho [31] using the following equation: 

 1nf P w                 (7) 

where nf  is the density of the nanofluids, p  is the 
density of the nanoparticles, w  is the density of the base 
fluid and   is the volume fraction of the nanoparticles. 

While the specific heat is calculated from Xuan and 
Roetzel [32] as follows: 

      1p pnf p w
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where  is the heat capacity of the nanofluids,   p nf
C

 p w
C

 
 is the heat capacity of the base fluid and  

p p
C  is the heat capacity of the nanoparticles. 
Analysis of the thermal resistance of the convective 

heat transfer of the nanofluids can be defined as 
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The uncertainties of measurements data and the relevant 
parameters obtained from the data reduction process are 
calculated. The maximum uncertainties of the relevant 
parameters in the data calculation are based on Coleman 
and Steel method [33]. The maximum uncertainties of 
relevant parameters are ±10% for heat transfer coeffi- 
cient, ±10% for Nusselt number and ±5% for thermal 
resistance. 
 
4. Results and Discussion 
 
The supplied load into the CPU was adjusted by setting 
the operating condition of PC: full load and no load con- 
ditions. The relevant parameters are measured in the pe- 
riod time of 200 minutes. Figure 3 shows effect of cool- 
ant flow rate on the variation of CPU temperature for the 
jet nanofluids impingement cooling systems. The full load 
operating condition generates the heat higher than the no 
load operating condition. Therefore, the CPU temperatures 
from the full load condition are higher than those from 
the no load condition for the whole range of the period 
time. For the four different coolant flow rates, a larger 
CPU temperature drop is found for a larger coolant flow 
rate. The reason for this is because a larger coolant flow 

rate results in higher heat transfer rate and consequently 
lower CPU temperature. 

Figure 4 shows the comparison between the CPU tem- 
peratures obtained from the jet nanofluids impingement 
technique, the jet liquid impingement and the conven- 
tional liquid cooling techniques. The thermal conductivity 
of nanofluids depends on the sizes and species of the na- 
noparticles, the concentration of nanoparticles in the base 
fluid and the combination of the nanoparticles and the 
base fluid properties. However, there are various correla- 
tions are proposed to predict the thermal conductivity and  
 

 

Figure 3. Effect of coolant flow rate on the CPU tempera-
ture for jet nanofluids impingement cooling system. 

 

 

Figure 4. Comparison of CPU temperatures for different 
cooling techniques. 
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others properties of the nanofluids. Due to particle migra- 
tion inside the heat sink, non-uniformity of the nanopar- 
ticles concentration has significant effect on the thermal 
conductivity and viscosity of the fluid. Therefore, in the 
present study, an average heat transfer characteristics are 
presented. At the same operating condition of CP, the CPU 
temperatures obtained from the jet nanofluids impinge- 
ment cooling system are lower than those from the jet li- 
quid impingement and from the conventional cooling sys- 
tems, respectively. This is because the thermal conducti- 
vity of the nanofluids is higher than that of the base flu- 
ids therefore great potential for the enhancement of heat 
transfer. 

Figure 5 shows the variation of the Nusselt number with 
nanofluids mass flow rate. As expected, the heat transfer 
rate is directly proportional to the nanofluids mass flow 
rate. In addition, Figure 5 also shows the comparison of 
the average Nusselt number obtained from the jet nan- 
ofluids impingement cooling technique, jet liquid impin- 
gement cooling technique, and conventional liquid cool- 
ing technique. It can be seen that the jet nanofluids im- 
pingement technique gives the Nusselt number higher than 
two other cooling techniques. The application of the nan- 
ofluids to the working fluid has significantly changed the 
fluid transport properties and flow characteristics. There- 
fore, the Nusselt number obtained from the jet nanofluids 
impingement are higher than those obtained from two other 
cooling techniques. 

In this study, the overall heat sink performance can be 
shown in the thermal resistance form. The heat sink thermal 
resistance is defined as shown in Equation (9). Using this 
definition, thermal resistance of heat sink is a function of 
heat transfer coefficient. Due to higher heat transfer rate, 
the heat sink thermal resistance decreases with increasing 
flow rate. Based on results shown in Figure 6, it is seen 
that the thermal resistance obtained from the jet nanoflu- 
ids impingement cooling technique are lower than those 
from the jet liquid impingement and from the conven- 
tional cooling techniques. This result can be realized from 
Equation (9) and nanofluids transport properties. Due to 
the increase in thermal conductivity, the contribution to 
the thermal resistance is mainly improved. In addition, the 
reduction of the thermal resistance is clearly due to the 
thermal dispersion. 
 
5. Conclusions 
 
Due to high level of heat generation, space limitation for 
set up the cooling system, and air cooling limitation, the 
jet nanofluids impingement cooling in the mini-rectan- 
gular fin channel heat sink for CPU of PC has been in- 
vestigated. The jet nanofluids impingement cooling with 
mini-rectangular fin heat sink system is introduced as the 

 

Figure 5. Variation of the Nusselt number versus mass flow 
rate for different cooling techniques. 
 

 

Figure 6. Comparison of thermal resistance versus mass flow 
rate for different cooling techniques. 
 
couple active and passive heat transfer enhancement tech- 
niques. It is found that the CPU temperatures obtained 
from the jet nanofluids impingement cooling system are 
lower than those from the jet liquid impingement cooling 
system and the conventional liquid cooling system. How- 
ever, this technique requires higher energy consumption. 
The results of this study are expected to lead to guide- 
lines that will allow the design of the cooling system with 
improved thermal cooling performance for obtaining these 
devices in the specific temperature ranges. 
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Nomenclatures LMTDT : logarithm mean temperature difference, ˚C. 

  
Greek Symbols sA : total heat transfer surface area of the heat sink, m2. 

 nozzleD : nozzle diameter, m. 
h : average heat transfer coefficient, W/(m2 K). nf : density of the nanofluids. 
knf : thermal conductivity of the nanofluids, W/(m K). 
Nu  p nf

c : heat capacity of the nanofluids. 

 
: Nusselt number. 

nfq
R

: heat flux, W/m2. c : heat capacity of the nanoparticles. p p

th

T
: thermal resistance, K/W. 

: viscosity of the nanofluids. 
b : the base temperature of the heat sink, ˚C. nf

CPUT : CPU temperature, ˚C. 
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