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Abstract 
The lateral velocity distribution of flow in the shear layer of open channel is 
required to many problems in river and eco-environment engineering, e.g. 
distribution of pollutant dispersion, sediment transport and bank erosion, 
and aquatic habitat. It is not well understood about how the velocity varies 
laterally in the wall boundary layer. This paper gives an analytical solution of 
lateral velocity distribution in a rectangular open channel based on the 
depth-averaged momentum equation proposed by Shiono & Knight. The ob-
tained lateral velocity distributions in the wall shear layer are related to the 
two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged 
secondary flow (Γ) for given roughened channels. Preliminary relationships 
between the above two parameters and the aspect ratio of channel, B/H, are 
obtained from two sets of experimental data. The lateral width (δ) of the 
shear layer was investigated and found to relate to the λ and the bed friction 
factor (f), as described by Equation (26). This study indicates that the lateral 
shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ 
= 0.6 and f = 0.01).  
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1. Introduction 

In open channel flow, like natural rivers and canals, flows are of highly 
three-dimensional characteristics owing to the influence of boundaries, varying 
roughness and non-uniform shapes. Even modeling flow in straight prismatic 
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channels becomes surprisingly difficult, as shown by Chiu & Chiou [1] and Nezu 
& Nakagawa [2]. This is partly due to the nature of the anisotropic turbulence, 
which is generated by various factors, such as variations in channel geometry 
and roughness, the consequent formation of secondary flow cells, and the level 
of turbulence closure.  

Due to the complexity of three-dimensional flow, under certain assumptions, 
one- or two-dimensional analyses are often used in engineering practice. Lots of 
research has been studied on velocity vertical distribution in open channel flows 
[2] [3] [4] [5], which could not meet the requirement of lateral velocity distribu-
tion in engineering application. The lateral velocity distribution is pre-requisite 
in solving certain problems in open channel flows, such as lateral distribution of 
pollutant, sediment transport and aquatic habitat [6]. However, there is not an 
analytical formula for predicating the lateral velocity distribution of flow in a 
rectangular channel.  

This paper provides an analytical solution of lateral velocity distribution in the 
shear layer of rectangular channels, which have various aspect ratios, based on 
the depth-averaged flow model proposed by Shiono & Knight [7] [8]. Shiono 
and Knight’s model has a wide range of application for curved channels [9], 
compound weirs [10] [11] and compound channels [12] [13]. The obtained ana-
lytical solution of lateral velocity distribution is related to three parameters: the 
eddy viscosity parameter (λ), secondary flow term (Γ) and the bed friction factor 
(f). Through analysis on the analytical velocity distribution, it was found that the 
lateral extent of the shear layer is related to the eddy viscosity parameter (λ) and 
the bed friction factor (f). An empirical relationship was also established by ana-
lyzing two sets of experimental data from Knight et al. [14] and Atabay [15], also 
see www.flowdata.bham.ac.uk. The results of the lateral width of the shear layer 
indicate that the shear layer near the wall could be very wide for natural rivers 
when the λ is very large. 

In the following sections, Section 2 provides theoretical background with the 
assumption of model and its analytical solution, followed by experimental data 
used for model parameter evaluation in Section 3. Section 4 shows the detailed 
comparison between the analytical model and experiment, along with the discus-
sion on the lateral extent of shear layer. Some conclusions are given in Section 5. 

2. Theoretical Consideration 
2.1. Introduction 

For steady flow in a prismatic open channel, the governing momentum equation 
in the stream wise direction may be combined with the continuity equation to 
give [8] [16]:  

( ) ( )
τ τ

ρ ρ
∂ ∂ ∂ ∂

+ = + + ∂ ∂ ∂ ∂ 

yx zx
oUV UW gS

y z y z
              (1) 

where U, V, W are the time-averaged velocity components in the x (streamwise), 
y (lateral) and z (normal to bed) directions respectively (see Figure 1), So is the  
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Figure 1. Streamwise Reynolds stress in an open channel. 

 
bed slope, ρ is the density of water, and g is the gravitational acceleration. τyx and 
τzx denote the turbulent shear stresses on the planes perpendicular to the y and z 
directions, respectively. The left terms of Equation (1) thus signify the secondary 
flow per unit weight, which is balanced by the weight component and both the 
lateral and vertical Reynolds stresses in x direction.  

For steady flow in a rectangular channel, consider that 
0 0

= =
= =z H zW W  

and by integrating Equation (1) over the water depth (H), the depth-averaged 
momentum equation can be obtained as (Shiono & Knight [8]):  

( )
( )τ

ρ ρ τ
∂∂   = + − ∂ ∂

yx
o bd

H
H UV gHS

y y
              (2) 

where τb is the bed shear stress, the overbar or subscript d denotes the 
depth-averaged value, and 

( ) ( )
0

1 dρ ρ= ∫
H

dUV UV z
H

                    (3) 

( )
0

1 dτ ρ= −∫
H

yx uv z
H

                      (4) 

in which u and v are the fluctuating velocity component in x and y direction re-
spectively. Through an eddy viscosity concept, the Reynolds stress, τ yx , can be 
described as: 

τ ρε
∂

=
∂

d
yx yx

U
y

                        (5) 

*ε λ=yx U H                           (6) 

where λ is the dimensionless eddy viscosity coefficient and U* ( τ ρ= b ) is the 
local shear velocity. The bed shear stress, τb, may be related to the depth-averaged 
velocity, Ud, using the Darcy-Weisbach friction coefficient (f), which is 

2

8
τ ρ  =  

 
b d

f U                         (7) 

or 
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* 8
= d

fU U                          (8) 

Then, inserting Equations (5) and (7) into (2) gives: 

( )
22

2

8 2 8
ρλρ ρ ρ
 ∂∂ ∂   = − +    ∂ ∂ ∂   

d
o dd

Uf H fH UV gHS U
y y y

    (9) 

Experimental results by Shiono & Knight [8] demonstrate that in overbank 
flow the term of secondary flow, H(ρUV)d, varies almost linearly with y in the 
main and floodplain regions of a channel. Therefore, the lateral gradient of the 
secondary flow force may be approximated as 

( )ρ∂   = Γ ∂ dH UV
y

                       (10) 

where Γ is a dimensionless constant of secondary flow, which varies in different 
flow regions (Knight et al. [17]). Thus Equation (9) can be expressed by: 

22
2

8 2 8
ρλρ ρ
 ∂∂ − + = Γ   ∂ ∂   

d
o d

Uf H fgHS U
y y

           (11) 

which is the governing equation of depth-averaged flow in the streamwise direc-
tion.  

2.2. Analytical Solution for dU 2  

For given channels, when f, λ and Γ are fixed values, Equation (11) becomes a 
standard ordinary differential equation in terms of variable 2

dU . An analytical 
solution to Equation (11) can be obtained under appropriate boundary condi-
tions. The detailed solution process is given by Knight et al. [17]. The solutions 
for the channel with linearly varying bed can also refer to Knight & Shiono [18] 
and Tang & Knight [13] [19] for further details. 

In a rectangular channel, which has the constant depth of flow (i.e. H = con-
stant), the analytical solution of Ud to Equation (11) has the following form: 

( )1 2

1 2e eγ γ−= + +y y
dU A A k                   (12) 

where 

( )8
1 β= −ogHS

k
f

                      (13) 

1 41 2
8

γ
λ
 =  
 

f
H

                      (14) 

β
ρ
Γ

=
ogHS

                        (15) 

where A1 and A2 are two integral constants, which can be obtained by applying 
the boundary conditions of flow continuity and the no-slip condition at the wall, 
as shown by Knight et al. [20] [21]. For a simple rectangular channel of semi-width, 
b, see Figure 2, a single panel is used to represent half of the cross-section, and 
then the two A coefficients are obtained as: 
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Figure 2. Half rectangular channel cross-section. 
 

( )1 2 2cosh γ
= = −

kA A
b

                  (16) 

Thus for a rectangular channel, Equation (12) becomes 

( )cosh γ= +dU C y k                   (17) 

where 
( )cosh γ= −C k b                     (18)  

3. Experimental Data for Parameter Evaluation 
3.1. Calibration of Coefficients and Modelling Philosophy  

Strictly speaking, Equation (15) suits for the flow region of constant depth where 
a constant Γ value exits. If Γ varies laterally, the cross section of a channel can be 
split into a discrete number of panels if necessary. Generally, panel junctions 
coincide with the place where the roughness of channel bed or flow depth is 
discontinuous. Thus, for a symmetric uniform rectangular channel, only half the 
channel needs to be modeled because of symmetry of the channel. If complex 
secondary flow cells present, then further division of the channel into more pa-
nels may be required [21].  

The friction coefficient is generally assumed to be constant in each panel, and 
it can be back calculated from ( )28τ ρ= b df U  based on experimental data. 
Note that the variation of λ has great effect for open-channel flows due to lateral 
shear near wall [22]. Hence, both the secondary flow parameter (Γ) and lateral 
eddy viscosity coefficient (λ) require calibration in modeling the lateral distribu-
tion of depth-averaged streamwise velocity. 

3.2. Experimental Data in the Study 

The data of lateral flow velocity used herein were obtained from Knight et al. 
[14] and Atabay [15]. These experiments have covered a wide range of aspect ra-
tios (B/H), which vary from 1.0 to 16.0. The earlier experiments by Knight et al. 
[14] were conducted in a non-tilting 15 m long flume with a rectangular 
cross-section of width B =152 mm and a bed slope So of 9.66 × 10−4. The more 
recent experiments by Atabay [15] were undertaken in a 22 m long flume with a 
channel width of 50 mm and a bed slope of 2.024 × 10−3. These data are also ac-
cessible from www.flowdata.bham.ac.uk. 

In the present study, only half the channel was modeled due to the symmetry 
of flow, as shown in Figure 3, where only one panel is used for Equation (17). 
The parameters adopted in the modeling are given in Table 1, where DWK and  
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Figure 3. Sketch of half rectangular channel. 
 
Table 1. Parameters adopted in the application of Equation (17). 

Experiment B/H f λ Γ MAPE (%) 

DWK 0.99 0.0205 0.0003 0.093 1.34 

 

1.38 0.0205 0.0005 0.54 0.98 

1.77 0.0205 0.001 0.42 0.73 

 

4.20 0.016 0.015 0.25 5.70 

4.79 0.016 0.02 0.15 4.97 

AS 6.60 0.019 0.025 0.1 3.72 

 

9.30 0.02 0.038 0.02 2.36 

11.86 0.023 0.048 0.008 3.49 

15.18 0.026 0.055 0.006 2.93 

 
AS denote the experimental runs by Knight et al. [14] and Atabay [15], respec-
tively. In the modelling, ρ = 1000 kg/m3 and g = 9.807 m/s2.  

4. Results 
4.1. Prediction of Lateral Distributions of Ud 

For given parameters of f, λ and Γ, Equation (17) can predict the lateral variation 
of depth-averaged velocity. Figure 4 and Figure 5 show the lateral distributions 
of Ud between the prediction and experimental data. The results show that the 
prediction by Equation (17) agrees well with the experimental data for flows in 
rectangular open channels, which have a wide range of aspect ratios (B/H).  

To evaluate the robustness of Equation (17) against the experimental data, er-
ror analyses were carried out. MAPE (Mean Absolute Percentage Error) is used 
as a measure of the error percentage for predicted values of model against the 
measured values. The individual differences are called as residuals for the data 
sample that is used for estimation, and the residuals are known as estimation 
errors for the sample [23] [24] [25]. 

The percentage of error in predicted discharge of each flow depth is calculated 
by, 
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Figure 4. Ud distributions for the experiments by Knight et al. [14]. 
 

 

Figure 5. Ud distributions for the experiments by Atabay [15]. 
 

, ,
,

,

−
= a i e i

u i
e i

u u
E

u
                      (19) 

where Eu,i is the error percentage of predicted velocity; ua,i and ue,i are the pre-
dicted and observed velocity at ith measured point (y), respectively. Therefore, 
the average error percentage of model for an experiment can be computed by 

( ),1

1
=

= ∑N
u u iiE E

N
                    (20) 

where N is the total number of obervation in an experiment. 
The values (Eu) of MAPE for all experiments are shown in Table 1, which 

shows that the prediction by Equation (17) has the averaged percentage error of 
1% to 6%.  

In this study, the optimum values of λ and Γ in are found to be well related to 
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the aspect ratios of channel, as expressed by: 

( ) 2exp 2.36 8.22 0.9, 93λ  = − =− B H R           (21) 

( ){ } ( ) 20.09 0.174ln 0.924 , 0.992B H B H RΓ = − + + =      (22) 

where B is the width of channel, H is the flow depth, and R is the correlation 
coefficient.  

4.2. Lateral Extent of Shear Layer 

From the analytical solution of Ud, given by Equation (17), it reveals that the 
depth-averaged velocity has little change in the major central part of channel, 
but it decreases rapidly toward zero at the wall, as shown in Figure 4 & Figure 5. 
With increasing the aspect ratio (B/H) of channel, the extent of almost constant 
flow velocity is getting wider in the central channel, which can be treated as 
one-dimensional uniform flow. 

When a channel is shallow and very wide, i.e. the ratio of B/H is very large, the 
value of cosh(γb) in Equation (18) can be very large (∞), so that the C valve in 
Equation (17) becomes a very small value (close to zero). Note that the second-
ary flow is weak in such a shallow channel, thus Γ is negligible (Knight et al. 
[21]). Therefore Equation (17) becomes: 

8
= =d o

gU k HS
f

                    (23) 

The obtained Equation (23) is the well-known velocity formula for one-dimensional 
(1-D) uniform flow, i.e. Darcy-Weisbach equation.  

In open channel flow, a lateral shear layer exists near the wall. The extent of 
lateral shear layer can be defined by a lateral distance, δ, away from the wall, for 
which 0.99

δ ∞= −
=d y bU U . U∞ is the velocity of 1-D flow, given by Equation (23), 

as illustrated in Figure 3. The boundary distance δ in the shear layer can be ob-
tained as follows: 

Applying Equation (17) for ( ) 0.99δ ∞= =dU U k  when y = b − δ gives: 

( )0.99 cosh γ δ= − +  k C b k                   (24a) 

or 

( )0.9801 cosh γ δ  − = +k C b k                   (24b) 

Inserting Equation (18) into (24b) yields 

( ) ( ) ( )cosh tanh sinh 0.0199γδ γ γδ− × =b               (25) 

Since the parameter (γ), given by Equation (14), is a function of depth, Equa-
tion (25) is implicit for δ. However, δ can be obtained numerically by solving 
Equation (25), as graphically shown in Figure 6. This implies that when γb is 
about 5 the value of Ud at y = b − δ is approximate to 0.99U∞. In other words, in 
the region away from the wall, where γδ = 5, the flow can be treated as uniform 
flow. 
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Figure 6. The boundary distance (δ) for Ud = 0.99U∞. 
 

Therefore, replacing γ in Equation (14) for γδ = 5 gives: 
1 4 1 4

8 85 3.54
2

δ λ λ
   

= =   
   H f f

                (26) 

Samuels [26] obtained the similar boundary distance (δ) to Equation (26) with 
a coefficient 3.4 rather than 3.54 here.  

In order to estimate the shear layer width (δ) for a natural river, it needs to es-
timate the eddy viscosity coefficient (λ). When bed generated turbulence domi-
nates the lateral momentum transfer, Cunge et al. [27] suggested that the typical 
value of λ is 0.5, which represents the value for the cross-sectional exchange 
coefficient in the range of 0.23 to 0.6. By taking the extreme case where λ = 0.6 
and f = 0.01, Equation (26) gives δ/H ≈ 14.6. 

In practical applications for open channel flows, within the boundary width 
(γδ = 5) Equation (17) can be used to predict the Ud distribution in the lateral 
shear layer near the wall, whereas the velocity is calculated by Equation (23) in 
the central region of channel beyond the shear layer. In fact, the flow in the cen-
tral part is uniform flow if the channel is very shallow (i.e. large aspect ratio 
B/H). 

By taking the values of f and λ from Table 1, Equation (26) will establish a re-
lationship between δ/H and B/H, as shown in Figure 7. The relationship can be 
described as: 

( )2 21 0.272 3.982 , 0.994δ  
= + =H B H R          (27) 

5. Conclusions 

The depth-averaged velocity distribution in lateral shear layer in a rectangular 
open channel can be described by Equation (17), which is analytically obtained 
based on the depth-averaged momentum equation proposed by Shiono & 
Knight. The analytical solution of Equation (17) agrees well with the experimen-
tal data with the aspect ratios ranging from 1 to 16. The percentage error in 
MAPE is 1% to 6%. 

Based on Equation (17), the lateral width of the shear layer is found to be re-
lated to the dimensionless eddy viscosity coefficient (λ) and the bed friction (f), 
as given by Equation (26). The shear layer width (δ) near wall varies with the  

https://doi.org/10.4236/jamp.2019.74056


X. Tang 
 

 

DOI: 10.4236/jamp.2019.74056 838 Journal of Applied Mathematics and Physics 
 

 

Figure 7. Plot of δ/H based on Equation (27). 
 
aspect ratios of channel. It reveals that the boundary width can be very large: e.g. 
δ/H = 14.6 for the extreme case (λ = 0.6 and f = 0.01) in natural rivers. 

The obtained Equation (17) for the lateral velocity distribution was obtained 
for a rectangular open channel with uniform boundary, but it can be extended to 
use for velocity analysis in an open channel with non-uniform boundary, where 
the channel can be split to serial panels of having similar roughness to apply for.  

Future work may need to establish the relationships (21) & (22) for estima-
tions of λ and Γ in channels with heterogeneous roughness, along with the mod-
el application on field data if available. 
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