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Abstract 
Traditional reinforcement learning (RL) uses the return, also known as the 
expected value of cumulative random rewards, for training an agent to learn 
an optimal policy. However, recent research indicates that learning the dis-
tribution over returns has distinct advantages over learning their expected 
value as seen in different RL tasks. The shift from using the expectation of 
returns in traditional RL to the distribution over returns in distributional RL 
has provided new insights into the dynamics of RL. This paper builds on our 
recent work investigating the quantum approach towards RL. Our work im-
plements the quantile regression (QR) distributional Q learning with a 
quantum neural network. This quantum network is evaluated in a grid world 
environment with a different number of quantiles, illustrating its detailed in-
fluence on the learning of the algorithm. It is also compared to the standard 
quantum Q learning in a Markov Decision Process (MDP) chain, which de-
monstrates that the quantum QR distributional Q learning can explore the 
environment more efficiently than the standard quantum Q learning. Effi-
cient exploration and balancing of exploitation and exploration are major 
challenges in RL. Previous work has shown that more informative actions 
can be taken with a distributional perspective. Our findings suggest another 
cause for its success: the enhanced performance of distributional RL can be 
partially attributed to its superior ability to efficiently explore the environ-
ment. 
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1. Introduction 

Machine learning is teaching computer models how to learn from data. As a 
subfield of machine learning, reinforcement learning (RL) aims to learn sequen-
tial decision making from data [1] [2] [3]. Several significant advances in RL 
have been made in the recent years including the famous AlphaGo application 
from Google. Learning under uncertainty caused by randomness is a reality and 
a challenge in machine learning. In RL, the probabilistic nature of rewards, state 
transitions, and actions may all introduce randomness into the cumulative re-
turn. Traditional RL averages over this randomness to estimate the value func-
tion, which is then used to generate a policy. However, recent research [4] [5] [6] 
shows that using the full distribution over random returns can preserve multi-
modality in the returns and therefore make learning more effective as demon-
strated by the state-of-the-art performance in a number of RL benchmarks. 
Given two return distributions with the same expected value, their actual value 
distributions can vary drastically. Therefore, using the full distribution instead of 
the single scalar of the expected value is more informative when deciding which 
action to take in RL. Related to this idea, is the introduction of replay memories 
in deep RL, allowing the agent to leverage previous experiences to break the cor-
relation of training data, which uses a full batch of steps instead of one single 
step for training.  

A distributional RL algorithm has to make two choices: 1) how to parameter-
ize the value distributions, and 2) how to select a distance metric or loss function 
for the two distributions: target distribution and predicted distribution. Cate-
gorical DQN, also commonly called C51 [4], uses a categorical distribution and 
minimizes a cross-entropy loss function between projected Bellman update and 
prediction. This algorithm assigns the distribution to an a priori fixed, discrete 
set of possible returns.  

C51 represents the value distribution as a categorical distribution over a fixed 
set of equidistant points and uses it to approximate the projected distributional 
Bellman target via minimizing their KL divergence. Furthermore, the work on 
C51 proves that the distributional Bellman operator is a contraction in a Was-
serstein metric between probability distributions. However, C51 cannot prove 
that it has this contraction as it uses a cross-entropy loss function. C51 uses a 
predefined range of the categorical supports; therefore, it may not work well in 
some RL tasks. 

QR distributional Q learning [5], on the other side, represents the distribution 
by a uniform mixture of Dirac delta functions whose locations are adjusted using 
quantile regression. These distributions are constructed with a discrete set of 
quantiles, but their supports can be tuned to minimize the Wasserstein distance 
between the Bellman target distribution and predicted value distribution. The 
output of the networks of C51 is the probability of value distribution for each ac-
tion, where the support is used as fixed value. However, QR distributional Q 
learning outputs the support of value distribution for each action, where the 
probability is used as fixed value.  
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With the recent advances in quantum computing, machine learning has a new 
paradigm of computation to design and test different algorithms [7]-[24]. There 
are two different models of quantum computing: discrete and continuous va-
riables [25]. IBM’s quantum computers are discrete, made of qubits, while Xa-
nadu’s are continuous, made of qumodes [26]. Powered by the special properties 
of quantum states such as superposition, entanglement, and interference, quan-
tum computers can process information in ways far beyond their classical coun-
terparts. Quantum computers operate at the lowest level of physics, offering a 
much richer structure for computation. As a result, quantum machine learning 
can create entirely new learning models, impossible with classical computing. 

One advantage of quantum computing is its capability to process data of high 
dimensions. For example, a classical computer of 64 bits can process data of size 
64 bits at a time, but a quantum computer of 64 qubits can process data of size 
264 bits at a time, achieving an exponential increase. It is hoped that quantum 
computing will be useful to find new patterns in big data and solve problems 
that are currently intractable for classical computers. These intractable problems 
include quantum system simulations and molecular and atomic dynamics simu-
lations. Finding the ground state energy of a complex molecule is a challenge for 
classical computers. Also, as more transistors are packed in a single CPU chip, 
quantum phenomenon will occur. Therefore, quantum computing will become 
more relevant even to classical computing in this regard.  

2. Related Work 

Xanadu is a company that makes photonic quantum computers, which can 
process information stored in quantum states of light [26]. These quantum 
computers can represent continuous variable using the amplitude and phase of 
light, which are ideal for machine learning where continuous variables are a 
norm. 

A research team at Xanadu created light-based quantum neural networks us-
ing photonic gate circuits [27], which can solve certain problems using exponen-
tiallyless resources than their classical counterparts. Furthermore, the networks 
can transform simple quantum states into more complex ones, and perform 
common tasks in machine learning such as regression and classification. In 
another work [28], these quantum networks were trained to convert laser light 
into states of a fixed number of photons. By adjusting the brightness and phase 
of the incoming light, the quantum states of one, two, or three photons can be 
created (Figure 1). Preparing a quantum state in a physics lab is a difficult task, 
but this technique can reduce the burden of creating an arbitrary quantum state. 
These quantum networks are made from a photonic quantum circuit with layers 
of gate structures, where the output of one layer can be the input to the next. 
These layers are similar to those found in classical neural networks. 

In our previous work, we used these quantum neural networks to study the 
contextual bandit problem, and to implement Q learning and actor-critic algo-
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rithms [20] [21] [22]. In this paper, we direct our attention on implementation 
of the QR distributional Q learning algorithm with these networks. 

3. Methods 

We describe the test environments, QR distributional Q learning, and QR quan-
tum networks in this section. Traditionally, RL focuses on the mean of the re-
turn; however, distributional RL aims to model the distribution over the returns 
in order to gain a more complete picture of their world. The output of the QR 
network in distributional RL is a quantile distribution, represented by a discrete 
set of supports for a given set of quantiles. Although the final decision on actions 
is still based on the Q values, which are the expected returns. One key difference 
is, that in distributional RL, the goal is to get full distributions rather than their 
expectations. 

3.1. Environments 

Two environments are employed in this study to examine the performance of 
quantum QR distributional Q learning. A grid world is used to check the re-
wards that the algorithm can collect for various quantile numbers, which are key 
parameters of the algorithm. A MDP Chain is used to see how this new algo-
rithm explores the environment when compared the more familiar algorithm Q 
learning.  

3.1.1. Grid World 
A grid world environment is used to evaluate the performance of quantum QR 
distributional Q learning, which is also used in our previous work [21] [22]. It 
has a size of 2 × 3 and can be configured into two modes: slippery or not slip-
pery. In the slippery environment, a move towards the intended direction is only 
successful at a probability of 1/3, and can slide in two perpendicular directions at 
a probability of 1/3 each. Each state has a reward of zero, except at the state G 
that has a reward of one. H and G are the two terminal states, and each walk 
starts at the state S. One episode in this environment is defined as the steps by an 
agent from state S to either H or G (Figure 2).  

3.1.2. MDP Chain 
A MDP chain is used to investigate the ability of the quantum QR distributional 
Q learning algorithm to explore the environment, which is a simple determinis-
tic chain { }3 2 1 0 1 2 3, , , , , ,s s s s s s s− − −  of size 7 with the start state 0s  and two ter-
minal states 3s−  and 3s  (Figure 3). The agent can move left and right. All 
states have zero reward, except for the left end state 3s−  which has a reward of 
0.001 and the right end state 3s  which has a reward of 1. The challenge of this 
environment is that it has no negative reward and going left is a suboptimal ac-
tion while going right is the optimal action. Only an agent that can efficiently 
explore the environment can discover the subtle difference between the two pos-
itive rewards at the two ends.  
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Figure 1. Winger function representation of one, two, and three photon states, displayed 
in sequence from top, bottom left to bottom right. The negative values of Winger 
function reveal the non-classical nature of these three states. 
 

 
Figure 2. The grid world of size 2 × 3 used in this study. Each grid (state) is labeled with a 
letter which has the following meaning: Start (S), Frozen (F), Hole (H) and Goal (G). The 
state G has a reward of one and other states have a reward of zero. Each grid (state) is 
represented as an integer from 0 to 5, with the top row: 0, 1, 2 (left to right) and the 
bottom row: 3, 4, 5 (left to right). 
 

 
Figure 3. A MDP chain of size 7 which has both ends as terminal states with different 
positive rewards and s0 as the start state. 

3.2. QR Distributional Q Learning 
3.2.1. Quantile Regression 
Linear and logistic regressions are commonly used in machine learning, while 
quantile regression is widely employed in economics. However, because stan-
dard linear regression focuses on the conditional mean function, if other rela-
tionships among the variables are desirable, quantile regression can be useful. 
We might be interested in the full distribution of the data rather than just the 
mean of the data. We may also want to study the conditional median function, 
where the median is the 50th percentile, or quantile q, of a data distribution. The 
quantile level ( )0,1τ ∈  splits the data into proportions %τ  below and 
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( )1 %τ−  above. Assume X is a random variable, ( )XF x  is its cumulative dis-
tribution function (CDF), and ( )1

XF τ−  is the inverse, there holds the relation-
ship: ( )XF xτ =  and ( )1

Xx F τ−= . ( )1
XF τ−  is called the quantile function with 

the median ( )1 0.5XF −  as a special case. The real number ( )1
Xx Fτ τ−=  or 

( )XF xτ τ=  defines the τ th quantile of XF  or X, which means the probabili-
ty that an observation is less than xτ  is τ. In linear regression, a straight line is 
selected by minimizing distance between the line and the data points. In con-
trast, quantile regression searches a line based on the selected quantile using the 
quantile loss function as shown in Figure 4. If the 70th quantile is desired, a re-
gression line is found under the condition that 70% of the data points are below 
the line and 30% are above. As a result, the median of a data set minimizes the 
sum of absolute errors from the median, so the 50% quantile can be formulated 
as a solution to an optimization problem. Compared to the ordinary least 
squares, QR is robust to outliers in dependent variables, but is sensitive to the 
sparse extremes of the independent variables. Typically linear regression as-
sumes the data follow the normal distribution; however, quantile regression does 
not assume a particular parametric distribution for the data. 

3.2.2. QR Distributional Q Learning 
The goal of the RL agent is to learn a policy that can gain the maximum expected 
return. So by definition, it is natural to work directly with these expectations. 
However, this approach cannot render the whole picture of the randomness as 
seen from the possible multimodal distribution over returns. When an agent in-
teracts with the environment in a RL problem, the state transitions, rewards, and 
actions can all carry certain intrinsic randomness. Distributional RL explicitly 
models the future random rewards as a full distribution, allowing more accurate 
actions to be learned. In order to introduce QR distributional Q learning, which 
utilizes quantile regression to approximate the quantile function for the 
state-action return distribution, we need to introduce several concepts as back-
ground materials [5]. 

For a given policy π, the return Z π  is a random variable that represents the 
sum of discounted rewards.  

0
t

ttZ Rπ γ∞

=
= ∑                        (1) 

where γ  is the discount rate. In Equation (1), Z π  is interpreted as a distribu-
tion. Let ( )0 0,Z s aπ  be the return obtained by starting from state 0s , per-
forming action 0a  and then following the current policy π, the well-known Q 
value can be obtained as follows:  

( ) ( ) ( )0 0 0 0 0, : , ,t
t ttQ s a Z s a R s aπ π γ∞

=
  = Ε = Ε   ∑            (2) 

( ) ( ) ( )1 1, : , ,t t t t t tTZ s a R s a Z s aπ πγ + += +                (3) 

Equation (3) defines the so called target distribution or distributional Bellman 
target [29]. More accurately, it is a sample of the true target distribution. In the 
above Equation (3), both R and Z are distributions.  
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Figure 4. Quantile loss function ( ) { }( )01 uu uτρ τ
<

= −  where ( )0,1τ ∈ . The slope is used to 

reflect the desired imbalance in quantile regression. When τ = 0.25, and u_pred is the 
predicted value of u, then the loss function τρ (u-u_pred) gives a penalty of 0.25 for 
underestimation but three times more (0.75) for overestimation. Therefore, u_pred 
should stay below the median, but also cannot be too small and far away from the median, 
which suggests the actual value of u_pred be the τth quantile. The optimal quantile model 
has lowest quantile loss. 
 

Distributional RL algorithms need to measure the distance of two distribu-
tions: the target and predicted distributions. The KL divergence is a commonly 
used distance between two distributions, but it is not defined when these distri-
butions are discrete and have different supports. That is the reason for the work 
of C51 to use a projection to make them have same supports in order to apply 
KL divergence. The alternative is Wasserstein metric which is described as fol-
lows. 

For [ ]1,p∈ ∞ , the p-Wasserstein metric pW  between distributions U and Y 
is defined as,  

( ) ( ) ( )( )11 1 1
0

,
p

p
p Y UW U Y F F dτ τ τ− −= −∫                (4) 

where Y is a random variable, FY is its cumulative distribution function, and 
( )1 τYF −  is the inverse. The p-Wasserstein distance is the Lp metric of the inverse 

of CDF, which is an extension of the Euclidean distance from point data to dis-
tribution data. When U and Y are two Dirac delta distributions located at 1X  
and 2X  in RN, the p-Wasserstein distance becomes a Euclidean of 1X  and 

2X . Let ( )2 31, , , , ,N
N Rθ θ θθ θ= ∈  a quantile distribution Zθ  is a uniform 

probability distribution supported on ( ){ },i s aθ  which can be defined as,  

( ) ( ),1

1, :
i

N
s aiZ s a

Nθ θδ=
= ∑                      (5) 

where zδ  is the Dirac delta function at z.  
The QR distributional Q learning algorithms use ( ),Z s aθ  to approximate 

the target distribution in Wasserstein distance W1 through quantile regression. 
In other words, this approach aims to estimate the quantiles of the target distri-
bution.  

Let i i Nτ =  for each 𝑖𝑖 = 1, …, N. For an arbitrary value distribution Z, we 
have 

( )
11

1
1 , ( )i

ii
N

Z iW Z Z F dθ
τ

τ
τ θ τ

−=
−= −∑ ∫                   (6) 
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The key observation used in [5] is that the minimizers of ( )1 ,W Z Zθ  are 
those ( )1 2 3, , , , Nθ θθ θ θ=   that minimize the quantile regression objective: 

( )ˆ ˆ1
ˆ

i

N
ii Z Z ZτΕ ρ θ

= ∼
 −  ∑                     (7) 

which are given by ( )1 ˆi Z iFθ τ−= , where 1τˆ τ
2

i i
iτ

−+
=  and  

( ) { }( )ˆ 0ˆ 1 , .
i i uu u u Rτρ τ <= − ∀ ∈  Each iθ  is the îτ  quantile. These { }iθ  are the 

quantiles of the target distribution Z.  
The gradients of quantile regression loss are independent of the magnitude of 

the error, which can increase gradient variance. As an improvement, Huber loss 
is defined as: 

( )
21 ,

2
1 ,
2

u if u
L u

u otherwise
κ

κ

κ κ

 ≤=    −   

                 (8) 

And the quantile Huber loss is: 

( ) { } ( )01 uu L uκ
τ κρ τ <= −                      (9) 

which is a smooth version of the quantile loss defined in Figure 4 and its gra-
dients scale with the magnitude of the error, under some threshold κ. 

Recall in Q learning, the Bellman optimality operator is defined as (notice the 
expectation used in the definition): 

( ) ( ) ( ), , max ,aTQ s a E R s a E Q s aγ ′ ′ ′  = +                   (10) 

So the distributional version of this operator is: 

( ) ( ) ( )*, , ,TZ s a R s a Z s aγ ′= +                  (11) 

where ( ) [ ]*
~ ,a z Z s aa argmax E z′ ′ ′=  and s' is the next state of s. The quantile re-

gression Q learning from [5] is presented as follows: 
 
Algorithm 1 Quantile Regression Q Learning [5] 

Require: N, κ 

Input , , , ,s a r s′  )0,1γ   

#Compute distributional Bellman target 

( ) ( ), : ,j jj
Q s a q s aθ ′′ ′′ = ∑  where 1jq N=  

( )* ,aa argmax Q s a′ ′← ′  

( )*, ,j jT r s a jθ γθ ′← + ∀  

#Compute quantile regression loss 

Output ( )( )ˆ1
,

i

N k
j ji

E T Q s aτρ θ
=

 − ∑  

 
Quantile regression finds the approximation to the inverse cumulative distri-

bution function 1
ZF −  with a quantile function as defined in Equation (5). The 

quantiles used in the algorithm imply how many times the probability distribu-
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tion is divided. For example, 5-quantiles would divide the distribution into 5 in-
tervals [0.20, 0.40, 0.60, 0.80, 1.00]. The QR distributional Q learning algorithm 
minimizes Wasserstein distance to the distributional Bellman target using dis-
tributional Bellman updates through quantile regression, which adjusts the sup-
port of each of the equally divided probabilities.  

3.3. Quantum Neural Networks 

The quantum neural networks used to implement the QR distributional Q 
learning algorithm are created by following the design in [27]. The photonic ga-
tesutilized in this work are: interferometer, displacement, rotation, squeeze, and 
Kerr (non-Gaussian) gates (Figure 5). The right plot of Figure 5 shows one 
layer of the network, which can be repeated to form a multi-layer structure of 
networks.  

Typically the expected sum of future rewards is used to train an agent in RL. 
Distributional RL takes this idea one step further by computing the full distribu-
tion of the random returns. C51 fixes supports at equal intervals and finds the 
probability distribution from the output of the network. However, QR distribu-
tional Q learning sets probability values at equal intervals and gets the supports 
from the network output (middle plot in Figure 5). 

The final action selection is still based on the average of the value distribution. 
However, holding the knowledge of the whole distribution gives more informa-
tion than simply estimating one expectation. The Q learning process is to reduce 
the gap between the predicted value and the target value. Naturally, distribution-
al RL process is to minimize the distance between the predicted distribution and 
the target distribution.  

In Q learning, the output of the network is the Q value for each action, but the 
output of the QR network in distributional RL is the quantile distribution for 
each action as shown in Figure 5. There is one distribution for each action, 
computing the expected value of this distribution as its Q value, and then select-
ing the action with the highest Q value. 

4. Results 

The numerical simulations of our quantum neural networks are conducted with 
Strawberryfields [26]. 

4.1. Results on Grid World 

The performance of our algorithms on the grid world is shown in Figure 6. In 
this particular environment, it seems that the quantum QR distributional Q 
learning algorithm works better with 3 or 6 quantiles than other options. The 
numerical summary of their impact on the performance of the algorithm is in 
Table 1. 

4.2. Results on MDP Chain 

Two competing strategies of machine learning are the exploration of new possi-
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bilities and the exploitation of old certainties. Balancing exploration and exploi-
tation is a fundamental issue in RL. The dilemma is between acting on what the 
agent already knows and taking risks to try something it has not experienced, 
which could potentially lead to better rewards than the known ones. Finding the 
correct balance between these two strategies is not easy as neither is consistently 
better than the other. Exploitation might be a good decision for achieving short 
term goals but exploration might result in a long term success. 

Common strategies for exploration such as ε-greedy do not work well when 
deep exploration is required. Bayesian techniques that can explore a shallow en-
vironment efficiently cannot do well in a deep structure, as this could lead to an 
exponentially larger number of trials. Inspired by the work in [30], we compare 
the abilities of quantum QR distributional Q learning and quantum Q learning 
to explore a MDP chain. The results (Figure 7) show that quantum QR distribu-
tional Q learning does a better exploration than quantum Q learning. The 
learning curves reveal that quantum Q learning can only learn the suboptimal 
policy and more importantly, they show that quantum Q learning spends a lot of 
timeoscillating rather than actually exploring the environment at the beginning 
of each run. The optimal and suboptimal episode lengths are both 3 as the start-
ing state is s0. The results in this section provide another proof of knowing the 
value distribution instead of its expected value is beneficial.  
 
Table 1. The average rewards and average episode lengths are based on 5 runs of the 
same experiments with 100 episodes, which show the detailed influence of different 
number of quantiles on the performance of quantum QR distributional Q learning. 

Numerical summary of the influence by the number  
of quantiles on quantum QR distributional Q learning 

Number  
of Quantiles 

2 3 4 5 6 

Average  
Rewards 

0.89 0.982 0.954 0.952 0.954 

Average  
Episode Lengths 

14.04 13.44 12.45 11.63 11.28 

 

 
Figure 5. On the left, there is the architecture of the neural networks for Q learning to compute the Q function (assuming there 
are 4 actions and W is a collection of parameters for the networks), in the middle, there is the architecture of the neural networks 
for QR distributional Q learning to compute the distribution over returns (assuming there are 4 actions and 3 quantiles, and W is 
a collection of parameters for the networks), and on the right, there is the physical representation of the actual parametrized 
circuit structure for a CV quantum neural network made of photonic gates: interferometer, displacement, rotation, squeeze, and 
Kerr (non-Gaussian) gates. The output is the Fock space measurements. More details of this quantum network can be found in 
[20] [21] [22] [27].  
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Figure 6. These plots along with Table 1 show the detailed impact of choosing different 
number of quantiles on the performance of quantum QR distributional Q learning. 
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Figure 7. These plots show that quantum QR Distributional Q learning of 6 quantiles with 
two layers of quantum networks can find the optimal policy (going right) while the 
standard quantum Q learning with two layers of quantum networks can only discover the 
suboptimal policy (going left). At the beginning, they both do not know where to go which 
can be seen from their oscillating rewards, but eventually they each find a policy to 
converge. The shortest episode length is 3 from S0 to both ends. 
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5. Conclusions 

In RL, the state-action value function Q(s, a) represents the expected return for 
taking action a in state s. Instead of using a scalar expected return, distributional 
RL algorithms compute a full distribution over these returns, which makes the 
learning more accurate and faster than previous methods. QR distributional Q 
learning employs quantile regression to minimize the Wasserstein distance be-
tween the target distribution and the predicted distribution by adjusting their 
supports. The output of the QR network is a set of supports that form the core of 
the quantile distribution definition.  

The problem this study is concerned with is that of quantum RL. Research has 
shown that the quantum approach to machine learning can result in improved 
performances. The work covered in this report examines the implementation 
and performance of QR distributional Q learning on quantum computers. 
Learning the full distribution over returns rather than their expectation is the 
main idea of distributional RL. Therefore, our aim is to evaluate the features of 
quantum QR distributional Q learning, by testing its ability to collect rewards in 
a grid world with a different number of quantiles and then comparing its capa-
bility of exploring a MDP chain environment with standard quantum Q learn-
ing. Our findings demonstrate that quantum QR distributional Q learning can 
explore the environment more efficiently than quantum Q learning.  
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