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Abstract 
This paper considers the variance optimization problem of average reward in 
continuous-time Markov decision process (MDP). It is assumed that the state 
space is countable and the action space is Borel measurable space. The main 
purpose of this paper is to find the policy with the minimal variance in the 
deterministic stationary policy space. Unlike the traditional Markov decision 
process, the cost function in the variance criterion will be affected by future 
actions. To this end, we convert the variance minimization problem into a 
standard (MDP) by introducing a concept called pseudo-variance. Further, by 
giving the policy iterative algorithm of pseudo-variance optimization prob-
lem, the optimal policy of the original variance optimization problem is de-
rived, and a sufficient condition for the variance optimal policy is given. Fi-
nally, we use an example to illustrate the conclusion of this paper. 
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1. Introduction 

The Postal Service Company’s catalogue information system, inventory issues, 
and supply chain management issues are all early successful applications of the 
Markov decision process. Later, many real-life problems, such as sequential as-
signments, machine maintenance issues, and secretarial issues, can be described 
as dynamic Markov Decision Processes (MDP) model. They are finally solved 
very well by MDP [1] [2]. 

This paper considers the variance optimization problem of average reward in 
continuous-time Markov decision process. It is assumed that the state space is 
countable and the action space is Borel measurable space. The main purpose of 
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this paper is to find the policy with the minimal variance in the deterministic 
stationary policy class, which is different from the mean-variance criterion 
problem. The study of the mean-variance criterion problem is generally based 
on the discount criterion or the average criterion. In the literature of MDPs, 
many studies focus on the problem of expected reward optimization in finite 
stage, the discounted MDP in infinite stage and the average reward problem in 
infinite stage [2] [3]. By establishing the optimal equation, then the existence of 
optimal policy is proved, and finally the policy iteration type algorithm is used to 
solve the MDP problem. However, in real-life, the optimal criteria of this un-
constrained optimization problem are often not unique, such as queuing system 
and network problems. So we introduce variance to choose the optimal strategy.  

Variance is an important performance metric of stochastic systems. In finan-
cial engineering, we use the mean to measure the expected return, and the va-
riance to measure the risk. The mean-variance problem of the portfolio can be 
traced back to Markowitz [4]. Then the Markowitz’s mean-variance portfolio 
problem has been studied [5]-[13], the decision maker’s expected reward is often 
assumed to be a constant, and then the investor chooses a policy with a given ex-
pected return to minimize this risk, we can see that the Markowitz mean-variance 
portfolio model is a model of maximization of return and minimization of risk. 
However, given expected return which may not be maximal, an optimal policy in 
Markowitz’ mean-variance portfolio may not be optimal in the usual sense of 
variance minimization problems for MDPs. Moreover, more and more real-life 
situations such as queuing systems and networks can be described as MDPs ra-
ther than stochastic differential equations, so Markowitz’s mean-variance port-
folio problem should be extended to MDPs. For mean-variance problem of the 
MDPs, as in [14] [15] [16], we aim to obtain a variance optimal policy over a set 
of policies where the average reward or discounted reward is optimal, so the va-
riance criterion can be transformed into an equivalent average or discount crite-
rion. However, when the mean criterion is not optimal, it is not clear how to de-
velop a policy iteration algorithm to solve the problem. For discrete-time, dis-
count and long-run average variance criterion problem has been studied in [17] 
[18]. They mainly consider the variance optimization problem, and do not con-
strain the mean. For continuous-time, the variance of the average expected re-
turn has been defined in deterministic stationary policy. The finite-horizon ex-
pected reward is defined as below. 

( ) ( )( ){ }0
, , d

Tf
T iV i f E r X t f t= ∫ ,                 (1.1) 

The variance of f, ( )2 ,i fσ , is given by: 

( ) ( )( ) ( ){ }2
2

0

1, lim , d ,
Tf

i TT
i f E r X t f t V i f

T
σ

→∞
= −∫         (1.2) 

However, the variance function of average expected return of the continuous-time 
in this paper is given by 

( )( )( ){ }2

0

1li ,m d
Tf f f

iT
fE r X t t

Tση η
→∞

= −∫ ,            (1.3) 
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The long-run expected average reward is defined as below.   

( )( ){ }0

1lim , d
Tf f

iT
X tE r f t

T
η

→∞
= ∫ .                 (1.4) 

The main work of this paper is to find the iterative algorithm of the optimal 
policy under the variance criterion (minimum variance) in the countable state 
space and the Borel measurable action space. For countable state space, the re-
ward function ( ),r i a  may be unbounded, the expected average reward fη , 
may not be infinite. To guarantee the finiteness of fη , we will impose the fol-
lowing Assumption 1. Next, we use a unique invariant probability measure of 
Markov chain to denote the average expected return and variance. To this end, 
we will impose the following Assumption 2, 3, 4. Suppose that Assumptions 1, 2, 
3, and 4 are satisfied. We have established a variance criterion. Under the va-
riance criterion, we define the cost function ( ) ( )( )2

, , fm i a r i a η= − , where 
( ),r i a  is the system reward at the current stage with state i and action a, and 
fη  is the expected average reward. Obviously, the cost will be affected by future 

actions, so, fη  is also affected by future actions. The traditional MDPs differs 
from this. The cost function and state transition probability depend only on the 
current state and the action selected on this stage. Therefore, the conclusions in 
[14] [15] [16] do not apply to this model. In this paper, we define a pseu-
do-variance ( ) ( )( )2

, ,m i a r i aλ λ= − , where λ  is a given constant [17]. Ob-
viously, the value of the pseudo-variance at current stage will not be affected by 
future actions. It is only related to the current state and current actions, so the 
pseudo-variance minimization problem is a standard MDP. In this paper, we 
prove the relation between variance and pseudo-variance. Unlike the literature 
[17], we define the deviation of the deterministic stationary policy f for conti-
nuous-time MDP. It is proved that the deviation function and the objective func-
tion satisfy the Poisson equation, and the uniqueness of the Poisson equation is 
proved. Based on this, we develop a continuous time MDP policy iterative algo-
rithm to get the optimal strategy, and we prove the convergence of the policy 
iterative algorithm. 

2. Model and Optimization Criteria 

The control model associated with the continuous-time MDP that we are con-
cerned with is the five-tuple 

( )( ) ( ) ( ){ }, , , . | , , ,S A i A i S q i a r i a⊆ ∈               (2.1) 

1) A denumerable set S, called the stated space, which is the set of all the states 
of the system under observation. 

2) A Borel space A, called the action space. Let  

( ) ( ){ }: , | , .K i a i S a A i= ∈ ∈                   (2.2) 

be the set of all feasible state-action pairs. 
3) The transition rates ( )| ,q j i a  which satisfy ( )| , 0q j i a ≥  for all ( ),i a K∈  

and j i≠ . Moreover, we assume that the transition rates ( )| ,q j i a  are conserv-
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ative, i.e., 

( ) ( )| , 0 ,
j S

q j i a i a K
∈

= ∀ ∈∑                   (2.3) 

and stable, which means that 

( )
( )

( ): sup i
a A i

q i q a i S∗

∈
= < ∞ ∀ ∈                  (2.4) 

where ( ) ( ): | , 0iq a q i i a= − ≥  for all ( ),i a K∈ . In addition, ( )| ,
j S

q j i a
∈
∑  is 

measurable in ( )a A i∈  for each fixed ,i j S∈ . 
4) A measurable real-valued function ( ),r i a  on K. called the reward func-

tion, which is assumed to be measurable in ( )a A i∈  for each fixed i S∈ . 
The above model is a classical continuous-time MDP model [3]. In MDP, the 

policies have stochastic Markov policy, stochastic stationary policy and determi-
nistic stationary policy. This paper only considers finding the minimal variance 
in the deterministic stationary policy class. So we only introduce the definition 
of deterministic stationary policy. 

Definition 1. A deterministic stationary policy is a function ( ):f S A i→  
such that ( )f i  is in ( )A i  for all i S∈ . A deterministic stationary policy is 
simply referred to as a stationary policy. 

Let F be the set of all deterministic stationary policies. 
For each f F∈ , the associated transition rates are defined as 

( ) ( )( )| , : | , , ,q j i f q j i f i i j S= ∀ ∈                (2.5) 

the reward function is given by 

( ) ( )( ), : , .r i f r i f i i S= ∀ ∈                   (2.6) 

Under Assumption 1, the transition function ( ), ,fp i t j  is regular [3]. 
Assumption 1: 
a) There exist a nondecreasing function 1ω ≥ , on S, and constants 1 0c > , 

and 1 0b > , such that  

( ) ( ) ( )1 1 0| , i
j S

j q j i a c i bω ω δ
∈

≤ − +∑ , 

for all ( ),i a K∈ , where 00 01, 0, 0i iδ δ= = ≠ . 
b) ( ) ( )0q i L iω∗ ≤  for all i S∈ , with 0 0L >  and ( )q i∗  as in (2.4). 
c) ( ) ( ),r i a M iω≤ , for all ( ),i a K∈ , with some 0M > . 
d) The action set ( )A i  is compact for each i S∈ , the functions ( ),r i a ,  
( )| ,q j i a  and ( ) ( )| ,

k S
k q k i aω

∈
∑  are all continuous in ( )a A i∈  for each fixed 

,i j S∈ . 

e) There exists a nonnegative function ω′  on S and constants 0, 0c b′ ′> > , 
and 1 0L >  such that 

( ) ( ) ( )1q i i L iω ω∗ ′≤  and ( ) ( ) ( )| ,
j S

j q j i a c i bω ω
∈

′ ′ ′ ′≤ +∑     (2.7) 

For all ( ),i a K∈ , with K and ( )q i∗  as in (2.2) and (2.4), respectively. 
For all f F∈  and an arbitrary initial state i S∈ , there is a unique probabil-
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ity space ( )( ), , f
iB PΩ Ω , where the probability measure f

iP  is determined by f 
and ( ), ,fp i t j . f

iE  is denoted as the expectation operator f
iP . Define the 

expected average reward and variance respectively. 

( ) ( )( ){ }0

1lim , d
Tf f

iT
i E r f tt

T
Xη

→∞
= ∫ ,               (2.8) 

( ) ( )( )( ){ }2

0

1l d,im
Tf f f

iT
fi E r X t t

Tση η
→∞

= −∫ .           (2.9) 

Remark 1. From (2.9), we can see that the definition of f
ση  is different from 

the definition of the continuous-time MDP average reward variance criterion in 
([3], chapter 10), where the value of cost function will be affected by future ac-
tions, so this is not a standard MDP optimization problem. 

Let’s give some marks first. For any measurable function 1ω ≥  on S, we de-
fine the ω -weighted supremum norm .

ω  of a real-valued measurable func-
tion ω  on S by  

( )
( )

: sup
i S

u i
u

iω ω∈
= ,                      (2.10) 

and the Banach space ( ) { }: :B S u uω ω
= < ∞ . Similarly, we can define ( )2B S

ω
. 

We will use the Markov chain invariant measure to represent Equation (2.8) and 
Equation (2.9). To this end, we impose the following three Assumptions (see [3]). 

Assumption 2: 
For each f F∈ , the corresponding Markov process ( ){ }X t  with transition 

function ( ), ,fp i t j  is irreducible, which means that, for any two states i j≠ , 
there exists a set of distinct states 1, , mi i i=   such that 

( ) ( )2 1| , | , 0mq i i f q j i f >
.                  (2.11) 

Under Assumptions 1(a) and 2, for each f F∈ , Propositions C.11 and C.12 
yield that the Markov chain ( ){ }X t  has a unique invariant probability measure, 
denoted by fµ , which satisfies that ( ) ( )lim , ,f ft

j p i t jµ
→∞

=  (independent of 
i S∈ ) for all j S∈ . Thus, by [3], we have  

( ) ( ) ( ) 1

1

:f f
j S

bj j
c

µ ω ω µ
∈

= ≤∑ ,                 (2.12) 

which shows that the fµ -expectation of ω  (i.e., ( )f ωµ ) is finite. Therefore, 
for all f F∈  and ( )u B Sω∈ , the inequality ( ) ( )u i u i

ω
ω≤  for all i S∈  

gives that the expectation  

( ) ( ) ( ):f f
i S

u u i iµ µ
∈

= ∑                     (2.13) 

exists and is finite. 
Assumption 3:  
With ω  as in Assumption 1, assume the following conditions are true: 
a) There exists constants 0, 0c b′ ′> > , such that 

( ) ( ) ( )2 2
2 2| ,

j S
j q j i a c i bω ω

∈

≤ − +∑                (2.14) 
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For all ( ),i a K∈ . 
b) There exists a nonnegative function ω′′  on S and constants 0, 0c b′′ ′′> >  

and 2 0L ≥ , such that 

( ) ( ) ( )2
2q i i L iω ω∗ ′′≤ , ( ) ( ) ( )| ,

j S
j q j i a c i bω ω

∈

′′ ′′ ′′ ′′≤ − +∑    (2.15) 

for all ( ),i a K∈ , with K and ( )q i∗  as in (2.2) and (2.4). 
Assumption 4: 
a) The control model (2.1) is uniformly ω-exponentially ergodic, which means 

the following: there exist constants 0β > , and 3 0L >  0δ >  such that  

( )( ) ( ) ( )3sup ef t
i f

f F
E u X t u L u iβ

ω
µ ω−

∈
− ≤           (2.16) 

for all i S∈ , ( )u B Sω∈ , and 0t ≥ . 
b) The control model (2.1) is uniformly 2ω -exponentially ergodic, the defini-

tion as in (a) 
Remark 2. Under the premise of the above assumptions, it can be known from 

the literature [3] that for the given f F∈ , the average reward and variance de-
fined by Equation (2.8) and Equation (2.9) are both a number, independent of 
the initial state. They can represent the expectation form of invariant measures 

fµ , such that 

( ) ( ): ,f
f f

i S
r i f iη µ

∈

= = ∑rµ ,                (2.17) 

( ) ( ): ,
S

f
f f

i
m i f iση µ

∈

== ∑mµ .               (2.18) 

We denote r  as an S-dimensional column vector composed by element ( ),r i f  
and m  as an S-dimensional column vector composed by element ( ),m i f  

where ( ) ( )( )2
, : , ,fm i f r i f i S f Fη= − ∀ ∈ ∈ .         (2.19) 

Our optimization goal is to select f F∗ ∈  that satisfies the following condition 

minf f

f Fσ ση η
∗

∈
=                       (2.20) 

By (2.20), the variance minimization problem of Markov chains can be defined 
as below. 

{ } { }arg min arg minf
f

f F f F
f ση

∈

∗

∈
= = mµ             (2.21) 

Remark 3. From (2.21), we see that the value fη  will be affected by future 
actions. There the problem (2.21) is different from standard MDP.  

Even if we consider m  as a cost function, we can’t directly use the existing 
conclusions to get the optimal policy. 

3. Analysis and Optimization 

In this section, we will define a pseudo-variance minimization problem. By proving 
the relation between the pseudo-variance and the variance, the optimization 
problem of (2.21) is transformed into the pseudo-variance optimization problem. 
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Further, the optimal policy for variance optimization problem can be derived by 
the policy iterative algorithm for the pseudo-variance optimization problem, and 
we can give a sufficient condition for the variance optimal policy. 

3.1. Pseudo-Variance Minimization 

We define a new cost function as below. 

( ) ( )( )2
, , , .i f r i fm i S f Fλ λ ∀ ∈ ∈= −               (3.1) 

where λ  is a given constant. We denote λm  as an S-dimensional column vector 
composed by element ( ),m i fλ  and we have 

( )2:λ λ= −m r Ι                         (3.2) 

where Ι  denote an S-dimensional column vector composed by element 1. We 
define pseudo-variance function as below 

.f
fσλ λη = mµ                          (3.3) 

Obviously, we have 
f f
σλ ση η= , when fλ η= . 

the pseudo-variance minimization problem of Markov chains can be defined as 
below. 

{ } { } ( ) ( )( )2* arg min arg min arg m n ,if

f F f
f

F f
f

F i S
f i r i fλ σλ λη µ λ

∈ ∈ ∈ ∈

= −= = ∑mµ  (3.4) 

From (3.4), we can see that λm  is an instant cost and it has no relation to future 
actions, Below, we study the relation between these two problems (2.21) and (3.4). 
First, we have the following lemma about the relation between f

σλη  and f
ση . 

Lemma 1. For all f F∈ , the corresponding variance and the pseudo-variance 
has the following relation 

( )2
.f f f

σλ ση η η λ= + −                       (3.5) 

Proof: From (3.1) and (3.3) 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )
( )

22

2 2

2 2 22

2

, ,

, 2 ,

2 2 2 2 2

f f f
f f

i S i S

f f f f
f

i S

f f f f f f f

f f

i r i f i r i f

i r i f r i f

σλ

σ

σ

η µ λ µ η η λ

µ η η λ η η λ

η η λ η λ η η λ η η λ

η η λ

∈ ∈

∈

= − = − + −

 = − + − + − −  

= + + − + − − +

= + −

∑ ∑

∑
 

The lemma is proved.                                                
Below we discuss how to solve the pseudo-variance minimum problem. Be-

cause (3.4) is a traditional MDP optimization problem, we can solve the problem 
with the policy iterative algorithm (3.4). Before using the policy iterative algo-
rithm to solve the problem (3.4), we need to prove the existence of the pseu-
do-variance optimal policy. We suppose that Assumption 1, 2, 3, and 4 are all sa-
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tisfied, we give the following theorems and lemmas. 
Theorem 1. A pair ( ) ( )2,g u B S

ω
∗ ∈ ×  is said to be a solution to the pseu-

do-variance of average-reward optimality equation if 

( )
( )( ) ( ) ( )2

inf , | ,
a A i j S

g r i a u j q j i a i Sλ∗

∈ ∈

 
= − + ∀ ∈ 

 
∑        (3.6) 

Lemma 2. Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Consider an 
arbitrary fixed state 0i S∈ . Then, for all f F∈  and discount factors 0α > , 
the relative differences of the discounted-reward function f

αη , namely,  

( ) ( ) ( )0
f f fu i i i i Sα α αη η= − ∈                  (3.7) 

are uniformly ω-bounded in 0α >  and f F∈ . More precisely, we have   

( ) ( )2

2
3 2

01 0,f L M
u i f Fα ω

λ
ω α

δ
+

 ≤ + > ∈  .         (3.8) 

where ( ) ( )( )( )2

0
e , df f t

ii E r X t f tα
αη λ

∞ − = −  ∫ .           (3.9) 

Prove: According to the literature [3], Lemma 2 can be known. 

where ( ) ( )( )2
, , ,m i i S ff r i f Fλ λ= − ∀ ∈ ∈ . 

Theorem 2. Suppose that Assumptions 1, 2, 3, and 4 hold. Then: 
There exists a solution ( ) ( )2,g u B S

ω
∗ ∈ ×  to pseudo variance of average- 

reward optimality equation. Moreover, the constant g∗  coincides with the op-
timal average reward function σλη∗ , i.e. 

( )g i i Sσλη∗ ∗= ∀ ∈                     (3.10) 

Prove: Our assumptions ensure the existence of a policy attaining the mini-
mization in the pseudo-variance of average-reward optimality equation, that is, 

( )( ) ( ) ( )2
, | , , 0

j S
g r i f u j q j i f i S tλ∗ ∗ ∗

∈

= − + ∀ ∈ ≥∑ ,   (3.11) 

Therefore, Proposition 7.3 of the literature [3] gives ( )fg i i Sσλη
∗∗ = ∀ ∈ . 

As a consequence, ( )g iσλη∗ ∗=  for every i S∈ , and, moreover, f ∗  is op-
timal policy of pseudo-variance. 

In the case where the existence of the pseudo-variance optimal policy is guar-
anteed, we use the policy iterative algorithm to get the optimal policy. 

Suppose that Assumptions 1, 2, 3, and 4 hold, we gave the following concepts. 
Definition 2. We define the bias of f as  

( ) ( )( )( )2

0
, d .f f f

ih i E r X t f t i Sσλ σλλ η
∞  = − − ∈  ∫          (3.12) 

Assumption 4: Gives 

( )( )( ) ( ) ( )
2 2 2

3, ef f t
iE r X t f L M iδ

σλλ η λ ω−− − ≤ +  

( ) ( ) ( ) ( ) ( )2 2
2 32

30
e df t L M i

h i L M i tδ
σλ

λ ω
λ ω

δ
∞ − +

≤ + =∫  
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( )
2

2
3sup f

f F

L M
hσλ ω

λ
δ∈

+
≤ . 

So, fhσλ  is finite and in ( )2B S
ω

. Moreover, the bias is uniformly bounded in 

the 2ω -norm. 
Next we introduce the Poisson equation, which is one of the main results of 

this paper. 
Theorem 3. Let f F∈ . We say that a pair ( ) ( )2,f fh B Sσλ σλ ω

η ∈ ×  is a solu-

tion to the Poisson equation for f F∈  if  

( )( ) ( ) ( )2
, | , ,f f

j S
r i f h j q j i f f F i Sσλ σλη λ

∈

= − + ∀ ∈ ∈∑ .    (3.13) 

Proof: Our assumptions (in particular, Assumptions 1 and 4) allow us to in-
terchange the sums and integrals in the following equations: 

( ) ( )

( )( )( )( ) ( )

( )( )( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

2

0

2

0

2

0

2

0

| ,

, d | ,

, | , d 0

, , , | , d

, | , , , d

f

j S

f f
j

j S

f
j

j S

j S k S

k S j S

h j q j i f

E r X t f t q j i f

E r X t f q j i f t

r k f p j t k q j i f t

r k f q j i f p j t k t

σλ

σλλ η

λ

λ

λ

∈

∞

∈

∞

∈

∞

∈ ∈

∞

∈ ∈

 = − −  

= − −

= −

= −

∑

∑ ∫

∑∫

∑∑∫

∑ ∑∫

 

( )( ) ( )

( )( ) ( )

( )( ) ( ) ( )( )

( )( )

2

0

2

0

2 2

2

d, , , d
d

, , ,

, ,

,

f
k S

f
k S

f
k S

f

r k f p i t k t
t

r k f p i t k

r k f k r i f

r i fσλ

λ

λ

λ µ λ

η λ

∞

∈

∞

∈

∈

= −

= −

= − − −

= − −

∑∫

∑

∑
 

We have 

( )( ) ( ) ( )2
, | ,f f

j S
r i f h j q j i fσλ σλη λ

∈

= − +∑ . 

The theorem is proved.                                               
Finally, we should prove the uniqueness of the solution of Poisson’s equation. 
Theorem 4. For every f F∈ , the solutions to the Poisson equation for f are 

of the form ( ),f fh zσλ σλη +  with z any real number. Moreover, is the unique solu-
tion to the Poisson equation  

( )( ) ( ) ( )2
, | ,f f

j S
r i f h j q j i f i Sσλ σλη λ

∈

= − + ∀ ∈∑          (3.14) 

for which ( ) 0f
f hσλµ =  

Prove: Suppose now that ( ),f fhσλ σλη  and ( ),f fhσλ σλη ′  are two solutions to the 
Poisson equation, simultaneous transformation of both sides of Equation (3.14) 
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σλ

σλ

η λ

λ

λ

∈

∈ ∈

∈ ∈

∈

= −

+

= − +

= − +

∑∫

∑ ∑∫

∑ ∑∫ ∫

∑∫ ∫

 

( )( )( ) ( ) ( )

( )( )( ) ( ) ( ) ( )

( )( )( ) ( )( ) ( )
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, d 0, , ,
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T Tf f
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T f f f
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T f f f f
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E r X t f t h j p i t j

E r X t f t h j p i T j h i

E r X t f t E h X T h i

σλ

σλ σλ

σλ σλ

λ

λ

λ

∈

∈

= − +

= − + −

= − + −

∑∫

∑∫

∫

       (3.15) 

Because ( ),f fhσλ σλη ′  is also the solution of the Poisson equation, therefore 

( )( )( ) ( )( ) ( )
2

0
, d

Tf f f f f
i iT E r X t f t E h X T h iσλ σλ σλη λ ′ ′= − + −∫       (3.16) 

(3.15) subtract (3.16) 

( )( ) ( )( ) ( ) ( ) .f f f f f
iE h X t h X t h i h i i Sσλ σλ σλ σλ ′ ′− = − ∀ ∈         (3.17) 

letting t →∞ , it follows from Assumption 4 that ( ) ( ) ( )f f f f
f h h h i h iσλ σλ σλ σλµ ′ ′− = − , 

showing that the functions fhσλ  and fhσλ′  differ by the constant ( )f f
f h hσλ σλµ ′− . 

It remains to show that ( ) 0f
f hσλµ = . 

( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )( ) ( ) ( ) ( )

( )( )( ) ( ) ( )( ) ( )

2

0

2 2

0

2 2

0 0

d

, | , d

d , d 0

f f
f f

i S

f f
i f

i S

f f
i f

i S j S

f
i f f

i S i S

h h i i

E r X t t i

E r X t r i f h j q j i f t i

E r X t t i r i f i t

σλ σλ

σλ

σλ

µ µ

λ η µ

λ λ µ

λ µ λ µ

∈

∞

∈

∞

∈ ∈

∞ ∞

∈ ∈

=

 = − −  

 
= − − − − 

 
 = − − − −  

∑

∑∫

∑ ∑∫

∑ ∑∫ ∫

 

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

2 2

0 0

2 2

0 0

2 2

0 0

, , , d , d

, , , d , d

, d , d
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f f
i S j S i S

f f
j S i S i S

f f
j S i S

r j f p i t j i t r i f i t

r j f i p i t j t r i f i t

r j f j t r i f i t

λ µ λ µ

λ µ λ µ

λ µ λ µ

∞ ∞

∈ ∈ ∈

∞ ∞

∈ ∈ ∈

∞ ∞

∈ ∈

= − − −

= − − −

= − − −

=

∑ ∑ ∑∫ ∫

∑ ∑ ∑∫ ∫

∑ ∑∫ ∫

      

Remark 4. Given f F∈ , we can determine the gain and the bias of f by solv-
ing the following system of linear equations. First, determine the i.p.m. (invariant 
probability measure) vas the unique nonnegative solution (by Proposition C.12) to  

( ) ( )

( )

| , 0

1

f
j S

f
j S

q j i f j

j

µ

µ
∈

∈

=



=


∑

∑
                     (3.18) 

Then, as a consequence of lecture [2], the gain  
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( )( ) ( )2
,f

f
j S

r j f jσλη λ µ
∈

= − ∈∑   

and the bias ( )2
fh B Sσλ ω
∈  of f form the unique solution to the system of linear 

equations 

( )( ) ( ) ( )

( ) ( )

2
, | ,

0

f f

j S

f
f

i S

r i f h j q j i f

h i i

σλ σλ

σλ

η λ

µ
∈

∈

 = − +



=


∑

∑
          (3.19) 

Proposition 1: Policy iterative algorithm. 
Step 1. From f F∈ , we can choose a arbitrary. 
Step 2. (Strategy evaluation process) Determine the pseudo-variance and devi-

ation of the stationary policy as in Remark 4. 
Step 3. (Policy Improvement Process) Choose f ′  as an improvement policy 

such that 

( )( ) ( ) ( )2
arg min , | , .f

f F j S
f r i f h j q j i fσλλ

∈ ∈

 
′∈ − + 

 
∑      (3.20) 

Step 4. If f f′ = , the iteration stops, it is the optimal strategy to minimize the 
pseudo variance, otherwise, replace f with f ′  and return to step 2. 

Proposition 2: Convergence of the strategy iterative algorithm. 
When the assumptions 1, 2, 3, 4 are established, let 1f F∈  be an arbitrary 

initial policy, let nf F∈  be the sequence of policies obtained from the policy 
iterative algorithm. The one of the following results is hold. 

1) After a finite number of policy iterations, the algorithm converges to the 
pseudo variance of average-reward optimal strategy.  

2) as n →∞ , the sequence nf
σλ

η  converges to the optimal AR function value 
f
σλη
∗

. 

3.2. Variance Minimization 

The minimum pseudo-variance problem has been solved. The following theorem 
gives that when the pseudo-variance reaches a minimum, the variance is also 
minimized. 

Theorem 5. For any policy f F∈ , we compute fη  with (2.8), and set fλ η= .  
If we obtain an improved policy f ′  such that f f

σλσλη η′ ≤ , then we have f f
σ σ

η η′ ≤ . 

If f f
σλ σλ

η η′ < , such that f f
σ σ

η η′ < . 

Prove: With lemma 1, we have 

( )2
.f f f

σλ σ
η η η λ= + −                      (3.21) 

( )2
.f f f

σσλη η η λ′ ′ ′= + −                      (3.22) 

Let (3.22) subtract (3.21) and substituting fλ η= , we obtain 

( )2f f f f f f
σ σ σλσλη η η η η η′ ′ ′− = − − −                (3.23) 

Obviously, if f f
σλ σλ

η η′ ≤ , then f f
σ ση η′ ≤ ; if f f

σλ σλ
η η′ < , then f f

σ σ
η η′ < . 
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With Theorem 3: when the pseudo-variance reaches a minimum, the variance 
also reaches a minimum. A sufficient condition for the variance minimization 
problem is obtained. 

4. Examples 

This section, we give an example to illustrate the conclusions of this paper. 
Example 1 (Control / /M M ∞  of queue systems) 
The system state ( )X t  indicates the number of customers waiting at the mo-

ment (including being served), the arrival rate λ  is fixed, and the service rates µ  
can be controlled. When the system status is { }0,1,i S∈ = … , the decision-maker 
takes an action a from the allowed action set ( )A i . When the system is empty, we 
may impose that ( )0 : 0A = . For each 1i ≥ , let ( ) [ ]1 2: ,A i µ µ=  with constants 

2 1 0µ µ> > , [ ]1 2,µ µ µ∈ , which may increase or decrease the service rate. This 
action incurs a cost ( ),c i a . In addition, suppose that there is a benefit represented 
by 0p >  for each arriving customer, and then the net income of the system is 

( ) ( ), ,r i a pi c i a= −                        (4.1) 

This is a continuous time MDP model, the corresponding transition rate are 
given as follows. 

For each [ ]1 2,a µ µ∈ , 

( ) ( ) ( )0 | 0,0 1| 0,0 : , | 0,0 0, 2,q q q j jλ= − = − = ≥         (4.2) 

For all ( ) [ ]1 21, ,i a A i µ µ≥ ∈ = , 

( ) ( )
if 1,
if ,

| , :
if 1,

0 otherwise

i j i
u i a j i

q j i a
i a j i

λ
λ

µ

= +
− + + == 

− = −
 ,

            (4.3) 

Our goal is to find the existence of a variance optimal policy. To this end, we 
consider the following assumptions: 

D1. 0µ λ− > . 
D2. The function ( ),c i a  is continuous in ( )a A i∈  for each fixed i S∈ , 

and ( ) ( ) ( )sup , 1a A i c i a M i∈ < +  for all i S∈ , for some constant 0M ≥ . 
Proposition 3: under conditions D1, D2, the above controlled satisfies As-

sumptions 1, 2, 3, and 4. Therefore, there exists an variance optimal stationary 
policy. 

Proof: Let ( )1
1:
3

c µ λ= − , 1 2:b µ λ= + , ( ) : 1i iω = + , for all i S∈ . Then, 

from (4.2) and (4.3), we have 

( ) ( ) ( ) ( )1 2| 0, 0 +
j S

j q j a c a A iω λ ω µ λ
∈

= ≤ − + ∀ ∈∑         (4.4) 

Moreover, for all [ ]1 21, ,i a µ µ≥ ∈  

( ) ( ) ( ) ( )1 2| ,
j S

j q j i a i a c iω µ λ ω µ λ
∈

= − − + ≤ − + +∑ .       (4.5) 

which verifies Assumption 1(a). 
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On the other hand, by (4.2)-(4.3), we have 

( ) ( )( ) ( ) ( )1q i i iµ λ µ λ ω∗ ≤ + + = + ,               (4.6) 

So Assumption 1(b) follows. 
By (4.1) and D2, we have ( ) ( ) ( ),r i a p M iω≤ +  , for all i S∈ , which implies 

Assumption 1(c). 
By (4.2)-(4.3) and D2, we see that Assumption 1(d) holds. 
To verity Assumption 1(e), let 

( ) ( )( ): 1 2i i iω′ = + + , for each i S∈                (4.7) 

Then by (4.2)-(4.3) we have 

( ) ( ) ( ) ( )q i i i i Sω µ λ ω∗ ′≤ + ∀ ∈                 (4.8) 

( ) ( ) ( ) ( ) [ ]2 1 2| , 4 , ,
j S

j q j i a i a i Sω λ µ ω µ µ
∈

′ ′≤ + ∀ ∈ ∈∑       (4.9) 

which imply Assumption 1(e) with 

( )1 2: , : 4 , : 0.L c bµ λ λ µ′ ′= + = + =  

Obviously, Assumption 2 follows from the description of the model. 
We verity Assumption 3, by D1 and (4.2)-(4.3), for all i S∈ , ( )i A i∈ , we 

have 

( ) ( ) ( ) ( )2 2
2

1| 0, 3 0 ,
2j S

j q j a bω λ µ λ ω
∈

= ≤ − − +∑         (4.10) 

(there is 2 0b > , (presence is guaranteed by (D1))  

( ) ( ) ( ) ( )3 3
3| 0, 7 0 .

j S
j q j a bω λ µ λ ω

∈

= ≤ − − +∑          (4.11) 

(there is 3 0b > , (presence is guaranteed by (D1)) 
For ( ) [ ]1 21, ,i a A i µ µ≥ ∈ = , 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2

2

2

2
2

| ,

2 2 3

2 ( 1) 4 2 3 2
1
2

j s
j q j i a

i a i a

i i a i a

i b

ω

µ λ µ λ

µ λ µ λ µ λ λ

µ λ ω

∈

= − − − − − +

≤ − − + + − + − + + +

≤ − − +

∑

   (4.12) 

( ) ( )

( ) ( ) ( )
( )( ) ( ) ( )
( ) ( )

( ) ( )

3

3 2

3 2

2

3
3

| ,

3 3 3 7 3

3 1 9 9

3 3 7 3

j s
j q j i a

i a i a i a

i i i

a i a i a

i b

ω

µ λ λ µ µ λ

µ λ µ λ µ λ

λ µ µ λ

µ λ ω

∈

= − − + − + − − − +

= − − + + − + −

+ − + − − − +

≤ − − +

∑

      (4.13) 

( ) ( ) ( )2q i i i Sω µ λ ω∗ ′′≤ + ∀ ∈                  (4.14) 

Let ( ) ( ) ( ) ( )33
2

1: 1 , :
2

i i i cω ω µ λ′′ = = + = − , 2b  as above, ( ):c µ λ′′ = − , 3b b′′ =   

and 2L µ λ= + , by (4.10)-(4.14), we see that Assumption 1(d) holds. 
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Finally, we verify Assumption4, by (4.2)-(4.3) we have, for each fixed f F∈ , 

( )( ) ( )( )| , | 1, 1 , , 1
j k j k

q j i f i q j i f i i k S k i
≥ ≥

≤ + + ∀ ∈ ≠ +∑ ∑  

which, together with Proposition C.16 of [3], implies that the corresponding 
Markov process ( )X t  is stochastically ordered. Thus, Assumption 4(a) follows 
from Proposition 7.6. Similarly, the assumption 4(b) is established. 

Assumption 1, 2, 3 and 4 holds. So, the Proposition is proved. 

5. Discussion and Conclusion 

In this article, it defines the variance optimization problem of continuous-time 
Markov decision processes, which is different from the mean-variance optimiza-
tion problem previously studied. By defining pseudo-variance, the deviation of 
the deterministic stationary policy f and the Poisson equation, a series of con-
cepts and theorems, we prove the existence of the variance optimal strategy in 
the deterministic stationary policy space, and give the policy iterative algorithm 
to calculate optimal policy. Finally we prove the convergence of the policy itera-
tive algorithm. 
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