
Journal of Information Security, 2019, 10, 91-102
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2019.102005 Apr. 1, 2019 91 Journal of Information Security

Android Security and Its Rooting—A Possible
Improvement of Its Security Architecture

Nick Rahimi1, John Nolen2, Bidyut Gupta2

1Department of Computer Science, Southeast Missouri State University, Cape Girardeau, MO, United States
2Department of Computer Science, Southern Illinois University, Carbondale, IL, United States

Abstract
The advent of technology brought forth a myriad of developments that have
streamlined the manner through which people operate. With the growing
need to be at the forefront of communication and information, people have
resorted to the use of mobile phones with a great percentile preferring an-
droid oriented systems. Similarly, the systems are susceptible to the various
threats posed by technology with due summations showing that security flaws
and unauthorized access to sensitive data pose a huge threat to the overarch-
ing efficacy of the android systems. The research presented lays a primal fo-
cus on how users can improve intrinsic android features through the use of
Google services, rooting, custom kernels and ROM techniques. The research
also focused on how Android security features can be improved when using
or installing applications. Results indicate that the rooting process is the most
conclusive and safest scheme. Summations drawn are indicative of the fact
that system security is a moot research topic that requires further research
into how it can be improved.

Keywords
Android Security, Sandbox, Bricking, Firmware, Rooting

1. Introduction

For the past decade and a half, the incorporation of Android software into mo-
bile phones has taken over the contemporary market. Summative figures drawn
from a myriad of research show that at least 52.8% of smartphone users own an
Android device with the numbers increasing by the day [1]. This inadvertently
means that with the rise in numbers comes the rise in attacks and threats to the
operating systems [2]. Prior to highlighting the various issues faced by Android

How to cite this paper: Rahimi, N., Nolen,
J. and Gupta, B. (2019) Android Security
and Its Rooting—A Possible Improvement
of Its Security Architecture. Journal of
Information Security, 10, 91-102.
https://doi.org/10.4236/jis.2019.102005

Received: August 5, 2018
Accepted: March 29, 2019
Published: April 1, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2019.102005
http://www.scirp.org
https://doi.org/10.4236/jis.2019.102005
http://creativecommons.org/licenses/by/4.0/

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 92 Journal of Information Security

systems, one has to understand the inherent structure of the software addendum
to their levels of protection and system architecture [3].

Android developers have focused on ensuring that the security architecture of
the systems is dependent on a Linux Based Kernels which ensures for the isola-
tion of applications from each other in order to ensure for cohesion [4]. The
isolation technique requires signatures and various permissions in order to run
accordingly with the security model being intricate by design. The intricacies are
developed in a manner through which the user is able to revamp and change the
preferences as they deem fit. An example can be given by going through the set
security settings so as to change the preferences as the user deems fit. Most
times, the tasks may seem to be daunting although the Android operating system
comes intact with descriptions on how one can change the settings [5].

Various scholars have presented musings that are solely focused on how such
attacks can be mitigated which sets the precedent for this research. The most
popular scheme of mitigating the attacks is through the rooting of the devices
which helps unlock various features hidden on Android devices for better user
experience [6]. It is imperative for users however to understand that rooting an
Android device comes with its own demerits and ethical issues with the topmost
being that the warranty is rendered null and void. In most cases also, the An-
droid device can become unresponsive in a situation called “bricking” [7] [8].

The subsequent tenets of the paper will follow through giving a description of
the security architecture, the security model of the android systems secure and
the user security roles. The fifth section highlights the efficacy of the Google ser-
vices systems and how they mitigate the inconsistencies that come with the sys-
tem. The 6th section lays a focus on rooting and its efficacy addendum to its de-
merits with conclusions being accorded in the final chapter.

2. Security Architecture

Being an open platform, Android accords both its normal and knowledgeable
users the ability to place multi-layered security features on every device which
helps boost their experience. The intrinsic framework used by the Android op-
erating system is shown in Figure 1 in which every layer works in tandem with
the other layers to ensure that the system is secure. The layers are all sandboxed
into a parent layer which bases its ideas from the Linux security component of
isolating them to allow for cohesion [9].

2.1. Linux Kernel

The first layer which is the Linux kernel is embedded in the device and provides
many hardware applications and software. Derivatives from research show that
the hardware drivers that are used by the kernel are inclusive of the display data,
the camera, and the Bluetooth devices. This makes it hard for one to try and re-
vamp it as any mistakes can lead to the device structure crashing. Android de-
velopers have mitigated the occurrence of such situations through the minimiza-
tion of permission access to the structural tenets [10].

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 93 Journal of Information Security

Figure 1. Android security framework [2].

2.2. HAL Component

The subsequent layer is the hardware abstraction layer which creates a nexus
between the device software and the hardware. Users are also limited from con-
figuring this layer on their own as the systems depend on it for data analysis and
efficacy of the system. The HAL component works in thrall with the Linux Ker-
nel to ensure that the user experience is maximized [11].

2.3. Native Libraries and Android Runtime

The HAL layer comes intact with two isolated tenets that include the Android
runtime and the native libraries. Owing to the fact that the Android device is
formulated through the use of a Linux Kernel, a good chunk of the C and C+++
libraries are required for the development process. The Android runtime feature
contains a milieu that allows for the system to run effectively. Previously known
as Dalvik, the runtime feature helps in the compilation of the system codes when
installing into the mobile device [12].

2.4. Android Framework Library and Application Layer

This component of the Android system contains the required APIS used by Java
systems that can help in the building of the android systems. The application
layer is vital in the provision of the data and graphical user interface require-

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 94 Journal of Information Security

ments of the devices. The application layer, on the other hand, comes intact with
system applications which are separated from the user installed apps. The appli-
cations depend highly on the resources accorded by the system from the lower
end of the framework.

3. Security Model

There are several concepts to the security model that allow the system to provide
better security for all users. The model consists of a kernel-based application
sandbox, secure IPC, system services with reduced privileges, code signing, and
application permissions.

3.1. Kernel-Based Application Sandboxing

The kernel-based application sandbox gives each application separate UIDs (User
IDs) and GIDs (Group IDs). This prevents applications from accessing other ap-
plications’ data. As such, a downloaded application will not have access to sys-
tem.

3.2. Secure Inter-Process Communication (IPC)

Seeing as certain applications do need access to other applications, secure IPC
gives access to the important applications to communicate with one another.
This is done via local sockets, binders, and intents with most applications utiliz-
ing the local sockets to securely communicate with other apps. The binders are
also key in the implementation of the code into the Android environment and
they are only activated whenever the application is running. Research indicates
that the intents help in the collection of the information on the operations that
have to be performed addendum to the previous events [13].

3.3. Reduced Privileges

As noted prior, there is a myriad of native codes that are contained within the
application framework of the Android systems. This leads to the Android de-
velopers being forced to make most of the system services to run by utilizing
fewer privileges in a bid to help in the prevention of malicious use of the system
resources. The native codes are accorded various signatures which are similar to
certificate authorities as shown in the next section.

3.4. Code Signatures

Compared to IOS systems, Android systems contain a different set of code sig-
nage in which they do not require authorization from the user during the sign-
ing process. The default process, however, requires the code signing of the ap-
plications which is later on applied on the security model. The signatures also
use public keys for the cryptographic process addendum to X.509 certificates.
Code signatures differ depending on the Java JAR signing scheme. Code signa-
tures provide authenticity for said application with an example of a code signa-

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 95 Journal of Information Security

ture being shown below:
<permissions>
..
<item name =

“com.google.android.googleapps.permission.ACCESS_GOOGLE_PASSWORD”
package = “com.google.android.gsf.login” protection = “2”/>
...
</permissions> [14].
There are several reasons as to why code signatures are important with the

first being making sure updates for an app are coming from the same author
(same origin policy) addendum to establishing trust relationships between ap-
plications. The aforementioned roles are both implemented through the drawing
of comparisons between the certificates signed on the installed target application
against the update certificate [14]. Over-the-air (OTA) updates, as well as appli-
cation patches, depend on code signatures to ensure authenticity and identity.

3.5. Android Application Permissions

Finally, Android application permissions have been implemented to aid the user
in preventing certain applications from gaining access to important system re-
sources. Figure 2 is a representation of the installation process of an application
in which the application requests for permission and limits access to other appli-
cations. The Android system allows the user to choose whether to install the

Figure 2. Android permissions [14].

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 96 Journal of Information Security

application after which they cannot revoke the privileges. The Linux kernel sorts
the process of privilege accordance and giving access to the system files and oth-
er applications.

4. How to Keep Android Applications Secure

There are several approaches to take when securing Android apps and programs
and from two different standpoints. As a developer, there are certain actions one
can do to better ensure security for their users. One such example would be
through penetration testing in which the developer identifies and mitigates any
risks that the user is susceptible to. The penetration testing process takes into
account a number of processes which include attack surfacing, analysis of the
application interactions with the files, the storage capability of the system and
the communication between the entities. The second standpoint comes from the
securing of the application by the average user in order to enhance its productiv-
ity.

4.1. Attack Surface

The attack surface focuses on the primary functions of the application. Activities
like the generation of random characters and fuzz testing can help in the preven-
tion of the applications from undue crashing. More time should be spent on ap-
plication components that deal with key system components.

4.2. Interactions with Devices/Applications

Interacting with other devices or applications can be done via IPC mechanics as
previously discussed. A remote procedure call can work with the socket-based
communications to enhance the interactions. The intents and broadcast features,
on the other hand, work to limit the provision of unnecessary permissions to
various applications thus reducing the risk factor [15].

4.3. Communication

Communications outside of a system can be another risk factor. Usually, most
popular applications will utilize some form of cryptography to limit unwar-
ranted access. When developing an application, it is quite imperative for the user
to never hardcode a crypto-key, as applications on Android are open source
meaning intrusion is imminent [16].

4.4. Storage

Testing an application which assesses sensitive data is vital to fixing all loopholes
that may be apparent. Ensuring the proper read/write permissions are allowed
with maximum restrictions when pertaining to system files can also limit the
number of applications gaining access to the user data. When penetration testing
data applications the developer has to assess, review what information is being
stored to ensure needless data is being accumulated.

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 97 Journal of Information Security

5. User Optional Security Roles

A user has his or her own responsibilities to utilize the correct security features
needed to complete the CIA triad [17]. The following security tips may require
some technical expertise; regardless, these are some tips for any user to keep
from dealing with malicious attacks. These steps may require additional research
within the given references as there is a dearth of knowledge existent in con-
temporary research.

Security Tips

• Storing Data—By default, most data go into internal storage of an Android
device which allows for fast access. You may also encrypt files with a key us-
ing the KeyStore which protects a file using a password. External storage of
applications or data is the least secure method like take, for example, an SD
card inserted into a phone are globally readable/writeable by default; howev-
er, with newer versions of Android, it is possible to encrypt external SD
cards. For the safest storage, use cryptography schemes as most applications
work with a Java Cryptography Architect in which they generally use 256-bit
AES, 256-bit public keys, CBC, CTR, or GCM modes, ensure integrity with
HMAC-SHA1/256/512 or GCM [18]. Using full or file disk encryption is an
exemplary way to provide confidentiality for one’s Android device which
uses AES (128), CBC, and SHA256 to encrypt information.

• Screen Lock—Whether it be from a key lock, iris scanner, fingerprint scan-
ner, PIN lock, or facial recognition software, this is one of best ways to keep
an unwanted passerby from accessing data on your device.

• Use Application Lockers—There are thousands of applications within the
Google Play Store which can be used in preventing users from accessing cer-
tain apps such as the Gallery or Camera. It is however best to check reviews
and the popularity of said application to ensure the safety of your data. Not
all applications on the Play Store are genuine.

• Keep OS Up-to-date—This should really go without saying, but many users
disregard OTA updates for their phones and generally find them annoying to
deal with. It only takes a couple of minutes, and OTA patches usually contain
several security features and fixes that could prevent malicious actions on a
device.

• Manage Permissions—As stated prior, the user has to ensure that the appli-
cations they are installing are not frivolous with its required permissions to
be granted. With Android’s Marshmallow firmware, a user can now prevent
an application from using permission. This may be contradictory to what was
stated earlier, but the application will not run correctly with this in mind and
will result in explicitly asking the user for granted permissions to run. However,
this may ensure certain third-party applications do not handle certain hard-
ware or files if the feeling of concern is there. Figure 3 shows good layered
control of what happens before and during installing an application.

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 98 Journal of Information Security

Figure 3. Multiple layers of defense [21].

• Remote Wipe and Tracking—Another feature Android provides is remote

wiping and tracking in case a thief grabs your phone.
• Backing Up Files—Users are able to back-up their applications and files to a

hard drive or to the cloud.
• Malware Prevention—A good way to prevent malware is to not click on any-

thing that looks too good to be true. In other words, be careful what websites
you visit, pop-up ads that may seem desirable to click on, and knowing the
applications you download are trusted.

• Encrypted Messaging—There are several apps on the Play Store that will use
point-to-point encryption as a means to message another party. Again, these
apps come with their own storage and likely store every message you send. If
a server becomes compromised in which you utilize, there is a good chance
your messages are out in the open afterward [19] [20].

6. Google Services

Most Android devices use Google services as pre-installed software packages to
enhance user experiences. Google Play is a collection of applications that may be
purchased and/or downloaded. Google services provide a variety of tasks to aid
users filter through their cloud database. Actually, Google Services does quite a
bit more for Android devices in terms of security. Google Services verifies appli-
cation licenses within its Play Store, delivers the OTA updates, cloud storage,
and scans their Play Store for harmful applications. Due to Android’s popularity,
this does not mean that Google Services finds all malicious applications in their
cloud. There are several precautions a user must take before installing any ap-
plication as was discussed earlier.

7. Rooting

Rooting is something many Android developers originally sought-after Android
became popular. Prior Android versions did not allow as much customization as
they do today. Much of the information contained in this document related to
rooting is provided through personal experiences and literal research knowledge.
There is a lot of speculation whether rooting a phone is worth it anymore as

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 99 Journal of Information Security

there are many downsides to rooting as soon discussed. Even though rooting is
not as prevalent today as it used to be, there are many benefits to rooting.

7.1. Benefits

One of the most sought-after benefits of rooting an Android device is to remove
bloatware from it. Bloatware can be said to be applications pre-installed on
phones by Google, the device developer, and carrier. There are times these
pre-installed applications may become problematic with device batteries and re-
sources as some of them will act as background processes. Today, this is less of
an issue, as newer versions of Android allow a user to disable pre-installed ap-
plications which prevent any events that the application can incur such as au-
to-updates and notifications. However, disabling an application does not delete
the application, so the app just stays in storage for no good use. Rooting a device
gives the user complete say on whether an application is significant or insignifi-
cant.

Another reason to root one’s device and is a big oversight is to provide root
access to all files within the device. Root access can be worrisome for most, but,
in the right hands, it can be beneficial to the proficient ones. Root access allows
users to increase the core speeds of their processors by overclocking them to de-
sired amounts. The negative is also true; one can lower CPU speeds to increase
battery life. Figure 4 shows an example root application called SetCPU [22] that
provides the change to the CPU governor’s minimum and maximum perfor-
mances. The application is also able to change a multitude of other aspects of an
Android device such as memory utilization, temperature control, and show
benchmarks or speed tests. The SetCPU will not run on any device as a device
needs to be rooted in order to run it.

With that said, there are a plethora of applications on the Play Store that pro-
vide several impressive tasks such as SetCPU that require root access to utilize.
There are root applications that will let the user automate any tasks, apps that

Figure 4. Set CPU [22].

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 100 Journal of Information Security

back up data in all the current states they are in which includes a game and the
progress you have made within it, and apps that block ads that freeware come
with. The final advantage is that a rooted device gives the user the added advan-
tage of installing a custom kernel and custom ROM.

7.2. Disadvantages

First and foremost, the greatest disadvantage to any rooted device revolves
around ethical issues of warranty. When rooting an Android device one of the
steps involves unlocking the boot loader. Many times, the boot loader will go
through a continuous loop, and this happens often. A very simple step for most
devices in most cases, will void the warranty of the said device. The second de-
merit that stems from the rooting process is the device becoming bricked which
leads to them becoming insignificant. Suffice to say that if a device is completely
rooted but happens to receive a physical device related issue, there are ways to
un-root a device.

There are times an incompetent root user may mess with system settings too
much like in the application SetCPU and cause the device to brick. This situation
is no good. There are no warranties for such recklessness. Minor tweaks to sys-
tem files may completely brick a device, so it is very important to do any re-
search towards a goal before accomplishing any of these tasks.

Security is another issue that comes with rooting the devices. Come to think of
it, there are many times a rooter will need to downgrade his or her device firm-
ware to unlock the boot loader. Once the root is complete, installing any OTA
updates is out of the question. Root users tend to turn off those notifications
immediately upon completely rooting a device. The problem with this shows
that root users must use a downgraded version of Android, usually containing
public security flaws and custom bugs.

7.3. Custom ROMS and Kernels

Better defined as custom read-only memory, the systems are vital in maximizing
the security and productivity of an android system. This is shown especially in
cases where the android firmware downgrades as a result of the rooting process
with Custom ROMS updating the system with bug and security fixes. Another
desirable aspect of installing a custom ROM is that many ROM developers are
incredibly fast to release newer versions of their ROMs to be on par with the
newest stock firmware released. This combined with the fact that one can modify
the taskbar or revamp the intrinsic designs of the systems show that the Custom
ROMS are vital components of the android systems. Finally, all the features of
many root apps and a custom kernel, custom ROMs provide better battery dura-
tions, better benchmark performances, and removal of bloatware.

A custom kernel provides everything the normal Linux-based kernel provides
but with many tweaked settings to hardware settings. Basically, it is a revamped
version of the stock kernel. It also provides many of the benefits as many root
applications provide such as Set CPU as shown in Figure 5.

https://doi.org/10.4236/jis.2019.102005

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 101 Journal of Information Security

Figure 5. Kernel Menu [23].

8. Conclusion

Security is an amorphous concept that has to be upheld in a bid to limit any cas-
es of data breaches addendum to low user satisfaction rates. The intricate fea-
tures of the Android systems have made it easy for hackers to gain access to data
which calls for the formulation or usage of previous security techniques such as
rooting. The preceding analysis shows that the various layers of the Android
system are all susceptible to interference with the merits and demerits of rooting
being explained succinctly. Further research is however required into the im-
portance of the technique in upholding the integrity of the system.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] ComScore Reports January 2016 US Smartphone Subscriber Market Share (2016).

[2] Enck, W., Ongtang, M. and McDaniel, P. (2009) Understanding Android Security.
IEEE Security & Privacy, 7, 50-57. https://doi.org/10.1109/MSP.2009.26

[3] Davi, L., Dmitrienko, A., Sadeghi, A.R. and Winandy, M. (2010) Privilege Escalation
Attacks on Android. International Conference on Information Security, Chengdu,
17-19 December 2010, 346-360.

[4] Gunasekera, S. (2012) Android Security Architecture. In: Gunasekera, S., Ed., An-
droid Apps Security, Apress, Berkeley, 31-45.
https://doi.org/10.1007/978-1-4302-4063-1_3

[5] Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A. and Albayrak, S. (2010) An

https://doi.org/10.4236/jis.2019.102005
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1007/978-1-4302-4063-1_3

N. Rahimi et al.

DOI: 10.4236/jis.2019.102005 102 Journal of Information Security

Android Application Sandbox System for Suspicious Software Detection. 5th Inter-
national Conference on Malicious and Unwanted Software, Nancy, 19-20 October
2010, 55-62. https://doi.org/10.1109/MALWARE.2010.5665792

[6] Sun, S.T., Cuadros, A. and Beznosov, K. (2015) Android Rooting: Methods, Detec-
tion, and Evasion. 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, Denver, 12-16 October 2015, 3-14.
https://doi.org/10.1145/2808117.2808126

[7] Duffy, J. (2011) A Concise Guide to Android Rooting. Pcmag.
https://uk.pcmag.com/feature/112875/a-concise-guide-to-android-rooting

[8] Gaikar, V. (2013) Android Rooting and Risks Involved.

[9] Brickell, E.F., Hall, C.D., Cihula, J.F. and Uhlig, R. (2011) US Patent No. 7,908,653.
US Patent and Trademark Office, Washington DC.

[10] Android Open Source Project (2017).

[11] Siddha, V., Ishiguro, K. and Hernandez, G.A. (2012) US Patent No. 8,254,285. US
Patent and Trademark Office, Washington DC.

[12] Georgiev, A.B., Sillitti, A. and Succi, G. (2014) Open Source Mobile Virtual Ma-
chines: An Energy Assessment of Dalvik vs. ART. IFIP International Conference on
Open Source Systems, San José, 6-9 May 2014, 93-102.
https://doi.org/10.1007/978-3-642-55128-4_12

[13] Dubey, A. and Misra, A. (2013) Android Security Attacks and Defenses. 51.

[14] Nelenkov.blogspot.com (2017) Code Signing in Android’s Security Model.

[15] Elgamal, T. and Hickman, K.E. (1997) US Patent No. 5,657,390. US Patent and
Trademark Office, Washington DC.

[16] Rahimi, N., Reed, J.J. and Gupta, B. (2018) On the Significance of Cryptography as a
Service. Journal of Information Security, 9, 242-256.
https://doi.org/10.4236/jis.2018.94017

[17] Cherdantseva, Y. and Hilton, J. (2013) A Reference Model of Information Assur-
ance & Security. 2013 International Conference on Availability, Reliability and Se-
curity, Regensburg, 2-6 September 2013, 546-555.
https://doi.org/10.1109/ARES.2013.72

[18] Security Tips/Android Developers.
https://developer.android.com/training/articles/security-tips

[19] Brewis, M. (2017) How to Secure Android: 14 Top Tips for Securing Your Phone or
Tablet. PC Advisor.
http://www.pcadvisor.co.uk/how-to/google-android/how-secure-android-14-top-ti
ps-for-securing-your-phone-or-tablet-whatsapp-3637549/

[20] Rahimi, N., Sinha, K., Gupta, B., Rahimi, S. and Debnath, N.C. (2016) LDEPTH: A
Low Diameter Hierarchical p2p Network Architecture. 14th International Confe-
rence on Industrial Informatics, Poitiers, 19-21 July 2016, 832-837.
https://doi.org/10.1109/INDIN.2016.7819275

[21] Lifehacker.com (2017).
http://lifehacker.com/how-secure-is-android-really-1446328680

[22] Android Authority (2017) Best Speed Booster Apps for Android.
http://www.androidauthority.com/best-speed-booster-apps-android-108889/

[23] (2017) How to Install Official CyanogenMod 11 ROM on Android One Devices.
International Business Times, UK.
http://www.ibtimes.co.uk/how-install-official-cyanogenmod-11-rom-android-one-
devices-1482622

https://doi.org/10.4236/jis.2019.102005
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1145/2808117.2808126
https://uk.pcmag.com/feature/112875/a-concise-guide-to-android-rooting
https://doi.org/10.1007/978-3-642-55128-4_12
https://doi.org/10.4236/jis.2018.94017
https://doi.org/10.1109/ARES.2013.72
https://developer.android.com/training/articles/security-tips
http://www.pcadvisor.co.uk/how-to/google-android/how-secure-android-14-top-tips-for-securing-your-phone-or-tablet-whatsapp-3637549/
http://www.pcadvisor.co.uk/how-to/google-android/how-secure-android-14-top-tips-for-securing-your-phone-or-tablet-whatsapp-3637549/
https://doi.org/10.1109/INDIN.2016.7819275
http://lifehacker.com/how-secure-is-android-really-1446328680
http://www.androidauthority.com/best-speed-booster-apps-android-108889/
http://www.ibtimes.co.uk/how-install-official-cyanogenmod-11-rom-android-one-devices-1482622
http://www.ibtimes.co.uk/how-install-official-cyanogenmod-11-rom-android-one-devices-1482622

	Android Security and Its Rooting—A Possible Improvement of Its Security Architecture
	Abstract
	Keywords
	1. Introduction
	2. Security Architecture
	2.1. Linux Kernel
	2.2. HAL Component
	2.3. Native Libraries and Android Runtime
	2.4. Android Framework Library and Application Layer

	3. Security Model
	3.1. Kernel-Based Application Sandboxing
	3.2. Secure Inter-Process Communication (IPC)
	3.3. Reduced Privileges
	3.4. Code Signatures
	3.5. Android Application Permissions

	4. How to Keep Android Applications Secure
	4.1. Attack Surface
	4.2. Interactions with Devices/Applications
	4.3. Communication
	4.4. Storage

	5. User Optional Security Roles
	Security Tips

	6. Google Services
	7. Rooting
	7.1. Benefits
	7.2. Disadvantages
	7.3. Custom ROMS and Kernels

	8. Conclusion
	Conflicts of Interest
	References

