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 Abstract 
Population stratification is always a concern in association analysis. There is a 
debate on the extent of the problem in less extreme situations (Thomas and 
Witte [1], Wacholder et al. [2]). Wacholder et al. [3] and Ardlie et al. [4] 
showed that hidden population structure is not a serious threat to case-control 
designs. We propose a method of assessing the seriousness of the population 
stratification before designing association studies. If population stratification 
is not a serious problem, one may consider using case-control study instead 
of family-based design to get more power. In a case-control design, we com-
pare chi-square statistics from a structured population (a union of two sub-
populations) and a homogeneous population with the same prevalence and 
allele frequencies. We provide an explicit formula to calculate the chi-square 
statistics from 17 parameters, such as proportions of subpopulation, allele 
frequencies in subpopulations, etc. We choose these factors because they have 
potential to cause false associations. Each parameter takes a random value in 
a chosen range. We then calculate the likelihood of getting opposite conclu-
sions in the structured and the homogeneous populations. This is the likelih-
ood of having false positives caused by population stratification. The advan-
tage of this method is to provide a cost effective way to choose between using 
case-control data and using family data before actually collecting those data. 
We conclude that sample sizes have a significant effect on the likelihood of false 
positive caused by population stratification. The larger the sample size is, the 
more likely to have false positive if the population structure is ignored. If the 
sample size will be smaller than 200 by budget constraints, then case-control 
study may be a better choice because of its power. 
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1. Introduction 

After Human Genome Project, the studies of genetic variation in human popu-
lation have been developed extensively [5] [6]. Genome-wide association study 
has become a major tool in identifying genetic variants associated with disease 
risk. It is well documented that case-control samples from non-homogeneous 
populations could cause bias in association measures [1]. Therefore, population 
stratification is always a serious concern in association analysis [7] [8]. When a 
candidate gene shows a positive association with a disease, one always wonders 
whether the gene is truly responsible for the disease, or it is merely more com-
mon in a subpopulation that is more likely to suffer from the disease [9]. Tho-
mas and Witte [1] gave a good summary about the problem. To avoid this prob-
lem, many family-based methods were proposed, which includes TDT (Spielman 
et al. [10]) and its extensions. Devlin and Roeder [11] and Pritchard and Rosen-
berg [12] proposed to test population stratification by using unlinked markers. 
Shin and Lee [13] proposed a mixed model to reduce spurious genetic associa-
tions produced by population stratification in genome-wide association studies. 
One way to detect stratification is to compute the genomic control λ  [14]. 
Some programs have been developed for inferring genetic ancestry [15]. Prin-
cipal component analysis has also been used in adjusting for confounding due to 
population stratification in DNA methylation studies [16]. Some studies have 
been conducted to explore associations between some common SNPs and social 
deprivation measure of socio-economic status, which have to deal with struc-
tured population data [17]. 

Wacholder et al. [2] argued that the population stratification is not a serious 
threat to the reliability of cohort and case-control studies. Wacholder et al. [3] 
showed that ignoring ethnicity among non-Hispanic U.S. Caucasians only caus-
es a small bias: sometimes less than one percent and almost always less than ten 
percent. This example shows that population stratification does not always cause 
significant bias. 

Ardlie et al. [4] tested hidden population structures in four case-control samples, 
US whites and African Americans with hypertension, US whites and Polish whites 
with type 2 diabetes. They found weak evidence in African American sample only. 
The study conducted by Pankow et al. [18] provided further evidence that the 
population stratification is not a serious threat to case-control studies. 

If population stratification is a serious problem, the reliability of case-control 
studies will be doubtful, and any positive results from case-control studies have 
to be reconfirmed by studies based on family-member controls. On the other 
hand, if this is not a serious problem, we do not have to spend valuable resources 
on collecting family-based data to just prevent bias caused by population strati-
fication. Many people believe that case-control study is more powerful than fam-
ily-based study (Morton and Collins [19], Bacanu et al. [20], Spence et al. [21]). 
Therefore, it is desirable to have a method to assess the seriousness of the popu-
lation stratification before designing association studies. There is no doubt that 
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population stratification will cause bias. It is also agreed that population stratifi-
cation is caused by variations in allele frequencies and disease risks across sub-
populations (Thomas and Witte [1], Wacholder et al. [2]). It is unclear when this 
bias will be big enough to change the conclusion of the association study. 

In this paper we propose a method to assess the seriousness of population 
stratification. In order to quantitatively study the bias caused by population stra-
tification, we consider two populations that have exactly the same marker allele 
frequencies, the same disease gene frequencies, and the same penetrance. Nev-
ertheless, one population is structured (denoted as Population I) and the other is 
homogeneous (denoted as Population II). Seventeen factors in a population are 
analyzed. We choose these factors because they have potential to cause false as-
sociations. In a case-control design, at a biallelic marker, a standard chi-square 
statistic is used to test the association between the marker locus and an unknown 
disease locus. We want to know when data from the structured population and 
the homogeneous population yield different conclusions. Namely, we want to 
know when we will get a false positive (or a false negative) by neglecting the 
population structure. Our approach is to calculate the chi-square statistic from 
17 parameters. We will randomly choose each parameter within its range, and 
then compare the chi-square statistics for the structured and the homogeneous 
populations. The percentage of false conclusions (positive or negative) will be 
recorded. This is the likelihood of the false conclusion caused by population 
stratification. The key step in our approach is an explicit formula for calculating 
marker allele frequencies among affected people and among normal people. This 
formula is given in Section 4. Since the rate of false positive depends on the 
ranges we have chosen for the parameters, we write the explicit formula in a 
computer program, in which the ranges of all parameters can be chosen by the 
user, and the program will calculate the likelihood of the false conclusion caused 
by population stratification under the chosen circumstance. 

We will use the following notations: 
1) I: population I (structured), which consists of two homogeneous subpopu-

lations 1 and 2. 
2) II: population II (homogeneous). 
3) 1: subpopulation 1. 
4) 2: subpopulation 2. 
5) D: diseased people. 
6) N: normal people. 
7) M: a marker allele. 
8. A: a disease allele. 
9) iφ , 0,1,2i = : prevalence, which is the likelihood of getting affected given 

genotype AA , AA , AA, respectively. 
10) ( )P ⋅ : probability. 

2. Methods 

Population I is a union of two homogeneous subpopulations, and there is no 
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admixture. The reason we choose two subpopulations instead of three or more is 
the general belief that the effect of population stratification will decrease as the 
number of subpopulations increases, and we want to consider the worst case 
scenario. We will compare population I (structured) with population II (homo-
geneous). In order to compare populations I and II, they have to have something 
in common. We assume that they have the same allele frequencies and pene-
trance. 

In a case-control design, consider a biallelic marker locus with alleles M and 
M . Suppose allele M appears more often in cases than in controls. Suppose the 
disease is caused by an unknown disease gene with several disease alleles 

1 2, , , sA A A  and a normal allele A . We assume that the disease alleles were 
introduced into the general population at different time, and there were multiple 
ancestral haplotypes. Suppose the disease allele jA  was introduced into the 
general population jn  generations ago. Let { }min jn n≤  be a lower bound of 
the age of the latest mutant disease allele. Suppose n generations ago, the condi-
tional probability of a chromosome having allele M given it has jA  is 

( ) ( )|n
jP M A . Note that the unknown ages of mutant disease alleles are absorbed 

into the unknown incomplete initial association, and they do not cause addi-
tional troubles. Suppose that 1, , sA A  are functionally equivalent disease al-
leles, i.e. the penetrance is ( ) 2| i jP D A A φ=  for 1 ,i j s≤ ≤ , ( ) 1| iP D A A φ=  
for 1 i s≤ ≤ , and ( ) 0|P D AA φ= , where D indicates the disease phenotype. 
Letting 1

s
jj

A A
=

=


, then ( ) ( )1
s

jj P A P A
=

=∑ . For population I, we look at 
Table 1, where ijn  are the number of times that allele appears in the group. For 
example, suppose that the sample contains 100 affected people, among which 20 
with genotype MM, and 50 with genotype MM . Then 11 20 2 50 90n = × + = . 
For population II, ijn  is replaced by ijm . The chi-square statistics are 

( )( )
( )( )( )( )

2
11 12 21 22 11 22 12 21

1
11 12 21 22 11 21 12 22

n n n n n n n n
X

n n n n n n n n
+ + + −

=
+ + + +

 

( )( )
( )( )( )( )

2
11 12 21 22 11 22 12 21

2
11 12 21 22 11 21 12 22

m m m m m m m m
X

m m m m m m m m
+ + + −

=
+ + + +

 

1X  and 2X  are chi-square statistics with one degree freedom for population 
I and II, respectively. Consider a sample with 1N  cases and 2N  controls. In-
stead of taking a random sample, we calculate ijn  and ijm  using the following 
formula, where D and N indicate diseased and normal, and I and II indicate 
populations I and II. 

( ) ( )( )11 1 21 12 |  and , 2 1 |  and n N P M D I n N P M D I= = −
 

 
Table 1. A case-control study. 

 M M  

Diseased 11n  12n  

Normal 21n  22n  
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( ) ( )( )12 2 22 22 |  and , 2 1 |  and n N P M N I n N P M N I= = −
 

( ) ( )( )11 1 21 12 |  and , 2 1 |  and m N P M D II m N P M D II= = −
 

( ) ( )( )12 2 22 22 |  and , 2 1 |  and m N P M N II m N P M N II= = −
 

Note that 1X  depends on ( )|  and P M D I  and ( )|  and P M N I , and 2X  
depends on ( )|  and P M D II  and ( )|  and P M N II . These conditional proba-
bilities ( )|  and P M D I , ( )|  and P M N I , ( )|  and P M D II , and  
( )|  and P M N II  depend on 17 parameters. We will give an explicit formula in 

(7)-(10) for calculating these conditional probabilities when given values of the 
parameters. The parameters are as follows: 

1) ( )1P  is the proportion of subpopulation 1. 
2) ( )2P  is the proportion of subpopulation 2. 
3) ( )|1P M  is the frequency of marker allele M in subpopulation 1. 
4) ( )| 2P M  is the frequency of marker allele M in subpopulation 2. 
5) ( )|1P A  is the frequency of disease allele A in subpopulation 1. 
6) ( )| 2P A  is the frequency of disease allele A in subpopulation 2. 
7) n is a lower bound of the age of the latest mutant disease allele. 
8) θ  is the genetic distance between marker locus and the disease gene. 
9) 1 2m N N= =  is the number of cases, and it is also the number of controls. 
10) ( )0 1φ  is the likelihood of getting affected in subpopulation 1 given ge-

notype AA . 
11) ( )1 1φ  is the likelihood of getting affected in subpopulation 1 given geno-

type AA . 
12) ( )2 1φ  is the likelihood of getting affected in subpopulation 1 given ge-

notype AA. 
13) ( )0 2φ  is the likelihood of getting affected in subpopulation 2 given ge-

notype AA . 
14) ( )1 2φ  is the likelihood of getting affected in subpopulation 2 given ge-

notype AA . 
15) ( )2 2φ  is the likelihood of getting affected in subpopulation 2 given ge-

notype AA. 
16) ( ) ( )|  and 1nP M A  is the association between M and A in population 1, n 

generations ago. 
17) ( ) ( )|  and 2nP M A  is the association between M and A in population 2, n 

generations ago. 
Populations I and II have the same allele frequencies and the same penetrance: 

( ) ( ) ( ) ( )| | , | |P M I P M II P A I P A II= =              (1) 

( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, ,I II I II I IIφ φ φ φ φ φ= = =             (2) 

We also assume that, n generations ago, populations I and II have the same 
initial association between the marker allele M and the disease allele A, which is

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

|  and |  and 
1 |  and 1 2 |  and 2

n n

n n

P M A II P M A I
P P M A P P M A

=

= +
          

(3) 
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3. Results 

We now calculate the likelihood of false conclusion caused by population strati-
fication in different circumstances. We first choose the ranges for the parameters. 
Each parameter is chosen randomly in the range. For each set of the parameters, 
we can calculate chi-square statistics 1X  and 2X  for structured population I 
and the homogeneous population II. At 5% level, if 1X  and 2X  are at the dif-
ferent sides of 3.8414, i.e. either 1 23.8414X X< <  or 2 13.8414X X< < , we 
then call it a false conclusion (a false positive, or a false negative). This means that 
at 5% level, if we treat the structured population as a homogeneous population (ig-
noring the subpopulation structure), then we get a wrong conclusion. We then 
record the percentage of false conclusions. We will do the same thing at 1% level, 
instead of 3.8414 we will use 6.6345. The ranges of the parameters are the following: 

Circumstance 1. 
1) ( )0 1 1P≤ ≤ , ( ) ( )2 1 1P P= − . 
2) ( )0.1 |1 0.9P M≤ ≤ , ( )0.1 | 2 0.9P M≤ ≤ . 
3) ( )0.05 |1 0.5P A≤ ≤ , ( )0.05 | 2 0.5P A≤ ≤ . 
4) 5 5000n≤ ≤ . 
5) 0 100θ≤ ≤  (in cM). 
6) 100m = . 
7) ( ) ( ) ( )0 1 20 1 0.1 1 0.3 1 0.6φ φ φ≤ ≤ ≤ ≤ ≤ ≤ ,  

( ) ( ) ( )0 1 20 2 0.1 2 0.3 2 0.6φ φ φ≤ ≤ ≤ ≤ ≤ ≤ . 
8) ( ) ( )0 |  and 1 1nP M A≤ ≤ , ( ) ( )0 |  and 2 1nP M A≤ ≤ . 
One million simulations have been run, and the rate of having different con-

clusions in populations I and II has been recorded, which is called the false rate. 
The false rate is 4.84% at 5% significance level; and it is 2.25% at the 1% signi-

ficance level, and it is 0.93% at the 0.1% significance level. The simulations have 
been run for ten million times as well, and the results are 4.82%, 2.27%, and 
0.94%, respectively. So running one million times is accurate enough. The above 
ranges are so wide that we can say that in a case-control study using 100 cases 
and 100 controls, the possibility of getting a false positive caused by ignoring 
unknown population structure is small. 

Next, we want to investigate the effect of each parameter on the false rate. 
Note that in Circumstance 1, the maximum possible ratio of marker allele 

frequencies in two subpopulations is 9. From Table 2 we can see that if we allow 
this maximum ratio to increase, the false rates will increase accordingly. If the 
maximum ratio is 99 instead of 9, the false rate will be doubled. From Table 3 
we can see the effect of changing ranges of disease allele frequencies on the false 
rates. The results are similar to those in Table 2. If we change the ranges of fre-
quencies of both marker and disease alleles, the combined effect is larger (see 
Table 4). But they are still within 10%. 

The disease models and penetrance are difficult to estimate in practice. From 
Table 5, their effects on the false rate are not big. 

The genetic distance between the marker and the disease gene is of cause un-
known. From Table 6, its value does not make big difference on the false rate. 

https://doi.org/10.4236/ojgen.2019.91002


R. F. Jiang, J. P. Dong 
 

 

DOI: 10.4236/ojgen.2019.91002 21 Open Journal of Genetics 
 

The worst case occurs when the marker is at the disease locus, which is not a 
false positive. 

The age of the latest disease mutation and the initial association between 
marker allele and the disease allele are hard to estimate. From Table 7 & Table 8, 
their effects on the false rate are minimum. 

 
Table 2. The false rates. The ranges of marker allele frequencies are changed, everything 
else is the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( )0.1 |1 0.9P M≤ ≤  4.84% 2.25% 0.93% 

( )0.1 |1 0.9P M≤ ≤     

( )0.05 |1 0.95P M≤ ≤  6.60% 3.35% 1.53% 

( )0.05 |1 0.95P M≤ ≤     

( )0.01 |1 0.99P M≤ ≤  8.18% 4.42% 2.15% 

( )0.01 |1 0.99P M≤ ≤     

 
Table 3. The false rates. The ranges of the disease allele frequencies are changed, every 
thing else is the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( )0.1 |1 0.5P A≤ ≤  3.33% 1.35% 0.47% 

( )0.1 |1 0.5P A≤ ≤     

( )0.05 |1 0.5P A≤ ≤  4.84% 2.25% 0.93% 

( )0.05 |1 0.5P A≤ ≤     

( )0.01 |1 0.5P A≤ ≤  6.42% 3.31% 1.57% 

( )0.01 |1 0.5P A≤ ≤     

 
Table 4. The false rates. The ranges of the disease allele frequencies AND marker allele 
frequencies are changed, every thing else is the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( )0.05 |1 0.95P M≤ ≤  8.43% 4.68% 2.39% 

( )0.05 |1 0.95P M≤ ≤     

( )0.01 |1 0.5P A≤ ≤     

( )0.01 |1 0.5P A≤ ≤     

( )0.01 |1 0.99P M≤ ≤  10.22% 5.97% 3.21% 

( )0.01 |1 0.99P M≤ ≤     

( )0.01 |1 0.5P A≤ ≤     

( )0.01 |1 0.5P A≤ ≤     
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Table 5. The false rates. The ranges of the disease penetrance are changed, every thing 
else is the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( ) ( ) ( )0 1 20 1 0.1 1 0.15 1 0.3φ φ φ≤ ≤ ≤ ≤ ≤ ≤  2.63% 1.13% 0.43% 

( ) ( ) ( )0 1 20 2 0.1 2 0.15 2 0.3φ φ φ≤ ≤ ≤ ≤ ≤ ≤     

( ) ( ) ( )0 1 20 1 0.1 1 0.3 1 0.6φ φ φ≤ ≤ ≤ ≤ ≤ ≤  4.84% 2.25% 0.93% 

( ) ( ) ( )0 1 20 2 0.1 2 0.3 2 0.6φ φ φ≤ ≤ ≤ ≤ ≤ ≤     

( ) ( ) ( )0 1 20 1 0.1 1 0.5 1 1φ φ φ≤ ≤ ≤ ≤ ≤ ≤  8.08% 4.29% 2.02% 

( ) ( ) ( )0 1 20 2 0.1 2 0.5 2 1φ φ φ≤ ≤ ≤ ≤ ≤ ≤     

 
Table 6. The false rates. The recombination fraction is changed, every thing else is the 
same as in Circumstance 1. 

 5% level 1% level 0.1% level 

0θ =  11.38% 8.83% 6.27% 

1θ =  4.95% 2.32% 0.97% 

100θ =  4.83% 2.24% 0.92% 

 
Table 7. The false rates. The age of the disease mutation is changed, every thing else is the 
same as in Circumstance 1. 

 5% level 1% level 0.1% level 

5n =  5.90% 3.02% 1.38% 

100n =  4.89% 2.29% 0.95% 

5000n =  4.83% 2.24% 0.92% 

 
Table 8. The false rates. The ranges of the initial association are changed, every thing else 
is the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( ) ( )0 |  and 1 0.3nP M A≤ ≤  4.84% 2.25% 0.93% 

( ) ( )0 |  and 2 0.3nP M A≤ ≤     

( ) ( )0.3 |  and 1 0.6nP M A≤ ≤  4.83% 2.25% 0.92% 

( ) ( )0.3 |  and 2 0.6nP M A≤ ≤     

( ) ( )0.6 |  and 1 1nP M A≤ ≤  4.84% 2.25% 0.93% 

( ) ( )0.6 |  and 2 1nP M A≤ ≤     

( ) ( )0 |  and 1 1nP M A≤ ≤  4.84% 2.25% 0.93% 

( ) ( )0 |  and 2 1nP M A≤ ≤     

 
The proportion of a subpopulation in the whole population is an important 

factor affecting the false rate. From Table 9, the false rate increases 8 times as the  
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proportion changes from 10% to 50%. The worst case occurs when the whole 
population is a union of two equal parts. If only a small part of the sample is 
from a different population (for example 10%), the chance of having a false posi-
tive is small. 

A surprising result comes from Table 10: the false rate increases as sample 
size increases. We offer a possible explanation: if the sample size is small, the bi-
as caused by population stratification is buried among other larger noises; if the 
sample size is large, the bias caused by population stratification becomes a sig-
nificant factor. This phenomenon needs further study. 

4. The Explicit Formula for Calculating Marker Allele  
Frequencies among Affected People and  
among Normal People 

We will give an explicit formula for allele frequencies among cases and controls 
in populations I and II. The frequencies of marker allele and disease allele in 
population I are 

( ) ( ) ( ) ( ) ( )| 1 |1 2 | 2P M I P P M P P M= +  

( ) ( ) ( ) ( ) ( )| 1 |1 2 | 2P A I P P A P P A= +  

The penetrance in population I are 

( ) ( ) ( ) ( ) ( )0 0 01 1 2 2I P Pφ φ φ= +  

( ) ( ) ( ) ( ) ( )1 1 11 1 2 2I P Pφ φ φ= +  

( ) ( ) ( ) ( ) ( )2 2 21 1 2 2I P Pφ φ φ= +  

Two subpopulations 1 and 2, and population II are assumed to be homoge-
neous. Therefore, Hardy-Weinberg equilibrium holds. The disease prevalence in 
these population can be calculated as follows: 

 
Table 9. The false rates. The proportion of a subpopulation is changed, every thing else is 
the same as in Circumstance 1. 

 5% level 1% level 0.1% level 

( )1 0.1P =  1.20% 0.51% 0.20% 

( )1 0.25P =  5.23% 2.37% 0.98% 

( )1 0.5P =  8.88% 4.36% 1.84% 

 
Table 10. The false rates. The sample size is changed, every thing else is the same as in 
Circumstance 1. 

 5% level 1% level 0.1% level 

50m =  1.77% 0.60% 0.16% 

100m =  4.84% 2.25% 0.93% 

200m =  9.91% 5.75% 3.06% 

400m =  16.78% 11.22% 7.15% 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
2 1 0|1 1 |1 2 1 |1 |1 1 |1P D P A P A P A P Aφ φ φ= + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
2 1 0| 2 2 | 2 2 2 | 2 | 2 2 | 2P D P A P A P A P Aφ φ φ= + +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

22
2 1 0

22
2 1 0

| | 2 | | |

| 2 | | |

P D II II P A II II P A II P A II II P A II

I P A I I P A I P A I I P A I

φ φ φ

φ φ φ

= + +

= + +
 

Since population I is not homogeneous, Hardy-Weinberg equilibrium does 
not hold. In particular, the disease prevalence in population I cannot be calcu-
lated as above. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )22

2 1 0

| 1 |1 2 | 2

| 2 | | |

P D I P P D P P D

I P A I I P A I P A I I P A Iφ φ φ

= +

≠ + +
 

Next, we will calculate the frequency of marker allele M among cases in a ho-
mogeneous population, for example subpopulations 1 and 2, and population II. 
Since the argument holds for all three populations, we will not specify the popu-
lation. Let 0φ , 1φ , 2φ , and φ  be the penetrance and disease prevalence in the 
population. We assume Hardy-Weinberg equilibrium in the population. Let 
( )|P MM D  and ( )|P MM D  be the genotype frequencies among diseased 

individuals. It is clear that 

( ) ( ) ( )| | 0.5 |P M D P MM D P MM D= +  

We now consider an ordered pair of haplotypes. Let ( ) ( )( ),P MA MA  be the 
probability of a person having an ordered pair of haplotypes ( ) ( )( ),MA MA . Let 
( )P MA  be the frequency of the haplotype ( )MA . We then have 

( ) ( ) ( ) ( )( ) ( ) ( )( )(
( ) ( )( ) ( ) ( )( ))

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1

1 0

22
2 1 1 0

1| , ,

, ,
1 .

P MM D P MA MA P MA MA
P D

P MA MA P MA MA

P MA P MA P MA P MA P MA P MA
P D

φ φ

φ φ

φ φ φ φ

= +

+ +

= + + +

 

Similarly, 

( ) ( ) ( ) ( )( ) ( ) ( )( )(
( ) ( )( ) ( ) ( )( ))

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

2 1

1 0

2 1

1 0

10.5 | , ,

, ,

1 ( )

.

P MM D P MA MA P MA MA
P D

P MA MA P MA MA

P MA P MA P MA P MA
P D

P MA P MA P M A P MA

φ φ

φ φ

φ φ

φ φ

= +

+ +

= +

+ +

 

Then 

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
2 1

1 0

| | 0.5 |

1 (
( )

P M D P MM D P MM D

P MA P MA P MA P MA P MA P MA
P D

P MA P MA P MA P MA P MA P MA

φ φ

φ φ

= +

= + + +

+ + + +
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( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )(
( ) ( )( ) ( ))

( ) ( ) ( )( )

2 1 1

0

1

1 ,

P MA P A P MA P A P M P MA P A
P D

P M P MA P A

P MA b P M c
P D

φ φ φ

φ

= + + −

+ −

= +

 

(4) 

where 

( ) ( ) ( ) ( )2 1 1 0 ,b P A P Aφ φ φ φ= − + −
 

( ) ( )1 0 .c P A P Aφ φ= +
 

Next, we calculate ( )|P M N . It is easy to see that ( ) ( )1P N P D= − , 
( ) 2| 1P N AA φ= − , ( ) 1| 1P N AA φ= − , and ( ) 0| 1P N AA φ= − . Replacing 
( )P D , b, and c by ( )1 P D− , b− , and 1 c− , we have 

( ) ( ) ( ) ( )( )( )1| 1 .
1

P M N P MA b P M c
P D

= − + −
−           

(5) 

We will calculate the frequency of haplotype ( )MA  in a homogeneous popu-
lation. Let ( ) ( ) ( ) ( ) ( ) ( )n nD MA P MA P M P A= −  be the linkage-disequilibrium 
(LD) between the disease locus and the marker locus n generations ago, where 

( ) ( )nP MA  is the haplotype frequency of ( )MA  n generations ago. From stan-
dard genetic theory (Equation (1.10) of Hartl [22]), the LD at the present time is 

( ) ( ) ( ) ( ) ( )0 1 n nD MA D MAθ= −  

where θ  is the recombination fraction between the disease locus and the 
marker locus. Thus, 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

0 1
1

1 |

n n

n n

n n

P MA P M P A
D MA D MA

P MA P M P A

P M A P A P M P A

θ

θ

θ

−

= = −

= − −

= − −

 

We then have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 |n nP MA P M P A P A P M A P Mθ= + − −
      

(6) 

Substituting (6) into (4) and (5) yields the frequencies of allele M among cases 
and controls in population II: 

( )

( ) ( ) ( ) ( ) ( )((
( ) ( ) ( )( )) ( ) ( ) ( ))

|  and 
1 | | 1 |

|

|  and | |

n

n

P M D II

P M II P A II P A II
P D II

P M A II P M II b II P M II c II

θ= + −

⋅ − +
      

(7) 

( )

( ) ( ) ( ) ( ) ( )((
( ) ( ) ( )( )) ( ) ( ) ( )( ))

|  and 
1 | | 1 |

1 |

|  and | | 1

n

n

P M N II

P M II P A II P A II
P D II

P M A II P M II b II P M II c II

θ= − + −
−

⋅ − + −
    

(8) 
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where 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 1 1 0| |b II II II P A II II II P A IIφ φ φ φ= − + −  

( ) ( ) ( ) ( ) ( )1 0| |c II II P A II II P A IIφ φ= +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
2 1 0| | 2 | | |P D II II P A II II P A II P A II II P A IIφ φ φ= + +  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 01 1 2 2II I P Pφ φ φ φ= = +  (see (2)) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 1 2 2II I P Pφ φ φ φ= = +  (see (2)) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 1 2 2II I P Pφ φ φ φ= = +  (see (2)) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

|  and |  and 

1 |  and 1 2 |  and 2

n n

n n

P M A II P M A I

P P M A P P M A

=

= +
 (see (3)) 

( ) ( ) ( ) ( ) ( ) ( )| | 1 |1 2 | 2P M II P M I P P M P P M= = +  (see (1)) 

( ) ( ) ( ) ( ) ( ) ( )| | 1 |1 2 | 2P A II P A I P P A P P A= = +  (see (1)) 

( ) ( ) ( ) ( ) ( ) ( )| | 1 |1 2 | 2P A II P A I P P A P P A= = +  (see (1)) 

We now calculate the frequency of allele M among cases and controls in pop-
ulation I (the structured population). Since population I is not homogeneous, 
Hardy-Weinberg equilibrium does not hold. We cannot use the above formula. 
Instead we have the following: 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

 and 
|  and 

|

|  and 1 |1 1 |  and 2 | 2 2
|

P M D
P M D I

P D I

P M D P D P P M D P D P
P D I

=

+
=

 

Note that 

( ) ( ) ( ) ( ) ( ) ( )( )1|  and 1 |1 1 |1 1
|1

P M D P MA b P M c
P D

= +
 

( ) ( ) ( ) ( ) ( ) ( )( )1|  and 2 | 2 2 | 2 2
| 2

P M D P MA b P M c
P D

= +
 

We then have 

( ) ( ) ( ) ( ) ( )( ) ( )(
( ) ( ) ( ) ( )( ) ( )) ( )

|  and |1 1 |1 1 1

| 2 2 | 2 2 2 |

P M D I P MA b P M c P

P MA b P M c P P D I

= +

+ +
        

(9) 

( ) ( ) ( ) ( ) ( )( )( ) ( )(
( ) ( ) ( ) ( )( )( ) ( )) ( )( )

|  and |1 1 |1 1 1 1

| 2 2 | 2 1 2 2 1 |

P M N I P MA b P M c P

P MA b P M c P P D I

= − + −

+ − + − −
    

(10) 

where 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

|1 |1 |1

1 |1 |  and 1 |1n n

P MA P M P A

P A P M A P Mθ

=

+ − −
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

| 2 | 2 | 2

1 | 2 |  and 2 | 2n n

P MA P M P A

P A P M A P Mθ

=

+ − −
 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 1 1 01 1 1 |1 1 1 |1b P A P Aφ φ φ φ= − + −
 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 1 1 02 2 2 | 2 2 2 | 2b P A P Aφ φ φ φ= − + −
 

( ) ( ) ( ) ( ) ( )1 01 1 |1 1 |1c P A P Aφ φ= +
 

( ) ( ) ( ) ( ) ( )1 02 2 | 2 2 | 2c P A P Aφ φ= +
 

( ) ( ) ( ) ( ) ( )| 1 |1 2 | 2P D I P P D P P D= +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
2 1 0|1 1 |1 2 1 |1 |1 1 |1P D P A P A P A P Aφ φ φ= + +

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
2 1 0| 2 2 | 2 2 2 | 2 | 2 2 | 2P D P A P A P A P Aφ φ φ= + +

 

5. Discussion 

We provide a formula for calculating the likelihood of false positive caused by 
population stratification given the ranges of the parameters. This is written in a 
computer program. From Tables 2-10 we can see that without any knowledge 
about the structure of the population (i.e. each parameter has a wide range of 
possibilities), the chance of getting false positives from ignoring the population 
structure is small. Sample sizes have a significant effect on the likelihood of false 
positive caused by population stratification. The larger the sample size is, the 
more likely to have false positive if the population structure is ignored. For small 
samples (the sum of numbers of cases and controls is smaller than 200), when 
unknown population structure is ignored, the chance of having false positive is 
less than 5%. We suggest using sample size as a factor in choosing study design 
(case-control or family-based), if the sample size will be smaller than 200 by 
budget constraints, then case-control study may be a better choice because of its 
power. Of cause, cases and controls should be carefully matched. If there are still 
some unknown population differences between cases and controls, the chance of 
having false positive caused by unknown population structure is less than 5%. 
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