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Abstract 
In this paper, the SECIR rumor spreading model is formulated and analyzed, 
in which the social education level and the counterattack mechanism are 
taken into consideration. The results show that improving education level 
and increasing the ratio of counter are effective in reducing the risk of rumor 
propagation and enhancing the resistance to rumor propagation. 
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1. Introduction 

Rumor is a kind of social phenomenon that an unverified account or explana-
tion of events spreads on a large-scale in a short time through people’s commu-
nication [1] [2] [3]. The spread of rumor can manipulate the public opinion in a 
locality, even can cause panic in some of the important public event [4] [5] [6] [7] 
[8]. Today, the increasing prevalence of social networking services, rumors 
spread by twitters, blogs, microblogs, WeChat and so on. In the Internet, the 
spreading of rumor is similar to epidemic spreading, but rumor’s spreading 
quantitative models have been rather limited in the complex network. 

The standard model of rumor spreading is the Daley-Kendal (DK) model [9] 
[10]. The population in a local area is grouped ignorants, spreaders and stiflers. 
In this model, the rumor is propagated through the pair-wise contacts between 
spreaders and the others in the population. Spreader attempts to “infect” the 
other individuals with rumor. In the contact, ignorance becomes spreader, the 
others of individuals become stiflers. In the Maki-Thompson (MK) model [11] 
as the DK model’s variant, the spreader becomes stifler only who is the initiating 
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spreader. The deficiencies of the DK model are considering homogeneous to-
pology, and the simplified topology may not adequately describe the rumor’s 
spreading process in the Internet [12]-[17]. Zanette [18] [19] analyzed the MK 
model on a small-world network. His studies show that rumor “dies” in a small 
scale of its origin with varying network randomness. Morno et al. [20] [21] con-
sidered a rumor spreading model on a scale-free network. The results are the 
uniformity of the network which has a great impact on the rumor’s spreading 
process. Nekovee et al. [22] introduced the SIR model with forgetting mechan-
ism and derived mean-field equation that describes the dynamics of rumor 
spreading process. His studies show that the SIR model is suitable for chain 
emails and large-scale information dissemination algorithms on the Internet. 
Zhao et al. [23] [24] refined the SIR rumor spreading model and took into ac-
count the remembering mechanism in addition to the forgetting mechanism. 
Zan et al. [25] considered the counterattack mechanism in the SIR model and 
introduced two models: Susceptible-infective-counterattack-Refractory (SICR) 
model and adjusted-SICR model. They derived mean-field equations to describe 
its dynamics in homogeneous network and involve steady-state analysis. Their 
studies show the self-resistance characteristic of networks to a rumor. Afassinou 
[26] extended the SIR model with the forgetting mechanism and population’s 
education rate and introduced SEIR model. He distinguishes two types of indi-
viduals in a population: educated individuals and non-educated individuals. His 
results show that improving the education rate of the population catalyzes the 
rumor spreading termination process. In social networks, when people with a 
higher degree of education heard a rumor which is in serious conflict with 
his/her belief, he/she is easier to counterattack the rumor, and even do the best 
to prevent the rumor propagation. 

In this paper, inspiring of Zan et al. [25], we consider two influential factors in 
rumor spreading process: the population’s education rate and the self-resistance 
feature of network. Motivatedly, we extend rumor spreading model—the SECIR 
model. 

The remaining part of the paper is organized as follows. We formulate the 
propagation mechanism of the SECIR model in a social network, and derive a sys-
tem of nonlinear ordinary differential equations that describe dynamics of rumor 
spreading process in Section 2. In Section 3, we analyze the steady-state of the 
SECIR model. We give some of the conclusions in the last section. 

2. Model 

We study the SECIR model in a closed homogeneously mixed population that 
we differentiate into five distinct classes: the rumor-mongers (spreader, S), those 
who are spreading the rumor, the non-educated ignorants individuals class (Ig-
norant, I), the people who never heard the rumor, the educated ignorants indi-
viduals class (Educatee, E), the people who never heard the rumor, but have 
more sophisticated behaviours with the non-educated ignorant individuals when 
they encountered the spreader, the counterattack class (Counter, C), those who 
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do not agree but refute the rumor, and persuade others to agree with him (refute 
the rumor), and the stiflers class (Recovered, R), the ones who heard the rumor 
but have lost interest in disseminating it. For simplicity, we refer to the rumor 
spreading model as the SECIR model. 

According to the MK model, we assume the rumor spreads by directed con-
tact of the spreads with others in the population, and the contacts between ru-
mor-mongers and the rest of the population are governed by the following dy-
namics (As shown in Figure 1): 
• Whenever a non-educated ignorant contact a spreader, the ignorant will be a 

relatively large probability ( 1β ) into the spreader, but also with a smaller 
probability ( 1α ) of transition to a stifler; 

• Whenever an educated ignorant contact a spreader, the ignorant will be one 
of the three class: spreader or stifler analog the non-educated ignorant, and 
he can be evolved into counterattack, and the change probability is 2β , 2α  
and θ , respectively; 

• Whenever a spreader contact a spreader, a stifler or a counter, the spreader 
will be into stifler with the probability g, g and η , respectively; 

Let ( )I t , ( )E t , ( )C t , ( )C t , and ( )R t  respectively represent the density 
of the corresponding compartment in the total population. Namely that we have 
( ) ( ) ( ) ( ) ( ) 1I t E t C t S t R t+ + + + = . Note that the resistance to the rumor of the 

educated ignorants more than the non-educated ignorants, we assume that 

1 2 1 2, and .gβ β α α η> > >                    (1) 

In accordance with the above rules, the mean-field equations of the SECIR 
model can be described as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 1

2 2

1 2

1 2

d
d

d
d

d
d

d
d

d
d

I t
kI t S t

t
E t

kE t S t
t

C t
kE t S t

t
S t

kI t S t kE t S t gkS t S t R t kS t C t
t

R t
kI t S t kE t S t gkS t S t R t kS t C t

t

β α

β α θ

θ

β β η

α α η

= − +

= − + +

=

= + − + −

= + + + +
  

 (2) 

 

 
Figure 1. SECIR rumor spreading model. 
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We assume that all in the population are I or E but only one spreader at the 
beginning of the rumor spreading, and the ratio of E to the sum of I and E is   
when 0t = . Namely, when 0t = , the initial condition of rumor spreading is 
given as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 1 10 1 , 0 , 0 , 0 0, 0 0.N NI E S C R
N N N
− −

= − = = = =      (3) 

Note that for an ignorant, he/she can be a spreader or stifler, so we have 

1 1 1β α+ < , and 1 11 β α− −  is the probability that no one tells him/her the ru-
mor. For the same reason, 2 2 1β α θ+ + <  is considered. 

3. Model Analysis 

We then postulate that the number of individuals in the I class that have heard 
about the rumor is the same as the number of individuals in the E class that have 
heard about the rumor. This simply translates to 

1 1 2 2

M
β α β α θ+ = + +

=                       (4) 

From the first and the second equation of (2), we have 

( )
( )

( )
( )

d
d
E t E t
I t I t

=                          (5) 

Solve the above differential equation with the initial conditions (3), we obtain 

( )
( )

( )
( )

0
0

1

E t E
I t I

=

=
−



                        (6) 

From the first and the third Equation (2), we obtain 

( ) ( )
2 2

d d
d d

C t E t
t t

θ
α β θ

= −
+ +

 

With the initial conditions (3), we can derive the relational expression be-
tween ( )C t  and ( )E t  by separation of variable, 

( ) ( )( )
2 2

C t E tθ
α β θ

= −
+ +

                    (7) 

From (6) and (7), we have 

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

( )

2 2

2 2 2 2

1

11

11

S t R t I t C t E t

E t E t E t

E t

θ
α β θ

θ θ
α β θ α β θ

+ = − + +

−
= − − − −

+ +

   
= − − −   + + + +   







        

 (8) 

Note that ( )
2 2

gg η θ
τ

α β θ
−

= +
+ +

 and 1 2
1β β β−

= +



, then we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2
2 2

2 2 2 2

1 2
2 2 2 2

d
d

1

11

1

S t
kI t S t kE t S t gkS t S t R t kS t C t

t

k E t S t kE t S t kS t E t

gkS t E t

g gg kE t S t g kS t

kE t S t kS t

β β η

θβ β η
α β θ

θ θ
α β θ α β θ

η θ θ η
β β

α β θ α β θ

β τ τ

= + − + −

−
= + − −

+ +

    
− − − −     + + + +    

− −   −
= + + + − +   

+ + + +   
= + −










 



 (9) 

From the second equation of (2), therefore (9) becomes 

( ) ( ) ( ) ( )d d
d d
S t E t E t

t M t

τ β τ− +
=



 

Solving the differential equations above by the method of separation of va-
riables, we have 

( ) ( )( ) ( )( )ln lnS t E t E t
M M
τ β τ+

= − − −


              (10) 

By the second equation of (2), it is easy to see that 
( )d

0
d

E t
t

<  and ( )E t  are 

monotonically decreasing and continuous function. Let 
( )d

0
d
S t

t
= , we obtain 

( )E t τ
β τ

=
+


. It is easy to see that, the peak value of spreader is 

max lnS
M M
β τ τ

β τ
 

= +  + 

                     (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2
2 2

2 2 2 2

1 2
2 2 2 2

d
d

1

11

1

R t
kI t S t kE t S t gkS t S t R t kS t C t

t

k E t S t kE t S t kS t E t

gkS t E t

g gg kE t S t g kS t

kE t S t kS t

α α η

θα α η
α β θ

θ θ
α β θ α β θ

η θ θ η
α α

α β θ α β θ

α τ τ

= + + + +

−
= + + −

+ +

    
+ − − −     + + + +    

− −   −
= + − − + +   

+ + + +   
= − +










 



 (12) 

where 1 2
1α α α−

= +



. From the second equation of (2), therefore (12) be-

comes 

( )
( )

( )
2 2 2 2

d d1
d d
R t E t

t E t t
τ α τ

α β θ α β θ
 −

= −  + + + + 

           (13) 

Solving the above differential equations, we get 
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( ) ( )( ) ( )( )
2 2 2 2

ln lnR t E t E tα τ τ
α β θ α β θ

−
= − + −

+ + + +


         (14) 

It is easy know that 0S∞ = , let t →∞ , then (8) becomes 

( )
2 2

1R Eθ
α β θ∞ ∞

 
= − − + + 




                 (15) 

Let t →∞ , Substituting (15) into (14), it becomes 

( ) ( )
2 2 2 2

1 ln lnE Eα τ θ τ
α β θ α β θ∞ ∞

 − +
− − = − + + + + 


 


        (16) 

( ) ( )

( ) ( )

( )

1 1 2 2

2 2 2 2

2 2

1

1

1

α β β α β α

β α β α

β α θ θ

−
+ = + + +

−
= + + +

= + + −








                (17) 

Solve from (17), we get 2 2β α θ
β α θ
+ +

=
+ +

 , substitute into (16), we have 

( ) ( )ln lnE Eτ
β τ∞ ∞− = −
+


                    (18) 

Let ( ) ( ) ( ) ( ) ( ) ( )1A t I t E t E t E t E t−
= + = + =





, from (18) we get the final 

size 

ln 1A Aτ
β τ∞ ∞= +
+

                      (19) 

Theorem 1. For 0 1σ< < , the equation ln 1x xσ= +  has two solutions, 
1x =  and a nontrivial solution 1x , where 10 x σ< < . 

Proof. Obviously 1x =  is a solution of ln 1x xσ= + . 
Let ( ) ln 1f x x xσ= − − , and take the derivative of ( )f x  with respect to x: 
( ) 1f x xσ′ = − , ( ) 2 0f x xσ′′ = > . 
Let ( ) 0f x′ = , we obtain the unique minimum point x σ= , and the func-

tion ( )f x  is a convex function, we have  
( ) ( )ln 1 1 1 1 0f σ σ σ σ σ σ σ= − − < + − − = , and ( )0f + = ∞ . According to the 

Mean Value Theorem, ( )f x  have a nontrivial solution 1x , where 10 x σ< < .  
Theorem 2. If the parameters are satisfied (1), (3) and (4), we have 
(1) maxS  is decrease with  , if the other parameters keep constant. 
(2) maxS  is increase with 1 2,β β  but decrease with 1 2,α α , if the other para-

meters keep constant. 
(3) maxS  is decrease with ,g η , if the other parameters keep constant. 
Proof. (1) From (11), differential with  , we have 

( )

( )
( )

max 1 2

1 2 1
2

d
ln ln

d

ln

S
M M M

gg
M M M M

τβ β τ τ τ
β τ β τ

η θβ β β τβτ τ
β τ β τ

′−  
= − + + + + 

  −− − +
= − + +  + + 










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( )
( )

( )( )( )
( )

1 2 1
2

1 2 1 2

1

1

gg
M M M M

M

η θβ β β τβτ τ
β τ β τ

β β β β
β τ

  −− − +  
≤ − + + −    + +  

− + −
= −

+




 



       

 (20) 

Therefore, maxd
0

d
S

<


, which implies that maxS  decreases as   increases. 

(2) Since that ( )
2 2

gg η θ
τ

α β θ
−

= +
+ +

 and 1 2
1β β β−

= +



, we have 0
iβ

τ ′ = , 

0
iα

τ ′ = , 1,2i = , 0
iβ

β ′ > , 0
iα

β ′ < . Taking the derivative of (11), with respect 

to iβ , we have maxd
0

d
i

i i
i

S
M M M

β
β β

βτ ββ β
β β τ β

′
′ ′= − = >

+ +
  


. It is easy to see 

that maxS  increases as ( )1,2i iβ =  increases. 

By the same way, we can proof that maxS  is decrease with 1 2,α α . 
(3) Similarly (2), we have 0ηβ ′ = , 0gβ ′ = , ( )0, orx x gτ η′ > = , then 

( )

( )

maxd
ln

d

ln

1

0

x x
x

x

x

S
x M M

M M

M M

τ ττ ττ
β τ τ β τ

τ β τ
β τ β τ

τ β τ
β τ β τ

′ ′ ′= + − + + 
 

′= +  + + 
   ′< − +   + +  

=

 

 

 

             (21) 

which means that maxS  is decrease with ,g η  The proof is complete.  
Theorem 3. If the parameters are satisfied (1), (3) and (4), we have 
(1) the other parameters keep constant, the final state A∞  is increased with  . 
(2) the other parameters keep constant, the final state A∞  is decreased with 

1 2,β β  but decrease with 1 2,α α . 
(3) the other parameters keep constant, the final state A∞  is increased with ,g η . 

Proof. Let 
τσ

β τ
=

+
, from (19) we have 

d d lnd 1 dln
d d d d
A A A AA

A A
σ σσ

χ χ χ σ χ
∞ ∞ ∞ ∞

∞
∞ ∞

= + =
−

            (22) 

From Theorem 1, 0 A σ∞< < , it is obviously that 
ln

0
A A
A σ
∞ ∞

∞

>
−

, so, if we 

know that the plus-minus sign of 
d
d
σ
χ

, then the plus-minus sign of 
d
d
A
χ
∞  can 

be determined, and furthermore, the monotonicity between A∞  and parameters 
χ  can be proved. 

(1) 

( ) ( )

( ) ( )

( )
1 2 1

1
2 2 22 2

d
d

g
gg M

η θ
β β βτ β τβ β τ βσ

β τ β τ β τ

−
− +′ ′− −

= = =
+ + +

 

         
 (23) 

https://doi.org/10.4236/am.2019.103007


Y. J. Liu et al. 
 

 

DOI: 10.4236/am.2019.103007 82 Applied Mathematics 
 

so d 0
d
σ
>


, that is, σ  increases as   increases, and also implies that A∞  in-

creases as   increases. 
(2) 

( )
( )2

d 0, 1,2
d

i

i

iβτβσ
β β τ

′
= − < =

+                  
 (24) 

similarly, we can get d 0
d i

σ
α

> . and so 0
d i

A
β
∞ < , 0

d i

A
α
∞ < , where 1,2i = , which 

proves (2). 
(3) 

( )
{ }2

d , ,
d

x x g
x

τ βσ η
β τ

′
= ∈

+
                   (25) 

then, d 0
dx
σ
> , it means that A∞  increases as ( )gη  increases. The proof is 

complete. 

4. Numerical Simulation 

We assume 510N = , the average degree of network 10k = , and the initial 
condition of the model follows equation of (2). 

Figure 2 shows the general trends of the five kinds of agents in the SEICR 
rumor spreading model. We see the density of spreaders begin to expand rapidly 
from the initial rumor spread. As the rumor spread further, the density of 
spreaders reaches a peak and thereafter declines. Finally the density of spreaders 
is to zero and this leads to the termination of rumor spreading. And over the 
course of the rumor spreading, the density of ignorants and educatees always 
decreases, and finally evolves to zero. but the density of counter and the recovered  

 

 
Figure 2. Density of spreaders, educatees, ignorants, counters and recovereds over time, 
with 1 1 2 20.5, 0.4, 0.2, 0.1, 0.5gα β α β η= = = = = = = . 
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always decreases, and eventually evolve to a stable value. 
Figures 3-5 show how the densities of spreaders change over time for differ-

ent system parameters include 1 1 2 2, , , , , gα β α β  and η , and the change is 
consistent with theorem 2. It is interest that the higher parameter 1 2,β β , the 
earlier the outbreak, the larger the peak of the outbreak, but the shorter the out-
break period (Figure 4). However, if the parameter X is lowered, the outbreak pe-
riod will not come earlier, and the outbreak period will be longer (in Figure 5). 

5. Conclusion 

In this paper, considering the social education level and the counterattack mechanism,  
 

 
Figure 3. Density of spreaders over time under different population’s education rate  , 
with 1 1 2 20.5, 0.4, 0.2, 0.1gα β α β η= = = = = = . 

 

 
Figure 4. Density of spreaders over time under different 1 1 2 2, , ,α β α β , with  

0.2, 0.1, 0.5g η ε= = = . 
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Figure 5. Density of spreaders over time under different ,g η , with  

1 1 2 20.5, 0.4, 0.2, 0.1, 0.5gα β α β η= = = = = = = . 
 

we analyze the dynamics of rumor propagation. The results of simulations show 
that improving education level and increasing the ratio of counter are effective 
in reducing the risk of rumor propagation and enhancing the resistance to ru-
mor propagation. 
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