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Abstract 
The aim of this work is to study the Berezin quantization of a Gaussian state. 
The result is another Gaussian state that depends on a quantum parameter 
α , which describes the relationship between the classical and quantum vi-
sion. The compression parameter 0λ >  is associated to the harmonic oscil-
lator semigroup. 
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1. Introduction 

This paper is devoted to the study of the quantization of Gaussian states. Let us 
consider a function ( ),f x p , with ( ) 2, nx p ∈ , denoted by ( )B fα  as its Be-
rezin quantization. The choice of the Berezin quantization is due to the fact that 
we will consider Gaussian functions on n  instead 2n  and, for this reason, a 
good scheme of quantization of n  is the Berezin quantization. It is well 
known that this scheme of quantization in comparison with the Weyl quantiza-
tion presents “a few problems”: for example, it doesn’t preserve polynomial rela-
tions, the product rules are more complicated than Weyl quantization and the 
equivalent of Eherenfest theorem doesn’t hold. Indeed, this scheme of quantiza-
tion is rarely used to describe the system dynamics. On the other hand, it leads 
naturally to the definition of a vacuum state 0ψ  that is usually a Gaussian func-
tion. 

 

 

*These notes on the Berezin quantization have been written when the author was a teacher at Liceo 
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In the first two sections we will review basic notions on the Berezin quantiza-
tion of n  and the quantum harmonic oscillator [1]-[7]. The other sections are 
devoted to the proofs of the following results. 

Theorem 1.1 In the setting of the Berezin quantization of ( ), ,n ⋅ ⋅  we have 

that the quantization of the complex Gaussian ( ) ( )2
4e

z z
f z C

λ
− +

= , with e
2nC = , 

is given by: 

( ) ( ) ( )22 4e ,
n

z z
B f C

αλ
α λ

α
α

α λ

− +
+ ′=  + 

                   (1) 

where α  is a quantum parameter, e
2nC′ = , nz∈  and 0λ > .  

It would be desirable to evaluate the trace of the previous Berezin transform. 
Unfortunately, following the definition of [8] for the trace of the Berezin trans-
form, we find an infinite value. As corollary, we can consider instead the classic-
al trace another kind of trace deriving from the usual inner product on the space 

( )2 ,L ρΩ . In this case we have a “modified” version that is the trace of the 
squared Berezin symbol. 

Corollary 1.2 Let ( )

( )
4
n

B f
B f

C

α
α

α
α λ

=
 ′  + 

, then we have that: 

( )( )2 2
.

3

n

Tr B fα
α

α λ
 =  + 

                        (2) 

We observe that the selected Gaussian function ( )f z  depends on a “com-
pression factor” 0λ >  and that α  is a quantum parameter that corresponds 
to the inverse of the Planck constant h. We observe that when α → +∞  the  

trace tends to 1. Moreover, when 1α λ= =  we have 
1
2n . This can be inter-

preted as an index of the purity of the state. The next result I will present is in-
spired by the work of [9] and [10], it corresponds to a “generalized” version of 
the Heisenberg principle in one dimension. 

Theorem 1.3 In the setting of the Berezin quantization of  , if 0λ >  then 

( ) ( ) [ ]( )22 2 1 , , ,
4

x p i x p
λ λψ ψ λ λσ σ ψ ψ= −  

where ( ) ( )22 4e
n

z z
C

αλ
α λ

λ
αψ

α λ

− +
+ ′=  + 

 is the quantized Gaussian and ( ),⋅ ⋅  is 

the inner product of elements of ( )2L  .  

In this theorem the quantum parameter has been fixed to 1 as it is convention 
with the natural units. 

2. The Berezin Quantization 

Let Ω  be a domain in n  with the usual inner product  
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1, n
j jjz w z w z w

=
= ⋅ = ∑ . Let 0ρ >  be a weight function on Ω  and  

( )2 ,L ρΩ  be the space of square integrable functions respect ρ . Let 
( )2

hol ,L ρΩ  be the subspace of square integrable holomorphic functions respect 
to ρ . This space is also called the “weighted Bergmann space” and has a re-
producing kernel ( ),K z wρ . Let us assume ( ), 0K z zρ >  for all z, we define 
the “Berezin transform” of ( )f L∞∈ Ω  the following integral operator: 

( ) ( ) ( ) ( ) ( )21 , d d .
,

B f z f w K z w w w w
K z zρ ρ

ρ

ρ
Ω

= ∫            (3) 

The Berezin transform is an important tool in the contest of Berezin quantiza-
tion, especially its asymptotic behaviour with the appropriate weights ρ . As 
showed in [2] the construction of the Berezin quantization reduces to con-
structing a family of weights for which the associated Berezin transform Bρ  has 
an asymptotic expansion: 

0 1 22

1 1 ,B Q Q Q
αρ α α
= + + +                      (4) 

where 
1
h

α =  is the “ formal parameter” that when 0h →  we have α → +∞ ,  

0Q  is the identity operator and ( ), nj jQ c fβ γ
βγβ γ∈= ∂ ∂∑



 are differential op-
erators with ,β γ  multi-indices. From jQ  it is possible to define the bidiffe-
rential operators ( ) ( ) ( ),, nj jC f g c f gβ γ

βγβ γ∈= ∂ ∂∑


, and the star-product: 

( )
0

1 , .jj
j

f g C f g
α

+∞

=

= ∑                         (5) 

If the condition ( ) ( ) { }1 1, , ,
2π
iC f g C g f f g− =  it’s valid then the star  

product coincides with the Berezin star-product and this provides a Berezin 
quantization. Here { },⋅ ⋅  is the Poisson bracket on n  and ( ),f g C∞∈ Ω  are 
quantum observables. 

The proof of this assertion and many details on the Berezin quantization of 
n  can be found in [2]. For the Berezin quantization of general function spaces 

the reader can consult [3]. 
For our purpose we consider the Berezin quantization of n  with the 

weighted Bergmann space as function space. In this case ( ) e
π

n
z zz ααρ − ⋅ =  

 
, 

α  will be the quantum parameter that tends to infinity and ( ), e z wK z w α
ρ

⋅= . 

3. The Quantum Harmonic Oscillator 

We consider a slightly modified version of the quantum harmonic oscillator in 
n . Let 2 2 2 2

1
ˆ ˆ ˆ ˆn

j jjH x p x p
=

= + = +∑  be the Hamiltonian operator where 
ˆ j jx x=  and ˆ

jj xp i= − ∂  are the usual quantum operators that satisfy the fol-
lowing commutation relations: 

, , , , 0,j k jk j k j kx p ih x x p pδ     = = =                        (6) 
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for every , 1, ,j k n=   and where h is the Plank constant. We define the oper-
ators: 

ˆ ˆ ˆ ˆˆˆ , ,
2 2

j j j j
j j

x ip x ip
z z

+ −
= =                    (7) 

for every 1, ,j n=  . The operators ˆˆ,z z  are called respectively the annihila-
tion and creation operator. In this notation the Hamiltonian assume the follow-
ing form 1

ˆ ˆ2n
k kkH z z h

=
= +∑ . It is possible to prove that the ground state cor-

responding to the energy level 0E nh=  is given by the Gaussian: 
2

2
0 e ,

x

ψ
−

=                           (8) 

where 2 2
1

n
kkx x

=
= ∑ . In general we have eigenvalues of energy in this even form: 

( )2 ,jE n j h= ⋅ +                        (9) 

with eigenfunctions given by 
2

2
1 e

x
n j

j kk xψ
−

=
=∏ . 

4. Proof of the Theorem 1.1 

Proof. The Berezin transform of 
( )2

4e
z zλ

− +
 with parameter α  is: 

( ) ( )2 2, , ,4e e e e d d .
π n

n
z zw w w z z zB f z z

λ
α α α

ρ
α − +− − =  
  ∫          (10) 

We remember the definition of the complex inner product  

1, n
j jjw z w z w z

=
= ⋅ = ∑  and, after an algebraic semplification, we have that: 

( ) ( )2
4e e d d .

π n

n
z z wz wz zzw wB f z z

λ α α αα
ρ

α − + + + −− ⋅ =  
  ∫           (11) 

This is a complex-Gauss integral depending by a quantum parameter α  and 
the positive parameter λ . A simple way to solve the integral (11) consists to 
transform the complex integral in a real integral using the identification 

2n n≡  . This gives the product of two real Gauss integrals: 

( )
( )

( )

2

2
2

2 2

2 2 2

2 21 1
2

2 2 2

2
2 2

e e d
π

e d .

n

n

x x x
n x p

p pp p p

B f x

p

λ α α α
λ αα λ α

α
ρ

α α

α

 
 + ′ ′− − +
  ++ ′ ′− + + −   

   

′ ′ ′− − + +

 =  
 

⋅

∫

∫





      (12) 

where 
2

x ipz +
= , 

2
x ipz −

= , 
2

x ipw
′ ′+

= , 
2

x ipw
′ ′−

=  and  

[ ] [ ], , 0x x p p′ ′= = , [ ] [ ], ,x p x p ih′ ′= =  are the canonical relations. Adjusting 
the exponents of the two integrals we get two Gauss integrals that can be eva-
luated:  

( ) ( )

( )

2
2 2 2 21 1

2 2 2 2
2 2 2 2

2 2

π 2 π 2e .
π

n n n n
n x p x p

n nB f
α α α

α λ α
ρ

α

λ α α

 ′ ′ ′ ′− + − − + +  +  = ⋅ ⋅ 
  +

      (13) 
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Thus we find that the initial integral is equal to ( )
2 12 22 e

n
x

n
αλ
α λα

α λ

′− −
+ 

 + 
.  

Observation 4.1 We observe that when α → +∞  the complex quantized 

Gaussian ( ) ( )22 4e
n

z z
C

αλ
α λα

α λ

− +
+ ′ + 

 tends to the classical complex Gaussian 

( )2
4e

z z
C

λ
− +

′ .  

Observation 4.2 We can rewrite the ( ) ( )22 4e
n

z zαλ
α λα

α λ

− +
+ 

 + 
 as 

( )
( )

2 2

24 1
4

2

1 e e

1

z z
z z

n

λ
λ λα
α

λ
α

− +
 + − + 
 

 
 
 
 
  +  
  

 

and Taylor expand the square brackets: 

( ) ( )22
2 41 e .

4 2
z znz z

λλ λ
α α

− + 
+ + − ⋅ + 

 
  

If we not consider the term e
2n , this is exactly the heat solution operator 

( ) ( )2 2
44 4e e e

z z z z
B

λ λ
α
∆

− + − +
=  according to [2], where ∆  is the complex Laplacian 

on n  given by 14
j j

n
w wj=∆ = ∂ ∂∑ .  

5. Proof of the Corollary 1.2 

By the modified version of the trace (“that is a sort of a trace of a square”) we 
have that: 

( )( ) ( )( )2 2Tr e d d .
π n

n
z zB f B f z z zα

α α
α − ⋅ =  
  ∫

            (14) 

Thus we must to evaluate the integral: 

( )( ) ( ) ( )22 22Tr e e d d .
π n

n n z z
z zB f C z z

αλ
α λ α

α
α α

α λ

− +
+ − ⋅   ′=    +   ∫        (15) 

Using the canonical relations, this can be written as: 

( )( ) ( )
2

2 23 1
2 2 2 2

2Tr e d e d .
π2 n n

n n x p

n

eB f x p
αλ α α
α λ

α
α α

α λ

− −
− −+   = ⋅   +    ∫ ∫ 

      (16) 

After the evaluation the Gauss integrals we find that the initial trace is equal to 

2 2

3

n n

C α α
α λ α λ
   ′ ⋅   + +   

. Defining ( )

( )
4
n

B f
B f

C

α
α

α
α λ

=
 ′  + 

 and repeating cal-

culations we find the result.   



https://doi.org/10.4236/jqis.2019.91002


S. Camosso 
 

 

DOI: 10.4236/jqis.2019.91002 20 Journal of Quantum Information Science 
 

6. Proof of Theorem 1.3 
Before starting to let us fix some notation, we consider a generic Gaussian state 

with ( ) ( )2
4 1e

z z
K

λ
λ

λψ
− +

+=  where 
21

e

n

K α
α λ
 =  + 

 in dimension 1n = . We 

denote by ( ) ( )2 2,x p
λ λψ ψσ σ  respectively the variance of the observable x and p. 

We have that: 

( ) ( )2
3

2 2
2 2 2 1

3
2

π 1
e d ,

2

x K
x x K x

λ

λ
λ

ψ

λ
σ

λ

−+∞
+

−∞

+
= =∫            (17) 

where for the evaluation the general result in one dimension is useful: 

( )2

1
2 2

1 3 5 1 π
e d , 2,4,6, , 0.

2

n ax
n n

n
x x n a

a

+∞ −
+−∞

⋅ ⋅ −
= = >∫



  

Now we must evaluate ( )2 p
λψσ . In a similar way as before we have: 

( ) ( )

( )
( ) ( )

( )

2

2

2

2 12 2

3
2 22 212 2

2 3
2 2

e d

π 1
e .

1 2 1

x

x

x

p K x

K
K x

λ

λ
λ

ψ

λ
λ

σ

λ λλ
λ λ λ

−+∞ +

−∞

−∞ +

−∞

 
 = ∂
 
 

+
= =

+ +

∫

∫

      (18) 

In order to prove the Heisenberg principle we must evaluate: 

( )2
2 4

2 1
π 11 e d .

4 4
x K

K x
λ
λ

λ
λ

−+∞
+

−∞

  +
=  

 
∫                 (19) 

Now by the ordinary Heisenberg principle: 

( ) ( )
2

2

2 2 2 11 e d ,
4

x
x p K x

λ λ

λ
λ

ψ ψσ σ
−+∞
+

−∞

 
⋅ ≥   

 
∫  

and substituting our quantities we find that: 

1 1 ,λ λ
λ λ
+ +

≥  

this is true for every compression 0λ > .   
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