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Abstract 
The advantage of quantum computers over classical computers fuels the re-
cent trend of developing machine learning algorithms on quantum comput-
ers, which can potentially lead to breakthroughs and new learning models in 
this area. The aim of our study is to explore deep quantum reinforcement 
learning (RL) on photonic quantum computers, which can process informa-
tion stored in the quantum states of light. These quantum computers can na-
turally represent continuous  variables, making them an ideal platform to create 
quantum versions of neural networks. Using quantum photonic circuits, we 
implement Q learning and actor-critic algorithms with multilayer quantum 
neural networks and test them in the grid world environment. Our experi-
ments show that 1) these quantum algorithms can solve the RL problem and 
2) compared to one layer, using three layer quantum networks improves the 
learning of both algorithms in terms of rewards collected. In summary, our 
findings suggest that having more layers in deep quantum RL can enhance 
the learning outcome. 
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1. Introduction 

The society of today is rich in data, generated by all sorts of devices at an un-
precedented rate. Knowing how to make good use of this big data has become an 
urgent and interesting topic. Machine learning (ML) is about teaching comput-
ers how to learn from data without being explicitly programmed, and as such the 
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first step of ML is obviously the representation of data in terms of features that 
computers can understand and process. In the old days of ML, hand-crafted 
feature extraction was the norm. But today, deep learning uses multilayer neural 
networks to automatically learn the best features that represent the given data. 
For this purpose, convolutional neural networks (CNN), recurrent neural net-
works (RNN) and many more were created. Typically, CNNs excel at extracting 
features of image data, and RNNs for sequential data. Deep learning has demon-
strated its power in broad applications, such as speech recognition, computer vi-
sion, and natural language processing. A deep neural network is able to process 
the input data in multiple processing layers. Each layer has a non-linear activa-
tion function and the sequence of these layers leads to learning different levels of 
abstraction of the input data. The nonlinear activation function offers the ex-
pressivity of the whole neural network, which has been a challenge for research-
ers trying to design similar nonlinear functions on a discrete qubit based quan-
tum computer [1]. 

In general, ML can be classified into three categories: supervised learning, 
unsupervised learning, and reinforcement learning (RL) [2]. The functionality of 
RL is in between supervised and unsupervised learning. In supervised learning, a 
ground-truth label is given for each training example and in unsupervised learning 
one has no labels at all. However, in RL, rewards are provided as some sort of 
sparse and time-delayed labels and furthermore rewards are given from interac-
tion with the environment. We can say that supervised learning is building a re-
lation between the input and output, but RL is using rewards to build the in-
put-output relation in a sequential trial and error process. RL is the closest to 
what we might associate with our own learning experience in life, where a posi-
tive reward reinforces the current behavior, while a negative reward suggests a 
change.  

Inspired by human and animal behavior of learning from experience, RL is a 
method of solving sequential decision-making problems with an agent by trial 
and error in a known (with a model) or unknown (without a model) environ-
ment. A model of the environment in RL is an abstraction that an agent can use 
to predict the responses to its actions from the environment. The aim of RL is to 
discover optimal policies through interaction with the environment. Given a 
policy, the agent knows the best action to perform in a specific state. RL enjoys 
its applications in a wide array of areas including: robotics, recommendation 
systems, advertising, and stock trading. One of the challenges of RL is that some 
actions do not get an immediate reward. On the other hand, the reward received 
by the agent does not completely depend on the current action, but also on some 
actions in the past. Another difficulty is balancing the exploration vs. exploita-
tion, which means the agent needs to exploit the current best actions to maxim-
ize rewards, but also explore new actions that it has not tried to find better ac-
tions.  

Deep neural networks can approximate any linear or non-linear functions. 
Based on this property, deep RL uses multilayer neural networks to represent the 
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value function, the policy, and the model in RL [3] [4]. With a combination of 
deep learning and RL, and by observing just the screen pixels, deep RL computer 
programs have beaten a world champion in the game Go and played many Atari 
2600 video games better than humans [5] [6] [7]. Because of high-dimensional 
state and action spaces, these problems were previously intractable. In order for 
an agent to select an action, it has to know the representation of its environment, 
and this is where deep learning can provide a big help to the agent’s under-
standing of the environment without expert knowledge and interference. Fortu-
nately, quantum computers can speed up the CPU intensive training of deep 
neural networks with quantum parallelism. 

Quantum computers can make use of the counterintuitive properties of 
quantum states such as superposition, entanglement, and interference to process 
quantum information in ways that classical computers cannot. It is well-known 
that quantum computers can find factors of large integers and search an un-
structured database much faster than classical computers. Instead of designing 
algorithms to process big data on classical computers, there is a new approach to 
deal with issues of big data using quantum computers. For example, the curse of 
dimensionality is a serious problem in ML for classical computers. However, 
quantum computers can solve this problem with ease using superposition of qu-
bits.  

In recent years, researchers have investigated different ways of applying quan-
tum computing to improve classical machine learning algorithms [8]-[24]. Be-
cause of the peculiar properties of quantum states, it is reasonable to hope that 
quantum computers may recognize and classify patterns that classical computers 
cannot. All these hopes and potentials will surely stimulate the rising of quan-
tum machine learning. However, there are challenges in applying quantum 
computing to ML. For example, quantum processes are linear and unitary, 
which facilitates the advantage that quantum operations can be carried out in 
parallel with linear superposition to achieve quantum parallelism, but also 
creates a difficulty since nonlinear operations are an indispensable tool in ML, 
especially in deep learning [1].  

Deep learning is a powerful technique in ML and especially in RL. To further 
our understanding of applying quantum computing to the area of deep RL, we 
implement two popular RL algorithms [25] [26] [27] [28] [29], Q learning and 
actor-critic (AC), using deep quantum neural networks. Our two quantum algo-
rithms are tested in the gird world environment, in which the agent learns to 
walk on the grid in a way that maximizes cumulative rewards. This work extends 
our two previous results that solve the contextual bandit problem and imple-
ment Q learning with a single layer of quantum network [21] [22].  

2. Related Work 

Quantum ML has risen as an exciting and engaging research area. Neural net-
works are the most versatile ML technique and as such, it has been a long-time 
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desire and challenge to create neural networks on quantum computers. With the 
recent advances in continuous-variable (CV) quantum models [30], it is possible 
to create neural networks on quantum photonic circuits. The work in [31] builds 
layers of quantum gates 2 1DU SU xφ  in the CV model where D is an array of 
displacement gates, iU  are interferometers, S are squeezing gates, and φ  are 
non-Gaussian gates to have an effect of nonlinearity. It is shown that these layers 
of quantum networks can carry out the classical machine learning tasks such as 
regression and classification. It also explains the quantum advantage existent in 
certain problems, where the quantum networks only need a linear number of 
resources because of superposition of the quantum states but the classical net-
works need exponentially many. The key ingredients in this work are imple-
menting the affine transformations with Gaussian gates and nonlinear activation 
functions with non-Gaussian gates in quantum photonic circuits. Our current 
study uses the technique in [31] to design quantum networks that implement the 
Q learning and AC algorithms.  

3. Methods 

RL is a subfield of machine learning, in which an agent learns how to act by its 
interaction with the environment. RL algorithms can be classified into two cate-
gories: Model-based and Model-free. Model-free algorithms can be further di-
vided into: policy-based (actor), value-based (critic), and a combination of both, 
actor-critic. In model-based RL, the environment is treated as a model for 
learning. 

Q learning and actor-critic are both used in the famous AlphaGo program. 
One of the advantages of AC models is that they converge faster than val-
ue-based approach such as Q learning, although the training of AC is more de-
licate. In AC algorithms, the agent is divided into two components, an actor and 
a critic, where the critic evaluates the actions taken by the actor and the actor 
updates the policy gradient in the direction suggested by the critic. AC methods 
can be viewed as a generalized policy iteration, which alternates between policy 
evaluation (obtaining a value for an action) and policy improvement (changing 
actions according to the value). 

This study leverages deep quantum neural networks to estimate and output 
the state-action value function in Q learning and the state value function and 
policy in the AC methods with the state as the input to the networks.  

3.1. Grid World Environment 

The grid world environment is commonly used to evaluate the performance of 
RL algorithms. It delays the reward until the goal state is reached, which makes 
the learning harder. Our grid world is similar to the Frozen Lake environment 
from gym (https://gym.openai.com/envs/FrozenLake-v0/) but with a smaller size 
of 2 × 3 while the standard size is 4 × 4. It is a 2 × 3 grid which contains four 
possible areas—Start (S), Frozen (F), Hole (H) and Goal (G) (Figure 1). The  
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Figure 1. The grid world of size 2 × 3 used in this study, which has 6 possible states and 4 
possible actions. Each grid (state) is labeled with a letter which has the following meaning: 
Start (S), Frozen (F), Hole (H) and Goal (G). The state G has a reward of one and other 
states have a reward of zero. 
 
agent can move up, down, left, or right directions by one grid square. The agent 
attempts to walk from state S to state G while avoiding the hole H. The reward 
for reaching the goal is 1, and all other moves have a reward of 0. The visual de-
scription of this grid world is in Figure 1.  

The standard Frozen Lake environment can be slippery or not. If it is slippery, 
any move in the intended direction is successful only at a probability of 1/3 and 
slides to either perpendicular direction with also a probability of 1/3 (there are 
two such directions). One episode is defined as a trial by the agent to walk from 
state S to a terminal state of either H or G. The goal of the agent is to learn what 
action to take in a given state that maximizes the cumulative reward, which is 
formulated as a policy that maps states to actions. 

3.2. Deep Q Learning 

A frequently used term in RL is the return, which is defined as follows: 
2

1 2 3t t t tG R R Rγ γ+ + ++ += +                     (1) 

where tR  is a reward at time t and γ  is a discount rate ( )0 1γ≤ ≤ . The dis-
count used in the return definition implies that current rewards are more signif-
icant than those in the future. Another useful concept in RL is the Q function 
that can be formulated as below: 

( ), ,t t tQ s a E G S s A aπ π  = = =                   (2) 

where the expectation is taken over potentially random actions, transitions, and 
rewards under the policy π. The value of Q (s, a) represents the maximum dis-
counted future reward when an agent takes action a in state s.  

Q learning [25] [26] is a critic-only method that learns the Q function directly 
from the experience using the following updating rule, known as Bellman equa-
tion [32]: 

( ) ( ) ( ) ( )1 1 1 1max, , , ,t t t t t a t t tQ s a Q s a R Q s a Q s aγα+ + + ++ = + −        (3) 

where the max is taken over all the possible actions in state 1,ts γ+ ∈ [0, 1) is the 
discount factor, and α∈(0, 1] is the learning rate. The sum of the first two terms 
in the square bracket in Equation (3) is called the target Q value and the third 
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term is the predicted Q value. 
In simple RL problems, a table is sufficient to represent the Q function, how-

ever, in more complicated problems, a neural network is used instead to 
represent the Q function as Q (s, a; θ ), where θ is a collection of parameters for 
the network. Deep Q learning employs multilayer neural networks to approx-
imate the Q function.  

The training of this network is to reduce the gap between the predicted Q 
value and the target Q value as a regression problem by optimizing θ. It is clear 
that updating θ may cause changes to both values. In a difficult RL problem, 
other heuristic techniques have to be used in order to stabilize the convergence 
of the network during training such as experience replay, which breaks the cor-
relations between consecutive samples and uses a fixed target network to stabil-
ize the policy [6].  

In RL, the behavior policy is the one that the agent uses to generate the sam-
ples, and the target policy is the one that is being learned. When an RL algorithm 
can use a different behavior policy from its target policy, it is called off-policy, 
otherwise on-policy. Q learning is off-policy. The AC methods can be made 
off-policy, which offers the benefit of learning one policy while using a different 
behavior policy. 

3.3. Deep Actor-Critic Methods 

RL algorithms usually fall into three categories: actor-only (policy based), crit-
ic-only (value based), and actor-critic methods. Actor-only methods usually pa-
rameterize the policy, and then optimize it with a policy gradient. This approach 
can handle continuous states and actions, but the gradient can have high va-
riance. On the other hand, critic-only methods typically estimate the state-action 
value function, from which we can find an optimal action, but a difficult step 
when the action space is continuous. When actions are discrete, one strategy to 
get a policy or to improve the policy is using ( )max ,a Q s a . However, when ac-
tions are continuous, this technique requires a global maximization at every step. 
The alternative is to use the gradient of Q to update the policy instead of max-
imization of Q.  

In AC, the agent is composed of an actor and a critic, interacting with an en-
vironment, which provides a structure to explicitly represent the policy inde-
pendent of the value function. The aim of the learning is to tune the parameters 
θ and φ  in the agent in order to receive maximum average reward. The work 
of the critic reduces the variance of the policy gradient in the actor so the whole 
algorithm is more stable than a pure policy gradient method. The implementa-
tion of AC can be one network with two outputs or two networks, or even the 
critic can be a lookup table, and training is done in batch or online.  

A schematic illustration of the dynamics in the AC algorithms between the 
actor, the critic, and the environment is shown in Figure 2, where the agent uses 
the value (the critic) to update the policy (the actor). 
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Figure 2. The actor-critic reinforcement learning architecture, in which the agent is made 
of two components: actor and critic. The responsibility of the actor is to act and the critic 
is to evaluate the action in the form of a scalar value that the critic sends to the actor. 
After taking an action by the actor, the reward and next state are sent to the critic but 
only the next state is sent to the actor. An RL makeup has two components, an agent and 
an environment. The agent acts on the environment while the environment serves as the 
object to receive the actions. 
 

We explain the actor-critic algorithms [27] [28] [29] in the episodic environ-
ment which has a well-defined end point. Recall that a policy is a probability dis-
tribution over actions given some input state. We introduce a parameter θ to the 
policy function ( ) ( ) ,a s a s P a sθπ π θ = =    and another parameter φ  to the 
value function ( )V sφ  which is the expected sum of rewards when starting in state 
s and following the policy ( )a sπ . Running one episode can generate one whole 
trajectory of the agent which is recorded as { }1 1 1 2 2 2, , , , , , , , ,T T Th s a r s a r s a r=  . 
The policy objective function ( )J θ  is defined as ( ) ( ) ( )dJ h r h hθθ π= ∫  where 

( )r h  is a reward function. Using a common trick of logθ θ θ θ θπ π π∇ = ∇ , the 
actor-critic algorithm can be stated as the following:  
 
Algorithm: online actor-critic 

For t = 1 to T − 1 do: 

1) In st , take action at ~ π, get ( )1, , ,t t t ts a r s +   

2) update V with target ( )1t tr V sγ ++  

3) evaluate ( ) ( )A , targett t ts a V s= −  

4) ( ) ( )log A ,t t t tJ a s s aθ θ θ θπ∇ ≈ ∇  

5) a Jθ θθ θ← + ∇  

end for 
where α is the learning rate and γ is a discount factor. 

 
The expression ( ) ( )tA , targett ts a V sφ= −  in the AC definition above is 

usually named advantage in policy gradient algorithms, which suggests the needed 
amount of change to the gradient, based on the baseline value ( )tV sφ .  
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3.4. Deep Quantum Neural Networks in Q Learning and  
Actor-Critic 

For a problem with a small number of states and actions, tables could be used to 
represent the Q function efficiently, but for larger sizes of state and action spac-
es, they do not scale well. In this case, neural networks can be employed to ap-
proximate the Q function with Q (s, a; θ) parameterized by θ (Figure 3). Instead 
of using tables or classical neural networks, we use deep quantum neural net-
works to approximate the Q function, the actor, and the critic in this report. 

The critic learns a value function, which is then used by the actor to update its 
gradient direction in order to encourage the beneficial actions, consequently 
improving its policy. Actor-critic methods usually have better convergence 
properties than critic-only methods. There are two outputs of AC algorithms: 
one is the Q values for different actions from the actor and the other is the value 
of being in a state from the critic (Figure 3).  

By default, AC learning is on-policy as the critic evaluates whatever policy is 
currently being followed by the actor. But it can be changed to an off-policy by 
sampling actions from a different policy and then incorporating that policy into 
the formula for updating the actor, which provides the advantage of better ex-
ploration and the support of experience replay with data generated from another 
behavior policy [29]. Off-policy methods can learn about an optimal policy while 
executing an exploratory policy. 

The REINFORCE algorithm used in [21] updates its network at the end of an 
episode while the actor-critic does it at each step in an online fashion. The 
drawback of REINFORCE is that when there is a mixture of good and bad ac-
tions within the sequence of actions of one episode, it is difficult to assign the 
correct credit to each action given the final episodic reward.  

Our study uses layers of quantum neural networks composed of photonic cir-
cuits to implement Q learning and actor-critic. The photonic gates in our net-
works as shown in Figure 3 are important basic units in quantum computation, 
which control how the networks evolve. Mathematically these gates are unitary 
matrices, with complex-valued entries. The numerical simulation of our quan-
tum networks is done with the Strawberryfields software [33], which supports 
the training of a quantum neural network circuit to generate any quantum states 
using machine learning.  

4. Results 

Our quantum Q learning and actor-critic algorithms are evaluated in the grid 
world environment explained in Section 3.1. The aim of the agent in this grid 
world is to learn how to navigate from the start state S to the goal state G with a 
reward of 1 without falling into the hole with a reward of 0. Our purpose is to 
investigate the power of using quantum neural networks with many layers in RL, 
so we test our quantum networks with one layer and with three layers respec-
tively.  
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Figure 3. On the left, is the logical representation of the network to compute the Q function (assuming there are 4 actions), in the 
middle, is the logical representation of the AC model, and on the right, is the physical representation of the actual parametrized 
circuit structure for a CV quantum neural network made of photonic gates: interferometer, displacement, rotation, squeeze, and 
Kerr (non-Gaussian) gates. The output is the Fock space measurements. More details of this quantum network can be found in 
[21] [22] [31].  

 
Actor-only methods are guaranteed to converge; however, this is not always 

true for the critic-only methods. The use of a critic causes the AC algorithms to 
converge faster than the actor-only methods. In certain problems where the ac-
tion space is much smaller than the state space, the updating of the actor and 
critic needs more fine-tuning as the learning of a larger space takes more time. 
The critic computes the advantage, which is a measurement of improvement 
relative to the baseline value in that state that is also beyond the expected value 
of that state. To coordinate the work of actor and critic is not easy as seen in 
Figure 4.  

We run several numerical experiments using the Strawberryfields software 
[33] to simulate our quantum networks, and then take the average of the re-
wards and path lengths in each case. The results suggest that having more layers 
in the network can result in better learning. One episode is defined as a se-
quence of moves from the start state S to a terminal state that can be either the 
hole H or the goal G in our grid world. The learning curves for the quantum 
networks of one layer and three layers are displaced respectively in Figure 4. In 
both Q learning and actor-critic, the networks with three layers converges ear-
lier than the one layer and also more stably. It also seems that in order to avoid 
the hole H, the agent needs to walk more steps in order to arrive at the goal 
state G. In other words, earning more rewards requires more work. At the be-
ginning, the agent tends to fall into the hole easily and produces shorter average 
episode lengths. Only later in the learning, it gradually learns how to avoid the 
hole.  

5. Conclusions  

Machine learning teaches computer programs how to improve themselves with 
experience or data. Therefore, using good features to represent data is essential 
for ML. Fortunately, deep learning has the ability to automatically extract good 
features from complex and high-dimensional data, which provides the valuable 
first step to any real-world applications of RL that require learning from raw 
visual input.  
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Figure 4. The plots show the learning of the quantum networks in the grid world of size 2 × 3, measured by the 
average rewards or the episode lengths from state S to state G or H. 

 
Supported by deep learning, RL programs that use Q learning and actor-critic 

have demonstrated their superior performance, which justifies the call to study 
these two algorithms on quantum computers. The advantage of having two 
components, actor and critic, in the AC methods also brings a difficulty in coor-
dinating the work of the two. Relatively speaking, the actor is more sensitive to 
changes than the critic, as the changes of critic indirectly impact the policy. 

Our work shows how to implement Q learning and actor-critic algorithms 
using deep quantum neural networks. The results of this report highlight that 
having more layers in the quantum networks does improve the learning of the 
agent in the grid world environment, which extends our previous work that uses 
a single layer of quantum network to solve RL problems [21] [22]. 
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