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Abstract 
 
A novel model of dark matter (DM), elastically compressible, can contribute to the acceleration of our Uni-
verse expansion. While each galaxy compresses its own DM within its gravitation field, the DM bordering 
neighboring galaxies, far from their centers, is pulled apart. It is shown that, although the DM pressure tends 
to zero at such locations, the DM compressibility tends to infinity. This allows the DM to expand between 
galaxies without gravitation hindrance. The model is consistent with the coupled distributions of baryonic 
and dark matters, with black hole formation at the centers of large galaxies, with galactic flat rotation curves, 
with a Tully-Fisher relation, and with Milgrom’s MOND relation. Results are discussed. 
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1. Introduction 
 
A main problem in astrophysics is the discovery, about 
two decades ago, that our Universe expansion is acceler-
ating, instead of slowing down as predicted by the Big 
Bang theory [1] Scientists hypothesize the existence of 
an anti-gravity energy field dubbed Dark Energy (DE). It 
has been claimed that the identification and understand-
ing of that DE would be the greatest accomplishment of 
the century [2]. 

A less recognized problem is the Big Bang itself, the 
explosion of the biggest of black holes, which the present 
theory and model of black holes cannot accommodate. 
Instead, the Big Bang theory deals with the evolution of 
our Universe after the initial Bang [1]. Inclusion of the 
DE proposed here could destabilize black holes suffi- 
ciently to help resolve that problem. 

An elastically compressible DM might contribute to 
the accelerated expansion of our Universe and to the de-
stabilization of black holes. In the following, we show 
that such model of DM is consistent with the observed 
DM phenomena. Then, we derive a possible mechanism 
of acceleration of our Universe expansion. 
 
1.1. Dark Matter or New Physics? 
 
The prevailing scientific view today is that DM is con-
stituted of weakly interacting massive particles (WIMPs). 
At this time, such view must be considered a hypothesis 
because, so far, a constitutive particle of DM has not 

been detected, and computer simulations based on the 
predicted microscopic properties of WIMPs have not 
succeeded in modeling the observed behavior of DM 
[1-15]. 

An alternative hypothesis is that DM is not a substance 
at all and that the DM-phenomena result from a “new 
physics.” Some scientists proposed a modification of 
Newton dynamics (MOND) for weak acceleration as 
such alternative [16-23]. Milgrom’s version of MOND 
[16-22] proposes at very low accelerations, correspond-
ing to very large distances R, a relation that departs from 
Newton laws as follows: defining γo as a small constant 
(= about 10−8 cm·s−2) of acceleration dimensions, then 
for γ  γo MOND departs from Newton laws by pos-
tulating: 



γsmall = F/M = − (GMγo)
1/2R−1 = −(Vc)

2R−1.   (1.1.1) 

From Equation (1.1.1): 

 1 4

c oV GM ,             (1.1.2) 

at very low accelerations, corresponding to very large 
distances Rlarge.  

Although MOND’s relation does not define the dy-
namics in the intermediate range where γ ≈ γo, it is tai-
lored to produce the galactic rotation curve plateau in a 
form (Equation (1.1.2)) fitting a Tully-Fisher relation 
(TFR). However, MOND relates the luminous mass of 
the galaxy with the limiting speed (Equation (1.1.2)) 
while the TFR implies a relation with the maximum, or 
peak speed. 
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While very successful at modeling much of DM be-
havior, serious reasons preclude the scientific acceptance 
of MOND [16-21,24,25]. In particular, Milgrom’s deri-
vation of MOND, based on a departure from Newton 
laws of gravitation, though speeds are small compared 
with the speed of light, conflicts with general relativity 
and makes that derivation unacceptable. However, be-
cause some doubt that DM particles will be substantiated, 
it has been suggested to take a new look at MOND [26]. 
On the other hand, the recent observation of dissociation 
between DM and baryonic clouds during a collision of 
galactic clusters [27] tends to tip the scales, at this time, 
in favor of the existence of DM. 

Here, we explore another “new physics” consisting of 
an elastically compressible DM, with a mass density dis-
tribution ρ. The exploration of such “new physics” ap-
pears fruitful, leading to the derivation of an equation of 
state (EoS) for such DM in a gravitation field, of an 
equation governing the coupled distributions of baryonic 
and dark matters around galaxies, of a possible mecha-
nism of black hole formation at the centers of large gal-
axies, of galactic flat rotation curves, of a Tully-Fisher 
relation, of Milgrom’s MOND relation, and of a possible 
mechanism for the accelerated expansion of our uni-
verse. 
 
1.2. Alternative Model of Dark Matter 
 
a) DM is a non-baryonic substance, consistent with the 
observation of a collision between galactic clusters [27]. 

b) DM distribution is spherically symmetric around 
some spiral galaxies, without flattening at the poles 
[3,6,10,28]. 

c) Consistent with assumption (b), DM does not nec-
essarily partake in galaxy rotation [1,3,4,10,28]. The 
concept that DM is constituted of particles conflicts with 
this assumption. 

d) Dark matter has no centrifugal force to balance the 
centripetal gravitation pull, consistent with assumption 
(c). 

e) Instead, we assume that DM is elastically com-
pressible, without energy dissipation, and develops a 
DM-pressure P, which balances the gravitation pull on 
DM. 

Because DM-WIMPs have no self interaction suffi-
cient to develop DM-pressure high enough to balance the 
gravitation pull, assumption (e) excludes the possibility 
that DM be constituted of WIMPs, consistent also with 
the absence of success, so far, of efforts to prove the ex-
istence of DM-WIMPs [1-4,7,8,11-15]. 

f) Newton dynamics may be used as a good approxi-
mation of general relativity in the limits of speeds small 
relative to the speed of light and of weak gravitation. 

2. Coupled Distributions of Baryonic and  
Dark Matters 

 
To simplify, we consider only systems of spherical 
symmetry. 

Including DM mass, Newton’s equations applied to a 
spherically symmetric galaxy yield: 

F = −G(M + m)M'R−2            (2.1) 

where M and m (g) are the baryonic (mostly luminous) 
mass and the DM-mass, respectively, both within a ra-
dius R from the galaxy center, and F is the gravitation 
force applied by the sum of M and m on a gravitating 
small test mass M' at radial distance R from the galaxy 
center. 

The gravitational acceleration γ of M' at R then is: 

γ = −(Vc)
2/R = F/M' = −G(M + m)R−2,   (2.2) 

from which: 

(Vc)
2 = −G(M + m)R−1            (2.3) 

and 

Vc = [G(M + m)R−1]1/2.          (2.4) 

The mass m may be expressed as: 
24π dm R               (2.5) 

from which: 
2d 4π dm R             (2.6) 

where ρ is the DM density at location R. 
 
2.1. Equation of State of Dark Matter in a  

Gravitation Field 
 
Staying with the simplicity of spherical symmetry, let us 
consider a spherically symmetric distribution of baryonic 
mass, its associated DM, and their gravitation field of 
center O, at infinite distance from any other mass. 

Because DM does not necessarily rotate around gal-
axies (assumption c), it lacks the centrifugal force that 
might balance the gravitation force on DM (assumption 
d). Instead, the gravitational field elastically compresses 
DM to a pressure distribution P (g cm−1·s−2), function of 
radial distance R, without energy dissipation (assumption 
e). Therefore, the pressure P is a function only of loca-
tion R and of other functions of R. The DM pressure 
balances the gravitation force and may be expressed in 
differential form as the ratio of the gravitation differen-
tial force dFm exerted by the sum of M and m on the dif-
ferential mass dm of the DM confined in a spherical shell 
of radius R, and differential thickness dR, to the surface 
area S (= 4πR2) of that shell: 

dP = −G(M + m)R−2dm(4π)−1R−2= γ(4π)−1R−2dm = ρdR < 0, 
(2.1.1) 
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in which Equation (2.6) was used in the last step. 
Equation (2.1.1) shows that the pressure P is expressi-

ble in terms of the location R, the DM mass density 　 at 
location R, and the gravitation acceleration γ (of a test 
mass M') at that location. The pressure might be ex-
pressed as: 

P – Poo = −AργR = Aρ(Vc).     (2.1.2) 

where Poo is the DM pressure at infinite distance, and A 
is a dimensionless constant. When the value of A is de-
termined, Equation (2.1.2) provides the EoS for DM in 
the spherically symmetric gravitation field. 

To determine the value of the integration constant A, 
we derive an expression for the distribution of DM 
mass-density ρ around a galaxy and then compare it to 
the boundary condition at very large radii Rlarge. The 
procedure is as follows: 

Form the ratio of Equation (2.1.1) to Equation (2.1.2), 
side by side: 

d dP R

P P A R AR




  
 

dR
        (2.1.3) 

and by integration: 

Log(P – Poo) + A−1Log (R) = Log(constant) (2.1.4) 

or: 

(P – Poo)R
(1/A) = –AργR[1+(1/A)] = Aρ(Vc)

2R(1/A)  
         = constant = Ak       (2.1.5) 

where the integration constant is conveniently written as 
Ak to yield: 

–ργR[1+(1/A)] = ρ(Vc)
2R(1/A) = k, another constant speci-

fic to the galaxy.                         (2.1.6) 

The constant k is specific to the galaxy because it is a 
function of the total luminous mass M and of its distribu-
tion in the galaxy, so that 2 galaxies of equal total lumi-
nous mass but with different distributions can have dif-
ferent constants k. 

For a galactic flat rotation curve, Vc becomes constant 
at very large radial distances Rlarge, which requires that 
the DM mass density be distributed there as: 

ρ(Rlarge)
2 = K, another constant specific to the galaxy.  

(2.1.7) 

From Equation (2.1.6):  

ρR(1/A) = k/(Vc)
2.             (2.1.8) 

Equation (2.1.8) shows that the necessary and suffi-
cient condition for Vc to remain constant in any range of 
radial locations R, is that ρR(1/A) remain constant in that 
range. Comparison with Equation (2.1.7), shows that 
Equation (2.1.8) has the required form, and that the con-
stant A = 1/2. 

With the determination of A = 1/2, Equation (2.1.2) 
becomes the sought EoS: 

22 cP P R V     2 .       (2.1.9) 

Because of the restriction to spherical symmetry, 
Equation (2.1.9) is the EoS derived for DM outside any 
galaxy and inside any spherically symmetric galaxy, ex-
cept perhaps at sufficiently high DM-pressures where 
DM might undergo phase changes with corresponding 
changes of properties. Such changes might occur suffi-
ciently close to some galaxy centers. 

However, being a material property of DM, the valid-
ity of the EoS (Equation 2.1.9) is not limited to spherical 
symmetry and would be valid outside and inside any 
galaxy, except perhaps at sufficiently high DM pressures 
where DM might undergo phase changes with corre-
sponding changes of DM properties. Such changes might 
occur sufficiently close to some galaxy centers. 
 
2.2. Equation Governing the Coupled  

Distributions of Baryonic and of Dark  
Matter 

 
With the determination of the constant A = 1/2, Equation 
(2.1.8) becomes: 

–ργR3 = ρ(Vc)
2R2 = k.          (2.2.1) 

Because Vc depends on the distribution of both the 
baryonic mass and the DM mass, its participation in 
Equation (2.2.1) means that this Equation (2.2.1) governs 
both distributions. 

Equation (2.2.1) satisfies the known trivial condition 
that for Vc to become constant at sufficiently large dis-
tances Rlarge, the expression  must become con-
stant there (Equation (2.1.7)). 

2
argl eR

Still, it remains to show that both Vc and  do 
become constant at sufficiently large distances Rlarge. We 
now derive that result and, therefore, the flat galactic 
rotation curves.  

2
argl eR

 
2.3. Derivation of Galactic Flat Rotation Curves 
 
Combine Equations (2.2 and 2.5) and rearrange to yield: 

2 24π d
b

c a
RV GM Gm G R R    .     (2.3.1) 

The validity of Equation (2.3.1) is restricted to spheri-
cal symmetry. 

Form the differential on both sides of Equation (2.3.1), 
to obtain: 

(Vc)
2dR + Rd(Vc)

2 – GdM = 4πGρR2dR.   (2.3.2) 

Substitute for 2R  from Equation (2.2.1) to yield: 

(Vc)
2dR + Rd(Vc)

2 – GdM = 4πGk[dR/(Vc)
2]. (2.3.3) 

Express dM in terms of the luminous mass density ρb: 

dM = 4πρbR
2dR.          (2.3.4) 
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Substitute into Equation (2.3.3), multiply throughout 
by (Vc)

2/R, and re-arrange to yield: 

(Vc)
4dR/R + (Vc)

2d(Vc)
2 – G4πρb(Vc)

2RdR = 4πGk[dR/R]. 

or: 

G4πk(ρb/ρ)dR/R + 4πGk[dR/R] – (Vc)
4dR/R – (Vc)

2d(Vc)
2 

= 0.                                     (2.3.5) 

Solution of Equation (2.3.5) yields the flat galactic 
curves. Various approaches are possible. One approach is, 
for any particular galaxy, to determine ρb from luminos-
ity measurements, then solve Equations (2.2.1 and 2.3.5) 
simultaneously, for Vc and ρ as functions of R. 

Another approach is described in the Appendix. The 
results are as follows: 

a) Vc reaches a limit at sufficiently large R: 

Vc,lim = (4πGk)1/4            (2.3.6) 

b) For large dense galaxies, Vc asymptotically reaches 
the limit from higher values according to: 

 24 4πcV Gk GM R   .        (2.3.7) 

c) For small galaxies, Vc asymptotically rises to the 
limit from lower values according to: 

(Vc)
4 = (Vc,lim)4 – constant/R2      (2.3.8) 

 
2.4. A Tully-Fisher Relation 
 
In keeping with the simplicity of spherical symmetry, we 
consider a hypothetical galaxy of large luminous (bary-
onic) mass but small radius, and the region outside its 
small luminous radius.  

Substituting into Equation (2.5) for ρr2 from equation 
(2.2.1) and for  from Equation (2.3.12), and then 
integrating, yields: 

2
cV

 

 

 

2 2

1 22 2

½2 2

d d
4π 4π

4π

4π
     

4π
     

R

R R

a R a R
c

a R

R

a R

r r
m k k

V Gk GM r

GM GkR

G

GM GkR
M

G

  1 2






  
   

      
 
 

   

 






.

(2.4.1) 

 
2.4.1. At Sufficiently Large Distance from Mass  

Center: Galactic Flat Rotation Curve 
For sufficiently large distances Rlarge from the center of 
M, Equation (2.4.1) yields: 

 1 21
large4πm kG R .       (2.4.1.1) 

Equations (2.4.1 and 2.4.1.1) show that for  
 22

arg 4πl eR GM Gk , the DM mass m increases line-
arly with Rlarge, consistent with galactic flat rotation 
curves. 
 
2.4.2. At Sufficiently Small Distances from Mass  

Center 
For sufficiently small distances Rsmall from the center of 
M, Equation (2.4.1) yields: 

  
 

 

 

     

  

1 22 2 1

1 22 2

1 22 2

1 22 2

2 22
2

1 22 2

4π

4π
   

4π
       

4π

4π 2π
  .

4π

m GM GkR GM G

GM GkR GM

G

GM GkR GM

GM GkR GM

GM Gk R GM k
R

GMG GM GkR GM

    

   

       
     

 
 

   

     

(2.4.2.1) 

Equation (2.4.2.1) shows that for: 

 22
small 4πR GM Gk ,       (2.4.2.2) 

the DM-mass m around M increases in proportion to 
(Rsmall)

2, contributing an added constant acceleration- 
term: 

2
2 22π

2πm

kR
GmR G R k M

GM
        , (2.4.2.3) 

that is, directed towards the center of M. 
Equation (2.4.2.3) is valid around a star like the Sun 

and would explain very nicely all the observations about 
the Pioneer Anomaly except for the Viking ranging data 
[29-31].  
 
2.4.3. Tully-Fisher Relation 
Expressing k from Equation (2.4.2.3) as: 

 2πmk   M           (2.4.3.1) 

and then substituting into Equation (2.1.13) yields: 

 4
,limit 4π 4π 2π 0   c mV Gk G M    (2.4.3.2) 

The above results apply outside any galaxy, where 
DM is spherically symmetric1,3,4,10 and Dm = 0. In par-
ticular, they apply outside spiral galaxies so that Equa-
tion (2.4.3.2) expresses a TFR. However, just like Mil-
grom’s MOND relation, Equation (2.4.3.2) expresses a 
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1

relation of the baryonic mass M with the limit velocity 
Vc,limit, while the TFR is with the maximum (peak) circu-
lar velocity Vc,max. 
 
2.5. Derivation of Milgrom’s Relation 
 
Milgrom’s MOND relation may be derived from the 
properties of DM, without departing from Newton laws 
by substituting for k from Equation (2.4.3.1) into Equa-
tion (2.3.8): 

Vc,lim = −(2GγmM)1/4 > 0 for sufficiently small accelera-
tion.                                     (2.5.1) 

Equation (2.5.1) is the MOND correlation (1.1.8) at 
sufficiently small acceleration. Comparison with Equa-
tion (1.1.8) yields: 

γo = −2γm > 0            (2.5.2) 

Substituting for −2γm from equation (2.5.1): 
1 4 1

lim2 4πo m ckM V G M            (2.5.3) 

According to Equation (2.5.3), γo is not strictly identi-
cal for all galaxies but should exhibit some variation over 
different galaxies, because even galaxies of equal mass 
have slightly different k-values for different distributions 
of their masses. 

Assuming the Sun gravitates around our Galaxy center 
at about the limiting speed, Equation (2.5.3) yields for 
our Galaxy: 

γo = (2.2 × 107 cm·s−1) 4 (6.67 × 10−8 cm3·s−2·g−1)−1  

[(6 × 1010)(1.989 × 1033 g)]−1 = 2.9 × 10−8 cm·s−2, (2.5.4) 

which is of the order of magnitude of the value pre-
scribed by Milgrom, thus contributing some credibility to 
our treatment. 

According to this derivation, Milgrom’s relation ap-
plies to equilibrium or quasi-equilibrium conditions, and 
therefore is not applicable to collision of galaxy clusters. 

Therefore, all the results obtained with MOND derive 
also from the elastically compressible model of DM. 
This result is important because MOND’s relation has 
been shown to fit very well galactic rotation curves and 
the Tully-Fisher relation [32-34]. 
 
2.6. Elastic Compressibility of Dark Matter 
 
The elastic compressibility of DM plays a crucial role in 
establishing a DM pressure, a DM EoS, and perhaps an 
understanding of DM behavior. It behooves us to derive 
an expression for that elastic compressibility :  

1 d 1 d

d d

v

v P P




             
     

,        (2.6.1) 

where v is the volume of a fixed mass m of DM at pres-

sure P.  
Forming the derivatives on both sides of Equation 

(2.1.4) and substituting for 2
cV  from Equation (2.2.1): 

2

d
d d

2

k
P

R R
    
  3

R
k           (2.6.2) 

Differentiating Equation (2.2.1): 

dd d
2 c

c

VR

R V




 
  

 
          (2.6.3) 

Substituting from Equations (2.6.2 and 2.6.3) into 
Equation (2.6.1) yields: 

 
 

2

3

2

dd

d1 d 2
2 1

dd

d2
     1 .

d





  

     
  

 
  

  

c

c c

c

c

VR

R V VR R
RP kk

R

LogVR

k LogR

V dR
 (2.6.4) 

When R becomes sufficiently large, then  

 1/4
4πcV kG  and 

 
 

d
0

d
cLogV

LogR
  yielding: 

2

2

2 2 1

c

R

k P PV


 

   


 .     (2.6.5) 

When R becomes sufficiently small, then Vc also be- 

comes very small and 
d

dc c

R

V V


R
 so that  

2d
1 and 4 0

d
c

c

VR R

V R k
       (2.6.6) 

 
2.7. Accelerated Expansion of Our Universe 
 
In a Universe where all mass is embodied in particles, 
after the Big Bang, gravitation tends to slow down the 
initial expansion of our Universe. In such a Universe, 
even DM contributes to the gravitation forces and, 
therefore, to slowing down the expansion of the Universe 
of particles. 

For simplicity, consider two galaxies, their center-to- 
center line, and the distance between the two galaxies 
expanding due to an initial big bang impetus. The gravi-
tation attraction between the two galaxies tends to slow 
down that expansion. Intergalactic DM adds to the gal-
axies mass and therefore to the gravitation thus contrib-
uting to further slowing down the expansion. 

However, in our Universe an elastically compressible 
DM can produce a different result: with the two galaxies 
pulling the DM in opposite directions, somewhere along 
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that line, there is a point X where the pulls of the two 
galaxies balance each other. The DM on each side of X 
is pulled away from X thus expanding it even though its 
pressure tends to zero. The infinite compressibility/de- 
compressibility (Equation (2.6.5)) facilitates that expan-
sion. This contribution to the expansion of the interga-
lactic DM is above, and in addition to, the contribution 
from the initial impetus. The decompression of DM be-
tween galaxies might contribute to the accelerated ex-
pansion of our Universe. Thus, the elastically compressi-
ble DM under pressure could be a DE candidate.  
 
3. Discussion and Conclusions 
 
3.1. Nature of Dark Matter 
 
The non-particulate, massive, and elastically compressi-
ble DM model is an alternative “new physics” because it 
is not constituted of particles. 

The hypotheses that DM is constituted of WIMPs or 
that DM is elastically compressible are in conflict with 
each other because the self-interactions of WIMPs are 
not strong enough to produce the elastic compressibility 
and pressure sufficient to balance the gravitational pull.  

If DM is not constituted of particles, we are left with a 
fluid continuum, which makes it unlike any known other 
substance, and some of its properties must be unlike any 
property of known other substances. 

From observations we know that it does not emit elec-
tromagnetic radiation, neither does it absorb nor reflect 
any: it is perfectly transparent. Its only known interaction 
with baryonic matter is gravitational. Similarly, with 
electromagnetic radiation that is deflected gravitationally 
in lensing. 

At this time, we do not know if DM exhibits a refrac-
tive index. In the affirmative, we do not know if it does 
vary, and perhaps how it varies, with DM density ρ. 

If it were not for its distributed mass density, DM 
could be identified with space, which raises the question: 
does space have a distributed mass density? That would 
make space a substance! Some might object that this 
would be a kind of revival of ether, which has been defi-
nitely disqualified more than a hundred years ago. 

Others may hold that the ether was never proven 
wrong, only unnecessary, given the knowledge of the 
time, but is needed now. That the existence of measured 
physical properties of space: electrical permittivity, 
magnetic permeability, both in concordance with the 
speed of light, support the material nature of space. 

If this model of DM is allowed to be published, it 
would be expected to become controversial: some will 
hold that the success of the consequences derived from 
the model do not prove its validity. In particular, any-

thing not made of particles is unthinkable. Others may 
hold, as is generally accepted in science, that the success 
speaks in favor of the model, that the existence of a DM 
particle is not proven at all and that to reject a non-par- 
ticulate DM because of the unsubstantiated belief in a 
DM particle is tantamount to dogmatism. 

However, physicists and astrophysicists are entitled to 
a fair hearing of that model as much as to the concepts of 
DM WIMPs, or to other alternative “new physics.” Whe- 
ther they compromise and accept to explore the model of 
non-particulate DM remains to be seen. 
 
3.2. Tully-Fisher Relation 
 
Like Milgrom’s MOND relation, the relation derived 
here is between the luminous mass of a galaxy and the 
limiting speed of the galactic rotation curve, while the 
Tully-Fisher relation is with the maximum (peak) speed. 
However, Milgrom tailored his relation, ad hoc, and in 
conflict with general relativity, while the derivation in 
this paper is based on the properties of DM without con-
flict with general relativity. 
 
3.3. Relation between Baryonic and Dark Matter  

Distributions 
 
Equations (2.2.1 and 2.3.1) provide the relation between 
the baryonic matter and the DM distributions, sometimes 
dubbed the halo-disc conspiracy (for spiral galaxies). 
This is the first known derivation of such relation, and 
can be tested against data from existing galactic rotation 
curves. 
 
3.4. Derivation of Milgrom’s Relation 
 
Because the Milgrom relation at weak acceleration fits 
very well galactic rotation curves and the Tully-Fisher 
relation, the derivation of those relations from the DM 
model supports that model. However, as already stated, 
according to our derivation, Milgrom’s relation applies 
only to equilibrium and quasi-equilibrium conditions and 
is not valid for collisions. 
 
3.5. Power of the Model 
 
The power of the model is demonstrated in part by its 
ability to derive: 

a) An equation of state for DM. 
b) A relation between DM and baryonic matter distri-

butions. 
c) Galactic flat rotation curves,  
d) A Tully-Fisher relation. 
e) Milgrom’s MOND relation. 
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f) A possible mechanism for black hole formation at 
the centers of large galaxies. 

g) A possible mechanism for the acceleration of our 
Universe expansion. 
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 

Appendix 
 
In section 2.3 of the present paper, it was stated that so-
lution of Equation (2.3.5) yields the flat galactic rotation 
curves. One suggested approach is, for any particular 
galaxy, to determine the luminous mass density ρb from 
luminosity measurements, then solve Equations (2.2.1 
and 2.3.5) simultaneously, for the galactic rotation speed 
Vc and for the DM density ρ, as functions of R.Equations 
(2.2.1 and 2.3.5) are reproduced here as Equations (A1 
and A2, respectively) for the reader’s convenience: 

−ρR3 = ρ(Vc)
2R2 = k.           (A1) 

G4πk(ρb/ρdR/R + 4πGk[dR/R] − (Vc)
4dR/R − (Vc)

2d(Vc)
2 

= 0.                                      (A2) 

Another approach consists of the consideration of two 
simpler cases: 

a) Equation (A2) is solved first for the case of large 
galaxies where the rotation speed rises fast with R, 
reaches speeds larger than the plateau, reaches a maxi-
mum speed, then beyond the luminous region, slows 
down and asymptotically reaches the plateau speed limit. 

Beyond the luminous radius R0 (0 < R0 < R) of a gal-
axy, the luminous mass M becomes constant so that   
dM = 0 and Equation (A2) becomes  

4πGk[dR/R] = (Vc)
4dR/R + (Vc)2d(Vc)2. 

or  

 4 4 0

 2 4 4π 0RV V Gk 

2 4π d dc cV Gk R R V  .      (A3) 

A singular solution of Equation (A3) is: 

Vc = (4πGk)1/4              (A4) 

When , then from Equation (A3):  c c

     4 4d 4πc cV V Gk 2 d 0R R    and, upon integra-  

tion,    4πc cLn R V Gk Ln k 2 4  or: 

2 4 0c4cR V Gk k   .           (A5) 

Equation (A5) yields: 

 4 2

  2 2 1G M m R V R      

cRV GM G 

4πc cV Gk k R  .            (A6) 

Equations (A5 and A6) are valid outside the luminous 
radius of any galaxy, where dM = 0 and DM mass den-
sity is spherically symmetric. 

Equation (A6) shows that, as Rlarge becomes suffi-
ciently large, the speed Vc tends to a limit Vc,lim given by: 

Vc,lim = (4πGk)1/4,             (A7) 

thus establishing the galactic flat rotation curve and the 
DM mass density distribution of Equation (A1). 

To determine the value of kc, first we consider the 
gravitation outside the luminous region, that is for R > R0 

where M is constant,  
from which: 

2 24π d
b

a
m G R R        (A8) 

Second, we substitute under the integral for ρR2 from 
equation (A1) and then for  from Equation (A6) to 
obtain: 

2
cV

 

 
 

2
c

½
2

2

2

2
1 2

2

2 2

d
4π 4π 4π d

d 4π
4π

2 4π

4π ,

c
c

Rc

c
o

c

c c c c

R
Gk Gk Gk k R R

V

GkR k
GkR k

Gk k R

GkR k k RV k


    


       

      

 



RV GM


 

from which c . Because kc > 0, the negative 
sign under the square root is unacceptable and Equations 
(A5 and A6) yield only one branch, for R > R0: 

k GM 

 
2

24 4
,lim4πc c

GM
V Gk GM R V

      R 
.  (A9) 

Equation (A9) shows the speed Vc asymptotically ap-
proaching the speed limit from higher speeds, as is the 
case for large dense galaxies where the circular speed 
initially rises fast, then slows down, reaches a maximum, 
and comes down to a plateau.  It does not represent the 
cases of small dense galaxies that behave differently. 

From Equation (A1), along the rotation speed plateau: 

2
2

k
R K

,limcV


  12 2 2
large ,lim lim 4πc c

, another constant.     (A10) 

Comparing Equation (A9) to Equation (2.3.10) yields: 

R kV V G   

,lim 4πck V G

K ,    (A11) 

where the constant k is expressed from Equation (A7) as:  

  14 
            (A12) 

The above results are similar to those of Milgrom’s 
MOND. 

We now derive the galactic flat plateau in cases of 
smaller galaxies where the rotation curve asymptotically 
rises to the plateau from lower speeds. 

b) Within the luminous region, for R < R0, equation 
(A2) is valid, G4πkρb/ρdR/R + 4πGk[dR/R] − (Vc)

4dR/R 
− (Vc)

2d(Vc)
2 = 0, and substituting (Vc,lim)4 for 4πGk, we 

obtain: 

[(Vc,lim)4 – (Vc)]
4](dR/R) = (Vc)

2d(Vc)2] 
– (Vc,lim)4(ρb/ρ) dR/R 

or: 

2[(Vc,lim)4 (1 – ρb/ρ) – (Vc)]
4](dR/R) = d(Vc)4 (A13) 
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As R becomes sufficiently large, the luminous matter 
mass density becomes negligible and Equation (A13) 
becomes: 

2[(Vc,lim)4 – (Vc)]
4](dR/R) = d(Vc)4     (A14) 

The solution of Equation (A14) is  
2Log (R) + Log[(Vc,lim)4 – (Vc)

4] = Log (constant) from  

which:  

(Vc)
4 = (Vc,lim)4 – constant/R2       (A15) 

Equation (A15) shows (Vc)
4 rising linearly with R–2 at 

a decreasing slope and asymptotically reaching the speed 
limit Vc,lim. 

 


