
Open Journal of Microphysics, 2019, 9, 1-9 
http://www.scirp.org/journal/ojm 

ISSN Online: 2162-2469 
ISSN Print: 2162-2450 

 

DOI: 10.4236/ojm.2019.91001  Jan. 31, 2019 1 Open Journal of Microphysics 
 

 
 
 

Pseudo-Hermitian Matrix Exactly  
Solvable Hamiltonian 

Ancilla Nininahazwe 

Institut de Pédagogie Appliquée, Université du Burundi, Bujumbura, Burundi 

 
 
 

Abstract 
The non PT-symmetric exactly solvable Hamiltonian describing a system of a 
fermion in the external magnetic field which couples to a harmonic oscillator 
through some pseudo-hermitian interaction is considered. We point out all 
properties of both of the original Mandal and the original Jaynes-Cummings 
Hamitonians. It is shown that these Hamiltonians are respectively pseu-
do-hermitian and hermitian [1] [2]. Like the direct approach to invariant 
vector spaces used in Refs. [3] [4], we reveal the exact solvability of both the 
Mandal and Jaynes-Cummings Hamiltonians after expressing them in the 
position operator and the impulsion operator. 
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1. Introduction 

Several new theoretical aspects in quantum mechanics have been developed in 
last years. In the series of papers [5] [6], it is shown that the traditional self ad-
jointness requirement (i.e. the hermiticity property) of a Hamilton operator is 
not necessary condition to guarantee real eigenvalues and that the weaker condi-
tion PT-symmetry of the Hamiltonian is sufficient for the purpose. Following 
the theory developed in Refs. [5] [6], let’s remind that a Hamiltonian is invariant 
under the action of the combined parity operator P and the time reversal opera-
tor T if the relation PTH H=  is proved (i.e. PT-symmetry is said to be broken). 
As a consequence, the spectrum associated the previous Hamiltonian is entirely 
real. 

An alternative property called pseudo-hermiticity for a Hamiltonian to be as-
sociated to a real spectrum is shown in details in the Refs. [1] [2]. 
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Referring the ideas of [1] [2], we recall here that a Hamiltonian is said to be 
η  pseudo-hermitian if it satisfies the relation 1H Hη η− += , where η  denotes 
an invertible linear hermitian operator. 

Another direction of quantum mechanics is the notions of quasi exact solv-
ability and exact solvability [7] [8] [9] [10]. 

In the last few years, a new class of operators has been discovered. This class is 
intermediate between exactly solvable operators and non solvable operators. Its 
name is the quasi-exactly solvable (QES) operators, for which a finite part of the 
spectrum can be computed algebraically. 

This paper is organized as follows: 
In Section 2, we briefly describe the general model which is expressed in 

terms of the creation and the annihilation operators. We show that the Ham-
iltonian describing the model is pseudo-hermitian if 1φ = − , or it is hermitian 
if 1φ = + . 

In Section 3, we show in details the properties of the Mandal Hamiltonian 
namely the non-hermiticity, the non PT-symmetry, the pseudo-hermiticity and 
the exact solvability. 

In Section 4, as in the previous section, it was pointed out that the original 
Jaynes-Cummings Hamiltonian is hermitian and exactly solvable. 

2. The Model 

In this section, we consider a Hamiltonian describing a system of a fermion in 
the external magnetic field, B  which couples the harmonic oscillator interac-
tion (i.e. a aω +

 ) and the pseudo-hermitian interaction if 1φ = − , or the her-
mitian interaction if 1φ = +  (i.e. ( )a aρ σ φσ +

+ −+ ) [1] [2]: 

( )H a a a aµ ω ρ σ φσ+ +
+ −= ⋅ + + +B σ ,              (1) 

where 
σ , σ±  denote Pauli matrices, 
ρ , µ  are real parameters, 
a+ , a refer the creation and annihilation operators respectively satisfying the 

usual bosonic commutation relation 

, 1a a+  =  , [ ], , 0a a a a+ + = =   and ( )1
2 x yiσ σ σ± ≡ ± . 

Recall that the matrices , , ,x yσ σ σ σ+ −  and zσ  can be expressed in the fol-
lowing matrix forms: 

0 1 0 0 0 1 0 1 0
, , , ,

0 0 1 0 1 0 0 0 1x y z

i
i

σ σ σ σ σ+ −

−         
= = = = =         −         

   (2) 

For the sake simplicity, one can choose the external field in the z-direction (i.e. 

0B=B z ) in order to reduce the Hamiltonian given by the Equation (1) and it 
becomes [1] [2]: 

( )2 zH a a a aε σ ω ρ σ φσ+ +
+ −= + + +                 (3) 

https://doi.org/10.4236/ojm.2019.91001


A. Nininahazwe 
 

 

DOI: 10.4236/ojm.2019.91001 3 Open Journal of Microphysics 
 

with 02 Bε µ=  and 1= . 

3. Properties of the Original Mandal Hamiltonian 
3.1. The Non-Hermiticity 

In this section, we reveal that the Hamiltonian described by the Equation (3) is 
non- hermitian if 1φ = − . It is called Mandal Hamiltonian (i.e. MH ) and it 
takes the following form: 

( )2M zH a a a aε σ ω ρ σ σ+ +
+ −= + + −                 (4) 

Taking account to the following identities: 

( )
( )
( )
( )

,

,

,

a a

a a

σ σ

σ σ

++

+ +

+
+ −

+
− +

=

=

=

=

                          (5) 

let’s show that the Mandal Hamiltonian given by the above Equation (4) is non 
hermitian: 

( ) ( )2M zH a a a aε σ ω ρ σ σ
+

+++ + +
+ −

   = + + −    
, 

( )2M zH a a a aε σ ω ρ σ σ+ + +
+ −= + − − .                (6) 

Comparing the expressions given by the Equations (4) and (6), we see that 
they are different (i.e. M MH H+ ≠ ), as a consequence, we are allowed to conclude 
that the Mandal Hamiltonian MH  is non-hermitian. 

3.2. The Non PT-Symmetry of HM 

In this section, we prove that the Mandal Hamiltonian is non PT-symmetric [5] 
[6]. Recall that the parity operator is represented by the symbol P and the 
time-reversal operator is described by the symbol T. 

The effect of the parity operator P implies the following changes [1] [2]: 
1 1 1

1 1 1

, , ,

, , .
z zP P P P P P

P P PaP a Pa P a

ε ε σ σ σ σ

σ σ

− − −
+ +

− − + − +
− −

= = =

= = − = −
             (7) 

Notice also the changes of the following quantities under the effect of the time 
reversal operator T: 

1 1 1

1 1 1

, , ,

, , .
z zT T T T T T

T T TaT a Ta T a

ε ε σ σ σ σ

σ σ

− − −
+ −

− − + − +
− +

= = − = −

= − = − = −
             (8) 

Taking account to the relations (7) and (8), one can easily deduce the changes of 
the Mandal Hamiltonian under the effect of combined operators P et T as follows 

( ) ( ) ( ) ( ) ( )1 1

2M zPT H PT PT a a a a PTε σ ω ρ σ σ− −+ +
+ −

 = + + −  
, 
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( ) ( ) ( )1

2M zPT H PT a a a aε σ ω ρ σ σ− + +
+ −= − + + − ,          (9) 

This above relation (9) can be written as follows 

( )2
PT
M zH a a a aε σ ω ρ σ σ+ +

+ −= − + + −               (10) 

Comparing the relations (4) and (10), we see that they are different (i.e. 
PT
M MH H≠ ), it means that the Mandal Hamiltonian MH  is not invariant under 

the combined action of the parity operator P and the time-reversal operator T. 
In other words, the Mandal Hamiltonian MH  is not PT-symmetric. 

3.3. Pseudo-Hermiticity of HM 

In this section, we first prove that the non PT-symmetric Mandal Hamiltonian is 
pseudo-hermitian with respect to third Pauli matrix zσ  [1] [2]: 

( )

( )

1 1 1 1 1

2

2

z M z z z z z z z z z z

z

H a a a a

a a a a

εσ σ σ σ σ ωσ σ ρ σ σ σ σ σ σ

ε σ ω ρ σ σ

− − + − − − +
+ −

+ +
+ −

= + + −

= + − −
   (11) 

with 1
z zσ σ σ σ−

± = −


 and 1 t
z z zσ σ σ− = = . 

Comparing the Equations (6) and (11), it is seen that the following relation is 
satisfied: 

1
z M z MH Hσ σ − +=                        (12) 

Taking account to this above relation, we are allowed to conclude that the 
Mandal Hamiltonian is pseudo-hermitian with respect to zσ . 

Finally, we reveal a pseudo-hermiticity of MH  with respect to the parity op-
erator P: 

( )

( )

1 1 1 1 1

2

2

M z

z

M

PH P P P Pa aP P aP P a P

a a a a

H

ε σ ω ρ σ σ

ε σ ω ρ σ σ

− − + − − + −
+ −

+ +
+ −

+

= + + −

= + − −

=

     (13) 

Here we have used the relations (7) in order to obtain this above equation (13). 
As a consequence, one can conclude that the Mandal Hamiltonian is pseu-
do-hermitian with respect to the parity operator P. 

Note that even if MH  is non hermitian and non PT-symmetric, its eigenva-
lues are entirely real due to the pseudo-hermiticity property [1]. 

3.4. Differential Form and Exact Solvability of HM 
In this step, our purpose is to change the Mandal Hamiltonian given by the Equ-
ation (4) in appropriate differential operator (i.e. MH  is expressed in the posi-

tion operator x and in the impulsion operator 
d
d

p i
x

= − ). Thus, referring to the 

ideas of exactly and quasi-exactly solvable operators studied in the Refs. [7] [8] 

https://doi.org/10.4236/ojm.2019.91001


A. Nininahazwe 
 

 

DOI: 10.4236/ojm.2019.91001 5 Open Journal of Microphysics 
 

[9] [10], we reveal that MH  preserves a family of vector spaces of polynomials 
in the variable x. 

With this aim, we use the usual representation of the creation and annihila-
tion operators of the harmonic oscillator respectively a+  and a [1] [2]: 

,
2 2

p im x p im xa a
m m
ω ω
ω ω

+ + −
= =

 

                 (14) 

where ω  is the oscillation frequency, m denotes the mass, x refers to the posi-

tion operator and the impulsion operator is 
d
d

p i
x

= − , 
2

2
2

d
d

p
x

= − . 

Using appropriate units, we can assume 1m = =  and the operators a+  
and a take the following forms: 

, .
2 2

p i x p i xa aω ω
ω ω

+ + −
= =                   (15) 

Replacing the operators a+  and a by their expressions given by this above 
Equation (15) in the Equation (4), the Mandal Hamiltonian MH  takes the fol-
lowing form: 

( ) ( )2 2 2

2 2 2M z

p i x p i xp xH
σ ω σ ωε ω ωσ ρ

ω
+ −− − + − +  = + + .    (16) 

In order to reveal the exact solvability of the above operator MH , we first 
perform the standard gauge transformation [2]: 

2
1 , exp .

2M M
xH R H R R ω−  

= = − 
 

                (17) 

After some algebraic manipulations, the new Hamiltonian MH  (known as 
gauge Hamiltonian) is obtained 

( )

( )

2

2

2

21 d d
2 2 dd 2

2
2 2 2

M z

z

p p i x
H x

xx
p p i xp i xp

σ σ ωε σ ω ρ
ω

σ σ ωε σ ω ρ
ω

+ −

+ −

− +  = − + +

− +  = + + +



       (18) 

Replacing the Pauli matrices ,zσ σ+  and σ−  by their respective expressions 
given by the relation (2), the final form of the gauge Hamiltonian is: 

2

2

001 0 22
0 1 22 00

22

M

pp i xp
H

p i xp i xp

ω
ε ωρ

ω
ω

ω

  
+       = + −   − +   +   

   

 , 

2

2

2 2 2
2

2 22

M

p pi xp
H

p i x p i xp

εω ρ
ω

ω ερ ω
ω

 
+ + 

 =
 +
− + −  

 

 .             (19) 

Note that one can easily check if this above gauge Hamiltonian MH  pre-
serves the vector spaces of polynomials ( ) ( )( )1 ,

t
n n nV P x P x−=  with n∈Ν . As 
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the integer n doesn’t have to be fixed (i.e. it is arbitrary), MH  is exactly solvable. 
Indeed, its all eigenvalues can be computed algebraically. Even if the gauge 
Mandal Hamiltonian MH  is non-hermitian and non PT-symmetric, its spec-
trum energy is entirely real due to the property of the pseudo-hermiticity [1] [2]. 

Thus, the vector spaces preserved by the operator MH  have the following 
form 

( ) ( )( )
2

2
1e ,

x
t

n n nW P x P x
ω

−

−=                   (20) 

where ( )1nP x−  and ( )nP x  denote respectively the polynomials of degree n − 1 
and n. 

As the gauge Mandal Hamiltonian MH , it is obvious that the original Mandal 
Hamiltonian MH  is exactly solvable. Due to this property of exact solvability, 
the whole spectrum of MH  can be computed exactly (i.e. by the algebraic me-
thods) [1] [2] [3]. 

4. Properties of the Jaynes-Cummings Hamiltonian 
4.1. The Hermiticity 

In this section, considering 1φ = + , the Hamiltonian given by the Equation (3) 
leads to the standard Jaynes-Cummings Hamiltonian of the following form 

( )2JC zH a a a aε σ ω ρ σ σ+ +
+ −= + + +                (21) 

Our aim is now to prove that the above Hamiltonian JCH  is hermitian. 
Indeed, in order to reveal the hermiticity of the Jaynes-Cummings Hamilto-

nian given by the above relation (21), the following relation JC JCH H+ =  must 
be satisfied. 

Consider now the following relation 

( ) ( )2JC zH a a a aε σ ω ρ σ σ
+

+++ + +
+ −

   = + + +    
,          (22) 

Taking account to the identities of the relation (5), this above equation leads 
the following expression: 

( )2JC zH a a a aε σ ω ρ σ σ+ + +
+ −

 = + + +  .             (23) 

Comparing the Equations (21) and (23), one can write that 

JC JCH H+ = .                         (24) 

Referring to this equation (24), it is obvious that the standard Jaynes-Cummings 
Hamiltonian is hermitian. As a consequence, its eigenvalues are real due to the 
property of hermiticity. 

4.2. Differential Form and Exact Solvability of HJC 
Along the same lines as in the above section 3.4, our purpose is to change the 
Jaynes-Cummings Hamiltonian given by the Equation (21) in appropriate diffe-
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rential operator (i.e. JCH  is expressed in the position operator x and in the 

impulsion operator 
d
d

p i
x

= − ). 

With this purpose, we use the usual expressions of the creation and annihila-
tion operators of the harmonic oscillator respectively a+  and a given by the 
Equation (15). 

Substituting (15) in the Equation (21), the Jaynes-Cummings Hamiltonian 

JCH  is written now as follows 

( ) ( )2 2 2

2 2 2JC z

p i x p i xp xH
σ ω σ ωε ω ωσ ρ

ω
+ −− + + − +  = + +     (25) 

Operating on the above operator JCH  the standard gauge transformation as 
2

1 , exp ,
2JC JC
xH R H R R ω−  

= = − 
 

                (26) 

after some algebraic manipulations, the new Hamiltonian JCH  (known as 
gauge Hamiltonian) is obtained 

( )

( )

2

2

2

21 d d
2 2 dd 2

2
2 2 2

M z

z

p p i x
H x

xx
p p i xp i xp

σ σ ωε σ ω ρ
ω

σ σ ωε σ ω ρ
ω

+ −

+ −

+ +  = − + +

+ +  = + + +



        (27) 

Replacing the Pauli matrices ,zσ σ+  and σ−  respectively by their matrix 
form given by the relation (2), the final form of the gauge Hamiltonian JCH  is 

2

2

001 0 22
0 1 22 00

22

M

pp i xp
H

p i xp i xp

ω
ε ωρ

ω
ω

ω

  
+       = + +   − +   +   

   

 , 

2

2

2 2 2
2

2 22

M

p pi xp
H

p i x p i xp

εω ρ
ω

ω ερ ω
ω

 
+ + 

 =
 +

+ −  
 

 .             (28) 

Note that one can easily check if this above gauge Hamiltonian JCH  pre-
serves the finite dimensional vector spaces of polynomials namely  

( ) ( )( )1 ,
t

n n nV P x P x−=  with n∈Ν . As the integer n is arbitrary, the gauge 
Jaynes-Cummings Hamiltonian JCH  is exactly solvable. 

As a consequence, its all eigenvalues can be computed algebraically. Indeed, 
the vector spaces preserved by the operator JCH  have the following form 

( ) ( )( )
2

2
1e ,

x
t

n n nW P x P x
ω

−

−=                   (29) 

where ( )1nP x−  and ( )nP x  denote respectively the polynomials of degree n − 1 
and n. 

As the gauge Jaynes-Cummings Hamiltonian JCH , it is obvious that the 

https://doi.org/10.4236/ojm.2019.91001


A. Nininahazwe 
 

 

DOI: 10.4236/ojm.2019.91001 8 Open Journal of Microphysics 
 

standard Jaynes-Cummings Hamiltonian JCH  is exactly solvable. In other 
words, all eigenvalues associated to the Hamiltonian JCH  can be calculated al-
gebraically (i.e. by the algebraic methods) [1-3]. 

5. Conclusion 

In this paper, we have put out all properties of the original Mandal Hamiltonian. 
We have shown that the Mandal Hamiltonian MH  is non-hermitian and 
non-invariant under the combined action of the parity operator P and the 
time-reversal operator T. Even if the previous properties are not satisfied, it has 
been proved that the Mandal Hamiltonian MH  is pseudo-hermitian with re-
spect to P and with respect to 3σ  also. With the direct method, we have re-
vealed that MH  preserves the finite dimensional vector spaces of polynomials 
namely ( ) ( )( )1 ,

t
n n nV P x P x−= . Indeed, the Mandal Hamiltonian MH  is said to 

be exactly solvable [1] [2] [3] [4]. Along the same lines used in Section 3, we 
have pointed out that the standard Jaynes-Cummings Hamiltonian JCH  is 
hermitian and exactly solvable in Section 4. 
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