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Abstract 
In this paper, a collection of value-based quantum reinforcement learning al-
gorithms are introduced which use Grover’s algorithm to update the policy, 
which is stored as a superposition of qubits associated with each possible ac-
tion, and their parameters are explored. These algorithms may be grouped in 
two classes, one class which uses value functions ( ( )V s ) and new class which 

uses action value functions ( ( ),Q s a ). The new ( ),Q s a -based quantum al-

gorithms are found to converge faster than ( )V s -based algorithms, and in 

general the quantum algorithms are found to converge in fewer iterations 
than their classical counterparts, netting larger returns during training. This 
is due to fact that the ( ),Q s a  algorithms are more precise than those based 

on ( )V s , meaning that updates are incorporated into the value function 

more efficiently. This effect is also enhanced by the observation that the 
( ),Q s a -based algorithms may be trained with higher learning rates. These 

algorithms are then extended by adding multiple value functions, which are 
observed to allow larger learning rates and have improved convergence prop-
erties in environments with stochastic rewards, the latter of which is further 
improved by the probabilistic nature of the quantum algorithms. Finally, the 
quantum algorithms were found to use less CPU time than their classical 
counterparts overall, meaning that their benefits may be realized even with-
out a full quantum computer. 
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1. Introduction 
1.1. Reinforcement Learning  

In recent years, the field of reinforcement learning [1] has seen an increase in 
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popularity. Reinforcement learning algorithms are a subset of machine learning 
algorithms which find an optimal sequence of actions to achieve a goal; unlike 
supervised learning algorithms, reinforcement learning algorithms solve an im-
plicit problem. Because of this, these algorithms may be applied to a wide range 
of problem domains, from robotics [2] to buying and selling stocks [3].  

The main goal of reinforcement learning is to maximize a signal, known as the 
reward, over a sequence of time steps, known as an episode, by finding a policy 
which describes what action to take from each state. The combination of the re-
ward signal with the environment with which the agent interacts implicitly de-
fines an optimal policy; the goal of all reinforcement learning algorithms is to 
find this policy or a good approximation of it. 

While many algorithms for reinforcement learning work well in environments 
with a reasonable number of states, they become ineffective in large state spaces 
(such as a continuous state space). To address this, algorithms must use function 
approximation and train with a relatively small number of experiences. One re-
cent success was the application of reinforcement learning to classic Atari games 
[4], which used a neural network approximation to Q-learning, a well known 
algorithm. This success was repeated a few years later using double Q-networks 
[5], demonstrating even greater success. Another recent demonstration of the 
power of reinforcement learning was its application to the game of Go. AlphaGo, 
a reinforcement learning algorithm which combines deep neural networks and 
tree search to learn the game of Go [6], was able to defeat the European cham-
pion of Go in multiple rounds. This represents a significant milestone in the 
field of reinforcement learning because there are about 1702 10×  unique, legal 
board configurations [7], rendering exact reinforcement learning methods in-
tractable. 

1.2. Value-Based Reinforcement Learning Algorithms  

Reinforcement learning algorithms consider the problem of finding an optimal 
policy in a Markov Decision Process (MDP) with respect to a reward signal; the 
nature of this is discussed in detail by Sutton and Barto [1]. While algorithms 
exist which directly search the policy space for the optimal policy (Williams’ 
REINFORCE [8], for instance), value-based algorithms search instead for a val-
ue-function satisfying the Bellman Equation using dynamic programming. This 
optimality equation can be expressed in two forms,  

( ) ( ) ( ) ( )* *max | , , ,
a s

V s P s s a r s a s V sγ
′

 ′ ′ ′= + ∑  

and  

( ) ( ) ( ) ( )* *, | , , , max , ,
as

Q s a P s s a r s a s Q s aγ
′′

 ′ ′ ′ ′= +  ∑  

where ( )r ⋅  is the reward obtained from the transition ( ), ,s a s′ , ( ]0,1γ ∈  is 
the discount of future rewards, and ( )| ,P s a⋅  is the transition probabilities of 
the Markov chain. The optimal value functions are related according to  
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( ) ( )* *max , ,
a

V s Q s a=  

where implicitly the optimal policy in the state s is to take the action a which 
maximizes the expected (discounted) return, ( )*V s . 

A number of methods have been developed to approximate the fixed points 
( )*V s  and ( )* ,Q s a  satisfying the two forms of the Bellman Equation. One 

such technique is known as Value Iteration [1], which successively approximates 
( )*V s . However, greater efficiency has been observed in algorithms which ap-

proximate ( ),Q s a . A well-known example is the Q-learning algorithm [9], 
which belongs to the class of Temporal Difference (TD) algorithms. The update 
equation of Q-learning is  

( ) ( ) ( )1 1, , max , ,t t t t t t t t ta
Q s a Q s a r Q s aα γ+ +′

 ′= + +  
 

where at each time step t the estimate of ( )* ,Q s a  is updated based on the ob-
served reward tr  and next state 1ts + . 

Interesting extensions of Q-learning are those of Double Q-learning [10] and, 
in general, Multiple Q-learning [11]. Double Q-learning, as a special case of 
Multiple Q-learning, maintains two separate estimates of ( )* ,Q s a , denoted 

( )1 ,Q s a  and ( )2 ,Q s a . At each time step, one randomly chosen function is 
held fixed and is used to update the other. In other words, the update equation 
becomes  

( ) ( ) ( ), 1 , ,, , , ,i t t t i t t t t j t tQ s a Q s a r Q s aα γ+ ′ = + +   

( ),max , ,i t ta
a Q s a′ =  

where { }, 1, 2i j∈ , i j≠ , with i chosen uniformly at random. In Multiple 
Q-learning, N estimates are maintained of ( ),Q s a , and at each time step a single 
estimate is updated using the average of all other 1N −  estimates:  

( ) ( ) ( ), 1 , ,
1,

, , , ,
1

N

i t t t i t t t t j t
j j i

Q s a Q s a r Q s a
N
γ

α+
= ≠

 
′= + + − 

∑  

( ),max , ,i t ta
a Q s a′ =  

where i is chosen uniformly over [ ]1, N . 

1.3. Quantum Computing  
1.3.1. Introduction  
Recently, there has been increased interest in developing quantum computing 
algorithms. In the quantum computing paradigm [12], which differs significant-
ly from classical computing, an algorithm can simultaneously process a large 
number of inputs, expressed as superimposed quantum states, through entan-
glement and interference. Current quantum computers are relatively small, such 
as those produced by IBM Q [13] with 16 or 17 qubits, but the size of these 
computers is expected to increase over time as the technology matures. Poten-
tially, these future quantum computers would be able to solve certain problems 
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which are intractable for classical computers. 
Two important algorithms which are the building blocks of more complicated 

algorithms are known as Shor’s algorithm [14] and Grover’s algorithm [15] 
Shor’s algorithm finds the prime factors of large integers in ( )log log N  time, 
and is an important algorithm in cryptography. However, in this paper we only 
consider the application of Grover’s algorithm to reinforcement learning. 

Quantum computing has shown promise in the field of machine learning [16], 
most importantly offering a reduction in computational complexity when com-
pared to classical algorithms. Quantum versions of principle component analysis 
(PCA), support vector machines (SVM), neural networks [17] [18], and Boltzmann 
machines. 

1.3.2. Grover’s Algorithm  
Grover’s algorithm [15] is a well-known search algorithm in quantum compu-
ting that can find an item in ( )N  instead of ( )N  (which is the run time 
of classical algorithms). The basic concept of Grover’s algorithm is to increase 
the probability that a given quantum-mechanical system, when measured, will 
yield the correct answer, which is determined by an oracle function ( ) 0f x = . 
While originally proposed as a search algorithm, Grover’s algorithm may be 
used more generally as a method to increase the probability of measuring any 
state, making it a useful process that may be incorporated in other algorithms. 

1.3.3. Quantum Reinforcement Learning  
With the increase in interest in quantum computing has come interest in apply-
ing it to reinforcement learning. As the application of reinforcement learning to 
real-world problems generally requires a very large state-space, the hope is that 
the application of quantum computing would significantly reduce the amount of 
time for the algorithm to reach convergence. A generalized framework for 
quantum reinforcement learning is described in detail by Cárdenas-López, et al. 
[19]. In this framework, the goal is to maximize the overlap between quantum 
states stored in registers and the environment through a rewarding system. Oth-
er efforts have been directed toward evaluating the adaptability of quantum 
reinforcement learning agents, as one key component of a reinforcement learn-
ing algorithm is its ability to adapt to a changing environment [20] [21]. Initial 
evidence indicates that quantum computing can improve the agent’s decision 
making in a changing environment. 

Other work in Quantum Reinforcement Learning has focused on adapting 
more traditional reinforcement learning algorithms to Quantum computing. 
Utilization the free energy of a restricted Boltzmann machine (RBM) to ap-
proximate the Q-function was first proposed by Sallans and Hinton [22]. Their 
method was later extended to a general Boltzmann machine (GBM) [23] [24], 
which was shown to provide drastic improvement over the original method in 
the early stages of learning. 

A specific algorithm known as Quantum Reinforcement Learning (VQRL) [25] 
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utilizes quantum computing to update the policy of a value-based reinforcement 
learning agent. The basic idea is to store the policy as a superposition of actions 
so that quantum computing algorithms may be applied to gain the quantum 
speedup. The policy that the agent follows is given by  

( ) 2
| ,sa s a aπ =  

where a is an action taken from state s, a  is its associated eigenstate, and 

sa  is the state of a quantum system that represents the policy for state s. The 
state of these systems are updated according to the rule  

( ) ( )ˆ1 ,s g sa t U a t+ =  

where ˆ
gU  is a unitary operator that represents one Grover iteration. This may 

be expressed as a combination of a reflection and diffusion, ˆ
aU  and ˆ

saU  [26], 
respectively, given by  

ˆ ˆ ˆ .
sg a aU U U=  

The effect of ˆ
aU  is to invert the amplitude of a, and the effect of ˆ

saU  is to 
invert all the amplitudes of the state about their mean. When applied an equi-
probable state, applying ˆ

gU  increases the probability of obtaining a from a 
measurement of the state. However, ˆ

gU  may not be applied indefinitely; after a 
certain number of iterations, Grover’s algorithm tends to decrease the probabil-
ity of measuring a. The maximum number of iterations depends on the number 
of possible actions, and is given by  

max
π 1 ,

4 2
L

θ
 = −  

 

where maxL  is the maximum number of iterations that may be applied until the 
probability decreases and tan sa aθ = . 

1.4. Quantum Q-Learning and Multiple V(s) or Q(s, a) Functions  

In this paper, a collection of new quantum reinforcement learning algorithms 
are introduced which are based on Quantum Reinforcement Learning (VQRL), 
which was first described by Dong, et al. [25]. These quantum algorithms store 
the policy as a superposition of qubits, and use Grover’s algorithm to update the 
probability amplitudes corresponding to different actions in a given state. The 
novelty of these algorithms quantum algorithms comes from replacing the value 
function ( )V s  with the action-value function ( ),Q s a  in the quantum rein-
forcement learning algorithm VQRL. This new algorithm is called Quantum 
Q-learning (QQRL). The advantage of the ( ),Q s a  is that it is more precise 
than ( )V s , which is an advantage during training because it more efficiently 
uses updates applied after training steps. This is easily contrasted with the ( )V s  
functions, which can suffer from “contradicting’’ updates—that is, the averaging 
of updates resulting from taking different actions from the same state with 
widely varying rewards. In experiments, it QQRL was found to converge faster 
than VQRL, which is likely due to this additional precision. Both VQRL and 
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QQRL exhibit much faster convergence than their classical counterpart, Q-learning, 
which is likely due to the balance of exploration and exploitation provided by 
the quantum nature of the policy. 

Another alteration done to VQRL, and also done to QQRL, is to increase the 
number of ( )V s  and ( ),Q s a  functions; this alteration is inspired by Multiple 
Q-learning algorithm described by Duryea, et al. [11]. These algorithms are known 
as Multiple Quantum Reinforcement Learning (MVQRL) and Multiple Quantum 
Q-learning (MQQRL). In general, it was found that increasing the number of 
( )V s  or ( ),Q s a  functions increased the performance of the algorithms in a 

stochastic environment, where the reward is sampled from a distribution of val-
ues instead of being deterministic. 

The structure of this paper is as follows. Section 2 introduces the quantum 
reinforcement learning algorithms discussed in this paper. Section 3 first presents 
the test environment used on the algorithms, and then shows the results of test-
ing the new algorithms in the environment. Finally, Section 4 concludes by in-
terpreting the results and discussing their implications. 

2. Algorithms  
2.1. Double Quantum Reinforcement Learning (DVQRL)  

Double Quantum Reinforcement Learning (DVQRL) combines the idea of doubled 
learning (such as used in Double Q-learning) with Quantum Reinforcement Learn-
ing. The main idea of DVQRL is to use two separate value functions, ( )1V s  and 

( )2V s , and for each experience to randomly choose one function to update us-
ing the value of the other. Explicitly, if { }1,2i   (uniform distribution) and 

2j x= − , then for each experience the update  

( ) ( ) ( ) ( )( )i i j iV s V s r V s V sα ′← + + −  

is applied. The expected value of each state is then the average of the two value  

functions ( ) ( ) ( )( )1 2
1
2

V s V s V s= + . This is used to compute L, which is the  

number of times to apply Grover’s operator to the policy, sa . First, θ  is 
computed by solving  

tan .sa aθ =  

Then, after solving for θ , L may be computed using  

( )( ) π 1min , ,
4 2

L k r V s
θ

  ′= + −    
 

where L is the number of times to apply Grover’s operator and k is a parameter 
which controls the rate at which the policy is updated. The Grover operator ˆ

gU  
may then be applied L times to the current policy, given by  

( ) ( )ˆ1 .L
s g sa t U a t+ =  

The algorithm for DVQRL can be seen in Algorithm 1. 

https://doi.org/10.4236/ijis.2019.91001


M. Ganger, W. Hu 
 

 

DOI: 10.4236/ijis.2019.91001 7 International Journal of Intelligence Science 
 

 

2.2. Multiple Quantum Reinforcement Learning (MVQRL)  

Multiple Quantum Reinforcement Learning (MVQRL) is similar to Double 
Quantum Reinforcement Learning, but allows for N action value functions in-
stead of only 2. Similar to Multiple Q-learning, the effect of increasing the num-
ber of functions is an improvement in learning in stochastic environments. The 
estimated value of each state is stored in the functions ( ) ( ) ( )1 2, , , NV s V s V s . 
The value functions are updated at each step according to  

( ) ( ) ( ) ( )
1,

,
1

N

i i j i
j j i

V s V s r V s V s
N
γ

α
= ≠

 
′← + + − 

− 
∑  

where { }1,i N . The algorithm for Multiple VQRL may be seen in Algo-
rithm 2. 
 

 

2.3. Quantum Q-Learning (QQRL)  

The idea of Quantum Reinforcement Learning may also be adapted to utilize an 
action value function instead of a value function. The advantage of this is that 
the action value function holds more specific information than the value func-
tion, potentially leading to faster convergence. In this context, an algorithm is 
considered to have converged if subsequent updates do not change the policy. 
Quantum Q Reinforcement Learning (QQRL), which adapts VQRL, has an ac-
tion value function that replaces the value function in VQRL. This action value 
function is used to compute the expected value of the next state according to  

( )max , ,s a
V Q s a′ ′

′ ′=  

where ( ),Q s a  is the expected value of taking action a from state s, and sV ′  is 
the expected value of the agent being in state s′  under the current policy. Like 
VQRL, in QQRL the policy sa  is updated according to  
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( ) ( )ˆ1 .L
s g sa t U a t+ =  

The full algorithm describing QQRL is shown in Algorithm 3. 
 

 

2.4. Double Quantum Q-Learning (DQQRL)  

Similar to VQRL and Double Q-learning, QQRL may be doubled to use two dif-
ferent action value functions, ( )1 ,Q s a  and ( )2 ,Q s a . This algorithm is de-
scribed in (Algorithm 4). At each time step, only one function in the algorithm 
is updated at a time; this is done by sampling { }1,2i  , 2j i= − , and ap-
plying the update  
 

 
 

( ) ( ) ( ) ( ), , , arg max , , .i i j i i
a

Q s a Q s a r Q s Q s a Q s aα γ
′

  ′ ′ ′← + + −    
 

When computing L to determine the number of Grover iterations to be per-
formed on the policy, ( )V s  is computed according to  

( ) ( ) ( )( )1 2
1max , , .
2a

V s Q s a Q s a= +  

The policy is then updated in the same way as in QQRL. 

2.5. Multiple Quantum Q-Learning (MQQRL)  

QQRL may also be extended to have any number of action value functions; this 
is done in a similar way to Multiple Q-learning and MVQRL. The algorithm for 
Multiple Quantum Q-learning (MQQRL) may be seen in (Algorithm 5). At 
each time step, a single function is chosen to be updated; this is done by sam-
pling { }1,i N  updated according to  

( ) ( ) ( ) ( )
1,

, , , , ,
1

N

i i j i
j j i

Q s a Q s a r Q s b Q s a
N
γ

α
= ≠

 
′← + + − 

− 
∑  
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where ( )arg max ,a ib Q s a′ ′ ′= . In order to compute the number of Grover itera-
tions, L, ( )V s  is computed according to  

( ) ( )
1

1max , .
N

ia i
V s Q s a

N =

= ∑  

The probability amplitudes of the policy are then updated in the same way as 
in QQRL. 

3. Results  
3.1. Test Environment and Optimal Paths  

The grid environment used to test the algorithms can be seen in Figure 1. At 
each time step, the agent may move between adjacent states through the actions 
up, down, left, and right. The two optimal paths through the environment are 
shown in Figure 2. This is the environment used by Brown [26], and is similar 
to grid environments used in recent studies of quantum computing-based rein-
forcement learning [23] [24]. While the state and action spaces of these envi-
ronments are small, they simplify the process of analysis while the field is still in 
early stages of development. Furthermore, these small state and action spaces 
lend themselves to implementation on current quantum computing hardware; 
for example, Sriarunothai, et al. [20] were able to implement an ion-trap rein-
forcement learning agent with only 2 qubits as a proof of concept. 

In order to denote paths through the environment, an action sequence is used. 
This is a string of action numbers; the mapping from number to action may be 
seen in Table 1. For example, a path might be denoted by “31210”; this 
represents the movements right, down, left, down, and up, in sequence. Note 
that an action may not change the state; if the agent is in its initial position and 
follows the path “000”, it will remain in the same position. 

The “pit” and the “goal” are terminal states; that is, when the agent enters 
these states, the episode is finished. When the agent enters the “pit”, it receives a 
reward of 10r = − , and when it enters the “goal”, it receives a reward of 

10r = + . When it enters any of the other states, it receives a reward with mean 
1r = −  and standard deviation σ . In a deterministic environment, 0σ = ; in a 

stochastic environment, 0σ ≠ , and the agent receives the rewards 1 σ− +  and 
1 σ− −  with equal probability. 
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Figure 1. Environment used to test each algorithm. A represents the starting loca-
tion of the agent in the environment, P represents the pit, where the agent receives 
a large negative reward, W represents the wall, which is a disallowed state, and G 
represents the goal, where the agent receives a large positive reward. At each time 
step, the agent receives a small negative reward so that the optimal policy is the 
shortest path through the environment from the initial state to the goal.  

 

 
Figure 2. Optimal and sub-optimal paths through the environment. The optimal 
path (left) corresponds to an action sequence of 33111, while the sub-optimal path 
(right) corresponds to an action sequence of 31311. Although both paths have the 
same number of steps, the sub-optimal path is closer to the pit; for stochastic poli-
cies, this means that there is an increased probability that the agent will take an ac-
tion that moves into this state.  

 
Table 1. Numerical labels of each action. A string of these actions such as 32132 indicates 
a path through the environment.  

Number Action 

0 Up 

1 Down 

2 Left 

3 Right 

 
Due to the stochastic nature of the quantum algorithms, the results for con-

vergence were averaged over multiple runs for each experiment. The number of 
repeated runs was different for each experiment; these are given in the text and 
figure captions. In each repeated run, the only difference between the algorithms 
was the seed value for random number generation. In other words, the position 
of each feature was the same as in Figure 1 in every run. 

3.2. Convergence Properties  

One of the most important differences between the single value function algo-
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rithms (Q-learning, VQRL, and QQRL) with the corresponding multiple value 
function algorithms (Multiple Q-learning, MVQRL, and MQQRL) is an increase 
in stability with the addition of value functions. This is most clearly seen in Fig-
ure 3, which plots the breakdown learning rate against the number of value 
functions for algorithm. As the number of functions increases, all three algo-
rithms become more robust, allowing higher learning rates to be used. One rea-
son for this is that each function is constructed using only a fraction of the over-
all experiences. Combining these functions then results in an estimate of the 
value or the action value which is less sensitive than when only a single function 
is used. 

The breakdown learning rate was defined in the same manner as above for the 
single value function algorithms; in other words, the value of α  past which 

1000N > . This was computed for Multiple Q-learning, MVQRL, and MQQRL 
for each value of [ ]1,10N ∈  and is shown in Figure 3. From this, it can be seen 
that for each of the three algorithms, increasing the number of value functions 
(either ( ),Q s a  or ( )V s ) increases the learning rate at which the algorithms 
break down; in other words, additional value functions increase the stability of 
the policy. 

Another feature of Figure 3 to note is that MQQRL consistently has a higher 
breakdown learning rate than Multiple Q-learning and MVQRL. This indicates 
that, for the same N, MQQRL is more robust to a higher learning rate. One ad-
vantage of this is that a higher learning rate may be set with MQQRL than 
MVQRL, which generally increases the speed of learning. Furthermore, both Mul-
tiple Q-learning and MQQRL have higher breakdown learning rates for 1N > , 
which indicates that ( ),Q s a  is a more robust against higher learning rates than 
( )V s . 
Similar to the learning rate, the parameter k also has a significant effect on the 

convergence of the quantum algorithms; effectively, it determines how quickly 
the policy changes. A larger k results in a faster change in the policy, which gen-
erally means that the learning rate of the algorithm increases. This may be seen 
in Figure 4. 

The relationship between k and the speed of convergence of VQRL and QQRL 
is interesting because, above a certain threshold, the number of episodes until 
convergence remains steady at around 12.5. This indicates that the algorithms 
are not sensitive to the particular value of k, given that it is sufficiently high, 
which suggests that a reasonable strategy for the selection of a particular k value 
may be to increase the value until the number of iterations to convergence does 
not change anymore. 

3.3. Branching Ratios of Optimal and Sub-Optimal Paths  

While the speed of convergence is an important characteristic when comparing 
any computer algorithms, it is also important to consider the quality of the poli-
cies the algorithms generate and the paths through the environment that they 
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produce. An interesting comparison between Q-learning, VQRL and QQRL is 
the relative path distribution between each of the algorithms. Ideally, each of the 
algorithms will converge over time to the optimal path, which is often the short-
est path. The branching ratio, which is the fraction of times that the algorithm 
converged to a certain path, can be seen as a function of episode number in Fig-
ure 5. 
 

 
Figure 3. Breakdown learning rate as function of the number of ( ),Q s a  functions. The 

breakdown learning rate is the minimum value of α  where the algorithm fails to find 
the goal. Note that 1N =  corresponds to Q-learning, QQRL, and VQRL, and that 

2N =  corresponds to Double Q-learning, DQQRL, and DVQRL.  
 

 
Figure 4. Iterations to convergence as a function of k in a deterministic environment. 
The results were averaged over 100,000 runs. For this experiment, 0.05α = .  
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Figure 5. Branching ratio of Q-learning, VQRL, and QQRL. The optimal path 33111 and the suboptimal path 31311 are shown in 
Figure 2. For this experiment, 0.05α = . The results were averaged over 1000 runs.  

 
While Q-learning converges slower than VQRL and QQRL, over time it con-

verges to the optimal path instead of the sub-optimal path. However, when 
VQRL and QQRL converge to the sub-optimal path, their policies have become 
essentially deterministic; consequently, there is little difference between the op-
timal path and the sub-optimal path as both have are the same length. The only 
reason why the sub-optimal path is less ideal than the optimal one is because it is 
closer to the “pit”, so an agent with a stochastic policy has a higher probability of 
entering the “pit”. 

The reason for why the policies of VQRL and QQRL become deterministic 
over time may be attributed to repeated applications of Grover’s algorithm to the 
policies. In these algorithms, Grover iterations have the tendency to increase the 
probability of actions with higher expected returns and decrease actions with 
lower ones. As the value functions of these algorithms converge, repeated Grover 
iterations tend to increase the probability of the most favorable action—the ac-
tion with the highest expected return—and decrease the probability of all of the 
other actions. In the limit, the probability of the action with the maximum ex-
pected return approaches 1, and the probabilities of all other actions approach 0. 
In effect, the probability becomes deterministic in the limit. 

While it is clear in Figure 5 that VQRL and QQRL converge much faster than 
Q-learning, it is also apparent that Q-learning tends to converge to the optimal 
path over time, while the quantum algorithms converge to a distribution be-
tween the optimal and sub-optimal paths. This highlights one trade off between 
the quantum algorithms and their classical counterparts: while the quantum al-
gorithms converge much faster to a less optimal path distribution, Q-learning 
eventually converges to the optimal path. 

3.4. Comparison of Value Functions for VQRL, QQRL, and  
Q-Learning  

An important difference between Q-learning, VQRL, and QQRL is the estimate 
of the value of each of the states; these are shown in Figure 6 for the initial state  
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Figure 6. Expected value of initial state for Q-learning, VQRL, and QQRL. For VQRL, 
( )V s  is shown, but for QQRL and Q-learning ( ) ( )max arg max ,aV s Q s a=  is shown 

for comparison. The true value ( ( ) 3.122V s = ) is also shown for comparison. For this 

experiment, 0.05α = ; the results were averaged over 1000 runs.  
 
of the agent as a function of the number of episodes. In the experiment shown, 
VQRL and QQRL converge much faster to the expected value of the state. As the 
stability of the value function is highly related to the stability of the policy, this 
indicates that the policies of VQRL and QQRL converge much quicker than 
Q-learning. An interesting distinction between VQRL and QQRL is that VQRL 
converges to a much higher value than QQRL. While the cause of this is uncer-
tain, it is likely related to the path distribution that the algorithm converges to 
(see Figure 5). 

In addition to the maximum value of the state, Q-learning and QQRL exhibit 
further differences in the value of each action for the state. This is shown in Fig-
ure 7 for the initial state. An interesting observation is that for the first 100 epi-
sodes, ( ),Q s a  for Q-learning and QQRL follow the same downward trend for 
each a. After episode 100, however, the values diverge; QQRL converges much 
faster than Q-learning, which does not converge in the first 1000 episodes. 

3.5. Comparison of Value Functions for Double Q-Learning,  
DVQRL, and DQQRL  

One of the effects of doubling the value functions of reinforcement learning al-
gorithms is that the expected value of each state is different for each state. Gen-
erally, this difference is an underestimate in comparison with the estimate of the 
value in the single function algorithm; this may be observed in Figure 8. How-
ever, despite this initial underestimate at any given episode, the shape of the 
double function algorithms generally follows the shape of the single function al-
gorithms, but at a slower rate. 

3.6. Comparison of Value Functions for Multiple Q-Learning,  
MVQRL, and MQQRL  

Like Double Q-learning, DVQRL, and DQQRL, Multiple Q-learning, MQVRL, 
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and MQQRL also exhibit underestimation of ( ),Q s a  and ( ),V s a  for the sin-
gle versions of the algorithms (Q-learning, VQRL, and QQRL). This is shown for 

3,6,10N =  in Figure 9. An interesting feature of MQQRL graph is that, as the 
number of ( ),Q s a  functions increases, the initial amount of underestimate of 
the value exhibited by MQQRL increases. Furthermore, as may be seen for 

3N =  and implied for 6N = , the value which MQQRL converges to is greater 
than QQRL. Neither of these behaviors are exhibited by MVQRL, which essen-
tially has the same behavior as VQRL but at a slower rate. 

 

 
Figure 7. Comparison of ( ),Q s a  for Q-learning and QQRL for each action. Clockwise from top left, the actions 

shown are Up, Down, Left, and Right. For this experiment, 0.05α = ; the results were averaged over 1000 runs.  
 

 
Figure 8. Comparison of ( )V s  between single function algorithms (Q-learning, VQRL, QQRL) with correspond-

ing double function algorithms (Double Q-learning, DVQRL, DQQRL) for the initial state. The true value 
( ( ) 3.122V s = ) is shown for comparison. For Q-learning, Double Q-learning, QQRL, and DQQRL, ( )V s  was 

computed according to ( ) ( )max max ,aV s Q s a= .  
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Figure 9. Comparison of ( )V s  between single function algorithms (Q-learning, VQRL, QQRL) with corresponding multiple 

function algorithms (Multiple Q-learning, MVQRL, MQQRL) for the initial state. The values of 3N = , 6N = , and 10N =  
were chosen to sample the effect of increasing N. For Q-learning, Multiple Q-learning, QQRL, and MQQRL, ( )V s  was com-

puted according to ( ) ( )max max ,aV s Q s a= . The top row shows the case where 3N = , the middle row 6N = , and the bottom 

row 10N = . In each row, the first graph compares Q-learning with Multiple Q-learning, the second graph compares VQRL with 
MVQRL, and the third graph compares QQRL with MQQRL. The true value ( ( ) 3.122V s = ) is shown for comparison.  

3.7. Comparison of CPU Time  

An important metric when comparing reinforcement learning algorithms is the 
relative computational efficiency of each. The average amount of computation 
time per episode for each algorithm implemented is shown in Table 2, in units 
of μs, and the average computation time to reach convergence is shown in Ta-
ble 3 in units of μs. It may be observed that the classical algorithms have higher 
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efficiency per episode in Table 2; however, Table 3 shows that the quantum al-
gorithms show much better performance overall, converging in significantly less 
time because they require less iterations to converge. The time measurements 
were made on an Intel i5-3210M processor with 8 GB of DDR3 RAM. The algo-
rithms were implemented with multiple threads in C++ and compiled with GCC 
6.3.1-1; however, CPU times were normalized to give the required CPU time in a 
single thread. 
 
Table 2. CPU time per episode (μs/episode) for each algorithm.  

N Algorithm 

 Multiple Q-Learning MVQRL MQQRL 

1 1.5 8.3 8.1 

2 1.8 8.0 12.2 

3 1.7 7.9 14.7 

4 1.7 8.0 18.0 

5 1.7 7.8 20.4 

6 1.7 7.7 22.8 

7 1.7 7.7 24.9 

8 1.6 7.6 27.7 

9 1.6 7.7 30.4 

10 1.6 7.8 34.3 

 
Table 3. CPU time to reach convergence (μs) for each algorithm.  

N Algorithm 

 Multiple Q-Learning MVQRL MQQRL 

1 137.5 102.2 97.7 

2 368.7 108.5 167.2 

3 397.9 112.2 208.0 

4 449.8 114.9 259.7 

5 475.8 114.0 301.7 

6 534.0 114.7 346.2 

7 576.6 116.8 376.1 

8 584.9 116.2 422.4 

9 630.8 119.3 466.2 

10 673.0 123.8 536.5 
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Another interesting feature highlighted by Table 2 and Table 3 is the rela-
tionship between the CPU time and the number of ( )V s  or ( ),Q s a  func-
tions in each algorithm. For MVQRL and Multiple Q-learning, there is a weak 
relationship between the CPU time per episode and the number of ( )V s  or 
( ),Q s a  functions. However, the CPU time per episode for QQRL shows a 

strong dependence on the number of ( ),Q s a  functions. MQQRL also exhibits 
a strong relationship between the number of ( ),Q s a  functions and the CPU 
time required to reach convergence, as does Multiple Q-learning, but MVQRL 
does not. This is an interesting result, indicating that there is little computational 
penalty for increasing the number of ( )V s  functions in MVQRL, providing 
the benefits of multiple functions with only a marginal increase in CPU usage. 

As may be seen in Table 2, MQQRL requires significantly more CPU than 
Multiple Q-learning or MVQRL for large values of N. There are multiple possi-
ble causes of this; first, MQQRL requires the calculation of  

( )1

1max ,N
s a iiV Q s a

N′ ′ =
′ ′= ∑  on every iteration, scaling linearly with the number  

of ( ),Q s a  functions. Additionally, the memory fragmentation of the particular 
implementation may play largely into the additional CPU time; each ( ),Q s a  
was stored as vector of rows, where each row was stored separately. On the other 
hand, in MVQRL each ( )V s  function was stored as a vector, meaning that the 
entire function was stored contiguously in memory. Thus, it is likely that 
MQQRL causes significantly more cache misses than MVQRL in the current 
implementation, increasing the CPU time for the algorithm. A more robust so-
lution might store the entire ( ),Q s a  function in a contiguous array to reduce 
cache misses. 

However, despite the fact that MQQRL requires more CPU time per episode 
than MVQRL, it is balanced to a certain degree by the fact that MQQRL requires 
fewer iterations to converge. However, there are many situations in which fewer 
iterations is more desirable than overall computation time, and in these scena-
rios MQQRL may be a better choice than MVQRL. An example scenario might 
be one where the physical cost of exploration is high but computational expense 
is low, in which case it may be advantageous to decrease the number of iterations 
required to converge and use a more powerful computer. 

The increase in CPU time to reach convergence with N for Multiple Q-learning 
may be attributed to an increase in the number of episodes required to reach con-
vergence, as the CPU time per episode is effectively constant. However, for 
MQQRL the increase in CPU to reach convergence may be attributed to both an 
increase in the number of episodes as well as an increase in the CPU time per epi-
sode. For all N, however, MVQRL and MQQRL completed in less CPU time than 
Multiple Q-learning, meaning that the benefits of the Quantum algorithms over 
the classical ones may be realized with less computational expense, not more. 

3.8. Summary of Results  

The results in Section 3.2 demonstrate that QQRL reaches convergence in fewer 
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episodes than VQRL. QQRL and VQRL only differ in how the value of the cur-
rent state is stored; that is, QQRL uses ( ),Q s a  while VQRL only uses ( )V s . 
Likely, the reason for such improvement in convergence speed is due to the extra 
precision provided by ( ),Q s a  when computing the value of a certain action 
and then choosing the best action; in contrast, ( )V s  is the expectation of the 
value of all possible actions, and as a consequence is much less precise. The extra 
precision is especially important when updating the policy in QQRL as it uses 

( )max ,a Q s a  to compute the number of Grover iterations to perform. 
Another important observation is that the quantum algorithms, VQRL, QQRL, 

MVQRL, and MQQRL, have much faster convergence than their classical coun-
terparts, Q-learning and Multiple Q-learning. As discussed by Dong, et al. [25], 
this is likely the quantum algorithms strike a better balance between exploration 
and exploitation in the way the policies are updated, at least as compared to the 
classical algorithms. This is because the quantum algorithms store the policy as a 
superposition of all possible algorithms, and use Grover’s algorithm to increase 
the probability of taking an action. Furthermore, because the quantum algo-
rithms are probabilistic in nature, they are more robust in environments with a 
stochastic reward signal. 

Finally, it was found that adding extra ( )V s  and ( ),Q s a  functions im-
proved the learning in a stochastic environment. In other words, when the re-
ward was drawn from some distribution, MVQRL and MQQRL exhibited better 
performance than VQRL and QQRL, respectively, in the same way that Multiple 
Q-learning exhibited better performance than Q-learning [11]. This is because  

each ( )iV s  or ( ),iQ s a  function is constructed using only 1
N

 of the total  

number of experiences, and the variations among the function are reduced when 
computing the average ( )V s  or ( ),Q s a . 

4. Discussion  
4.1. Convergence of Quantum and Classical Algorithms  

One comparison which may be drawn between the quantum and classical algo-
rithms is the number of episodes to convergence. Generally, it was observed that 
the value functions ( )V s  and ( ),Q s a  in VQRL and QQRL, respectively, 
converge much faster than the ( ),Q s a  in Q-learning. This result leads to sig-
nificantly faster convergence times for the same learning rate; for smaller learn-
ing rates, the quantum algorithms converge about 10 times faster. Additionally, 
the quantum algorithms were found to be less CPU intensive than their classical 
counterparts for a given number of ( ),Q s a  or ( )V s  functions, meaning that 
although the quantum algorithms presented in this paper were not realized on a 
quantum computer, their use on a classical computer can still provide benefits 
over the classical algorithms. 

A particular feature of QQRL is that it has a higher breakdown learning rate 
than either Q-learning or VQRL; this generalizes to Multiple Q-learning, MQVRL, 
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and MQQRL. QQRL not only converges faster than Q-learning for a certain 
learning rate, but also allows for higher learning rates than Q-learning does. This 
is an interesting phenomenon which indicates that QQRL gives faster conver-
gence in general than Q-learning. 

4.2. Comparison of QQRL with VQRL  

One of the main differences between VQRL and QQRL is the convergent path 
distribution for each algorithm (see Figure 5). While QQRL converges in 25% 
fewer episodes than VQRL, it converges to a path distribution that equally 
weights the optimal and sub-optimal paths. However, both paths are the same 
length; the sub-optimal path is only considered such because an agent with a 
stochastic policy is more likely to move into the “pit” (and receive a large nega-
tive reward). Thus, the fact that QQRL converges to an equal path distribution 
indicates that the policy is highly deterministic, in which case there is no advan-
tage of one path over the other. 

4.3. Final Remarks  

This paper introduced the novel algorithm called Quantum Q-learning (QQRL), 
which replaced the value function ( )V s  in Quantum Reinforcement learning 
(VQRL) with the action-value function ( ),Q s a . It was found that QQRL con-
verged faster than VQRL, due to the added precision of ( ),Q s a  which more 
efficiently incorporates updates than ( )V s . It was also found that QQRL con-
verged much faster than classical Q-learning. Furthermore, QQRL was found to 
be more robust to higher learning rates than VQRL, allowing even faster con-
vergence. 

This paper also introduced the algorithms Multiple VQRL (MVQRL) and 
Multiple QQRL (MQQRL) by introducing multiple estimates of ( )V s  and 
( ),Q s a  into VQRL and QQRL, respectively. These algorithms are shown to be 

more tolerant of higher learning rates, and are found to more effectively handle 
stochastic rewards, with the effect increasing with the number of value functions. 
This is similar to the fashion in which additional functions in Multiple 
Q-learning tended to improve the stability. Each additional function decreases 
the number of experiences used to train each individual function. Averaging 
over these then produces a better estimate of the value or action value than each 
individual function. 

The results of this paper demonstrate that a qubit-based policy works well 
with action-value ( ( ),Q s a ) reinforcement learning techniques, even when the 
reward signal is noisy. This is a significant step toward more complex quantum 
reinforcement learning algorithms, especially those based on the classical con-
cepts of value-based reinforcement learning. The algorithms discussed in this 
paper demonstrate the viability of research in this direction. 

Finally, it was found that CPU time required the quantum algorithms to con-
verge was significantly less that the amount of time required for the corres-
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ponding classical algorithms with the same number of ( ),Q s a  or ( )V s  func-
tions. This is an interesting result, as it indicates that utilization of the quantum 
algorithms on a classical computer yields an improvement in computational 
speed over the classical algorithms. Furthermore, this means that more ( )V s  
or ( ),Q s a  functions may be used, improving the ability of the quantum algo-
rithms to handle noisy signals. 
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