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Abstract 
In this paper, the problem of program performance scheduling with accept-
ing strategy is studied. Considering the uncertainty of actual situation, the 
duration of a program is expressed as a bounded interval. Firstly, we decide 
which programs are accepted. Secondly, the risk preference coefficient of the 
decision maker is introduced. Thirdly, the min-max robust optimization 
model of the uncertain program show scheduling is built to minimize the 
performance cost and determine the sequence of these programs. Based on 
the above model, an effective algorithm for the original problem is proposed. 
The computational experiment shows that the performance’s cost (revenue) 
will increase (decrease) with decision maker’s risk aversion. 
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1. Introduction 

In the planning stage of a performance, many programs will sign up for the per-
formance, and each program bring different revenue and different cost. The 
program group needs to comprehensively consider the performance revenue and 
cost, and decides which programs to be accepted. Each program requires mul-
tiple performers, and a performer can also participate in multiple programs. If 
the programs which the same performer participates in are not consecutively ar-
ranged, the waiting cost will occur. Therefore, after determining the set of the 
accepted programs, the reasonable scheduling of these accepted programs to in-
crease the performance revenue is the main concern of the decision maker. 

Scholars have done extensive researches on program performance scheduling 
and the similar film production scheduling problem. Cheng et al. [1] first men-
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tioned scheduling problems in the film production process. They assumed that 
the shooting duration of each scene is a certain value, considering the actor 
waiting cost problem during film shooting. They proved that the problem is 
strong NP-hard, and used the branch and bound algorithm to solve the mini-
mum cost problem. Nordström and Tufekci [2] proposed several hybrid algo-
rithms which use limited pairwise interchange procedure within the simple ge-
netic algorithm framework to solve the problem proposed by Cheng et al. [1]. 
Their algorithms outperformed in terms of quality of solution and computational 
time. Bomsdorf and Derigs [3] presented the movie shooting scheduling problem 
and formulated a conceptual model. And they proposed a meta-heuristic algo-
rithm to generate a timeline for film. Stuckey et al. [4] applied a dynamic pro-
gramming to the scheduling problem to minimize the cost of the talent. They 
assumed that the actor’s appearance fee is different, and the shooting time of 
each scene is a certain value, showed a number of ways to improve the dynamic 
programming solution by preprocessing and restricting the search. Wang et al. 
[5] generalized a scheduling model by incorporating the performers waiting cost 
and operating cost in film shooting. They used the next fit (NF) algorithm and 
the first fit decreasing (FFD) algorithm to allocate scenes to work days so as to 
provide initial solutions for further improvements. Dynamic programming, ite-
rated local search, and tabu search are adopted to constitute the second-phase 
improvement procedures. Qin et al. [6] formulated the talent scheduling prob-
lem as an integer linear programming model and designed an improved branch 
and bound method to deal with it. Sakulsom and Tharmmaphornphilas [7] stu-
died a music performance scheduling problem. The objective is to minimize the 
total number of days that all performers have to show up, and sequence the music 
pieces within each day to minimize the total waiting time of the performers. They 
proposed a 2-stage methodology to schedule music pieces, which is a combination 
of a cell formation technique and an integer-programming model.  

Based on the above research results, it can be concluded that the film shooting 
or program rehearsal duration of the predecessors is assumed to be a certain 
value. In the actual program performances, due to factors such as staff absence, 
equipment failure, performance effects, etc., the duration of each program is 
uncertain. Therefore, the results obtained by the deterministic research method 
are greatly deviated from the actual situation. Zhen et al. [8] proposed the per-
formance scheduling problem of mixed duration, and expressed the perfor-
mance time as the sum of the certain performance time and the uncertain ad-
justment time. They assumed that the uncertain adjustment time obeyed the 
normal distribution. The objective is to minimize the total waiting cost of the 
performers. However, in the actual situations, a large amount of data is often 
required to obtain a distribution function of a random parameter. This paper 
breaks through this limitation and uses the robust optimization method to ex-
press the uncertain duration as a continuous bounded interval. We only need to 
know the upper and lower bound of the program performance duration. 
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Robust optimization is an effective method to solve the uncertain problem 
and has been widely used. Wang and Tang [9] proposed a two-stage robust op-
timization method for interval-type surgical scheduling problem, effectively re-
ducing the adverse effects of service time uncertainty on hospital revenue. Xu et 
al. [10] built a robust scheduling model for homogeneous parallel machines 
based on the min-max regret criterion under the condition that only knew the 
processing time interval. Qiu et al. [11] used the robust optimization method to 
solve the order policy of the integrated supply chain and the contract coordina-
tion policy of the distributed supply chain under the min-max regret value crite-
rion. Zhang et al. [12] built an emergency rescue network based on the scenario 
of min-max regret value criteria, constructed a robust optimization model, and 
transformed it into a mixed integer programming model, and they used the sce-
nario relaxation algorithm to solve this model. 

This paper considers the uncertain duration program performance scheduling 
problem under accepting strategy (recorded as P0), the remainder is organized 
as follows. In Section 2, we use a simple example to describe the program per-
formance scheduling problem and introduce the application of the min-max 
robust optimization method in this paper. In the case of determining the set of 
the accepted performance programs, the decision maker’s risk preference coeffi-
cient [13] [14] is introduced and a robust performance scheduling model 
(RPSM) is built for these accepted programs in Section 3. Then we transform the 
RPSM into a 0 - 1 mixed linear programming model to minimize the perfor-
mance cost, and based on the algorithm for solving RPSM, the algorithm H of 
P0 is constructed to determine the accepted or rejected programs and the per-
formance sequence of these accepted programs in Section 4. Finally we use Mat-
lab software to carry out numerical experiments, verify the actual performance 
of algorithm H, and compare the influence of decision maker’s risk preference 
on performance cost. 

2. Problem Description 

In the actual performance, due to limitations of time or layout and so on, deci-
sion maker needs to consider program revenue and cost in a comprehensive 
manner, select a part of the programs from many registration programs to per-
form, and arrange the performance sequence of these accepted programs. Ac-
cepting a program will generate revenue, and rejecting a program will occur pe-
nalty cost. After determining the set of the accepted performance programs, 
multiple performers will participate in the performance. If there is no compre-
hensive arrangement for a performer who participates in different programs, the 
performer will generate waiting time and waiting cost. The objective of this pa-
per is to find a solution that maximizes the overall revenue of the program 
group, including determining the set of the accepted performance programs and 
scheduling these accepted performance programs. The overall revenue of the 
program group consists of the following two parts: 1) the revenue value of the 
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accepted programs and the penalty cost of the rejected programs. 2) the perfor-
mance cost of the performers at the performance scene, including the appear-
ance fees and the waiting cost. 

Let’s look at the following example. A program group receives 6 programs
{ }1 2 3 4 5 6, , , , ,s s s s s s . These programs are performed by 3 performers { }1 2 3, ,a a a , 
and the performers participation list is shown in Table 1 (In this paper, √ indi-
cates that the performer participates in the program, and × indicates that the 
performer does not participate in the program). The performance duration of the 
programs { }1 2 3 4 5 6, , , , ,s s s s s s  is [ ] [ ] [ ] [ ] [ ] [ ]{ }3,5 5,8 4,6 3,6, 5, 4,5 ,7, , , , respec-
tively, the performance revenue from the accepted programs { }1 2 3 4 5 6, , , , ,s s s s s s  
is { }175,100,145,155,110,160 , respectively, and the penalty cost of rejecting 
them is { }30,20,33,40,25,35 , respectively. 

Assume that the program group decides to accept the programs { }1 3 4 6, , ,s s s s  
to perform, the performance revenue from these accepted programs { }1 3 4 6, , ,s s s s  
is 635, and the penalty cost for these rejected programs { }2 5,s s  is 45. After de-
termining the set of the accepted programs, in order to improve efficiency and 
reduce cost, we assume that performers show up on time before the first pro-
gram they play starts, leave immediately after the last program they play finishes. 
In this paper, the robust optimization method is used to arrange the sequence of 
these accepted programs { }1 3 4 6, , ,s s s s , which is based on the principle of 
“min-max” [15]. “Min-max” means that after formulating a program perfor-
mance scheduling scheme, due to the uncertainty of the performance duration, 
the overall revenue of the program group may have multiple possibilities. We 
calculate the maximum performance cost for each possible scheduling scheme, 
and then select the least one in these maximum costs. Table 2 lists the two 
scheduling schemes (the blank space in the table indicates that the performer has 
finished performance and left the scene). 1 2 3, ,t t t  and 4t  indicate the time se-
ries. In the scheme 1, a1 is idle in t3, waiting time is the performance duration of 
s4. a2 and a3 are idle in t2, waiting time is the performance duration of s3. The  
 
Table 1. Performer participation list. 

 s1 s2 s3 s4 s5 s6 

a1 √ × √ × √ √ 

a2 √ √ × √ √ × 

a3 √ √ × √ × √ 

 
Table 2. Program performance schemes. 

scheme 1 
t1 t2 t3 t4 

scheme 2 
t1 t2 t3 t4 

s1 s3 s4 s6 s1 s4 s6 s3 

a1 √ √ × √ a1 √ × √ √ 

a2 √ × √  a2 √ √   

a3 √ × √ √ a3 √ √ √  
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maximum performance cost under scheme 1 is calculated as c1. In the scheme 2, 
only a1 is idle at t2, and the waiting time is the performance duration of s4, and 
the maximum performance cost is calculated as c2. Our robust optimization 
method is to calculate the maximum performance cost of all feasible solutions, 
then pick the solution with the least cost in the maximum performance cost to 
determine the performance sequence of these accepted programs. Based on the 
above, the overall revenue of the program group is obtained by comprehensively 
considering the revenue of the accepted programs and the penalty cost of the re-
jected programs. 

3. Performance Scheduling Model 
3.1. Model Hypothesis 

1) n performers { }1 2, , , nA a a a=   participate in k programs. If the perfor-
mer ia  participates in the program js , defining ijw  to be 1, 0 otherwise, 

{ }1,2, ,i n∀ ∈  , { }1,2, ,j k∀ ∈  . The program group needs to select several 
programs from k registration programs to perform. Suppose that the number of 
accepted programs is m (m is part of our decision). { }1,2, ,T m=   represents 
the set of time series, arranged from small to large, each program occupies a 
time series. 

2) The duration of program jq  is an uncertain number, ,j j jq lq uq ∈   , 

jlq , juq  value is known. 
3) Unit time waiting cost of performer ia  is ilc , unit time appearance fee of 

performer ia  is iuc , { }1,2, ,i n∀ ∈  . 
4) Performer ia  shows up on time before the first program he play starts, 

leave immediately after the last program he play finishes. 
5) The revenue of the accepted program is jp , the penalty cost of the rejected 

program is jf , { }1,2, ,j k∀ ∈  . The objective function of this paper is the 
revenue of accepted programs minus the penalty cost of rejected programs, and 
then minus the performance cost of these accepted programs. The performance 
cost of the accepted programs is the appearance fees and waiting cost of the per-
formers at the scene. 

3.2. Robust Performance Scheduling Model of the Accepted  
Program (RPSM) 

After determining the set of the accepted performance program, it is important 
to properly schedule these accepted programs and reduce the performance cost 
so that the program group can achieve a better overall revenue. Without loss of 
generality, let’s assume that the accepted programs are { }1 2, , , ms s s , the deci-
sion variables are as follows: 

1jtx =  if program js  performs in time series t, 0 otherwise. 
1ity =  if performer ia  performs in time series t, 0 otherwise. 
1ita =  if performer ia  arrives at the scene before time series t (including t), 

0 otherwise. 
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1itl =  if performer ia  leaves the scene after time series t (including t), 0 
otherwise. 

1itd =  if performer ia  waits at the scene in time series t, 0 otherwise. 

Let j j
j

j j

q lq
uq lq

θ
−

=
−

 be the degree which the performance duration jq  of  

program js  deviates from the lower bound jlq , [ ]  0,1jθ ∈ , { }1,2, ,j m∀ ∈  . 
In this paper, the idea of Bertsimas and Sim [13] [14] is used to control the con-
servative degree of robust optimal scheduling model, and the risk preference  

coefficient µ  of decision maker is introduced, 
1 1

m m
j j

j
j j j j

q lq
uq lq

θ µ
= =

−
= ≤

−∑ ∑ ,  

0 mµ≤ ≤ , indicating that up to µ  programs which duration reaches the upper 
bound at the same time. The µ  value is given by the decision maker in advance, 
and the more conservative the decision maker is, the larger the µ  value is. 
Therefore, the uncertain set of the program duration jq  is expressed as: 

{ }
1

| , , 1, 2, ,
m

j j
j j j j

j j j

q lq
q lq q uq j m

uq lq
µ

=

 − ≤ ≤ ≤ ∀ ∈ 
−  

∑             (1) 

We build the following min-max robust performance scheduling model for 
the accepted programs (RPSM): 

1 1 1 1 1
min max

n m m n m

i it j jt i j ij
i t j i j

lc d q x uc q w
= = = = =

   ⋅ ⋅ ⋅ + ⋅  
   

∑∑ ∑ ∑ ∑           (2) 

s.t. 

1
1

m

jt
t

x
=

=∑ , { }1, 2, ,j m∀ ∈                       (3) 

1
1

m

jt
j

x
=

=∑ , t T∀ ∈                          (4) 

1
0

m

it jt ij
j

y x w
=

− ⋅ =∑ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (5) 

1it it ita l h+ − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (6) 

, 1 0it i ta a +− ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −            (7) 

, 1 0i t itl l+ − ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −            (8) 

1it ita l− − ≤ − , { }1,2, ,i n∀ ∈  , t T∀ ∈             (9) 

0it ity a− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (10) 

0it ity l− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (11) 

0it it ith d y− − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈              (12) 

j j jlq q uq≤ ≤ , { }1,2, ,j m∀ ∈                   (13) 

1

m
j j

j j j

q lq
uq lq

µ
=

−
≤

−∑                        (14) 
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{ }, , , , , 0,1jt it it it it itx y h a l d ∈ , { }1,2, ,i n∀ ∈  , { }1, 2, ,j m∀ ∈  , t T∀ ∈  (15) 

Equation (2) is the minimum performance cost in the worst case of the un-
certain set, including the waiting cost and appearance fees of the performers at 
the scene. Equation (3) and Equation (4) force to schedule only one program at 
one time series and assign each program to only one time series. Equations 
(5)-(9) indicate the presence of performers in each time series. Equation (10) 
and Equation (11) indicate that each performer shows up on time before the first 
program he play starts, leave immediately after the last program he play finishes. 
Equation (12) determines if the performer is in a wait state at a time series. Equ-
ation (13) and Equation (14) constitute an uncertain set of program perfor-
mance duration. Equation (15) indicates that the decision variables are a 0 - 1 
variable. 

4. Solve Model  

This paper studies the uncertain duration program performance scheduling 
problem under accepting strategy (P0). Firstly, we decide to accept some pro-
grams from the registration programs; secondly, we build a robust performance 
scheduling model for the accepted programs (RPSM) to get the program per-
formance sequence and performance cost; Finally, based on the above, we con-
sider the revenue of the accepted programs and the penalty cost of the rejected 
programs comprehensively, and determine a feasible scheduling scheme for P0 
to maximize the performance revenue. 

4.1. Solve the Robust Performance Scheduling Model of the  
Accepted Programs (RPSM) 

We observe the Equations (2)-(15) of RPSM, finding that only the objective 
function (2), Equation (13) and Equation (14) are affected by the uncertainty of 
duration jq . Therefore, RPSM can be expressed as a two-stage robust optimiza-
tion model. The decision variables of the first stage are jtx , ity , ith , ita , itl , 

itd , the decision variable of the second stage is jq . Then the two-stage robust 
optimization model can be expressed as: 

{ } { }( )1,2, ,
min F j j m

q
∈ 

                      (16) 

The constraints are Equations (3)-(12) and Equation (15). 
And: 

{ } { }( )1,2, ,
1 1 1 1 1

F max
n m m n m

j i it j jt i j ijj m
i t j i j

q lc d q x uc q w
∈

= = = = =

 
= ⋅ ⋅ ⋅ + ⋅ 

 
∑∑ ∑ ∑ ∑



   (17) 

s.t. 

j j jlq q uq≤ ≤ , { }1,2, ,j m∀ ∈                    (18) 

1

m
j j

j j j

q lq
uq lq

µ
=

−
≤

−∑                         (19) 
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Noticing that (17)-(19) is a linear programming problem for jq , which is 
equivalent to the following form: 

1 1 1 1
max

m n m n

j i it jt i ij
j i t i

q lc d x uc w
= = = =

  ⋅ ⋅ ⋅ + ⋅  
  

∑ ∑∑ ∑             (20) 

s.t. 

j jq lq− ≤ − , { }1, 2, ,j m∀ ∈                    (21)  

j jq uq≤ , { }1, 2, ,j m∀ ∈                    (22) 

1 1

m m
j j

j jj j j j

q lq
uq lq uq lq

µ
= =

≤ +
− −∑ ∑                  (23) 

Since the feasible domain of the linear programming problem is bounded, ac-
cording to the strong dual theory [16], it can be known that the original max-
imization problem can be equivalent to the minimization problem. We define 

jρ  as the dual variable of jq  in Equations (21)-(23), { }1,2, , 2 1j m∀ ∈ + . 
Then the dual programming problem of (20)-(23) is as the following: 

( )
2

2 1
1 1 1

min
m m m

j
j j j m j m

j j m j j j

lq
lq uq

uq lq
ρ ρ ρ µ− +

= = + =

 
− ⋅ + ⋅ + ⋅ +  − 

∑ ∑ ∑        (24) 

s.t. 

2 1
1 1 1

1 n m n

j m j m i it jt ij i
i t ij j

lc d x w uc
uq lq

ρ ρ ρ+ +
= = =

− + + ⋅ = ⋅ ⋅ + ⋅
− ∑∑ ∑ , { }1,2, ,j m∀ ∈  (25) 

0jρ ≥ , { }1,2, , 2 1j m∀ ∈ +                     (26) 

Bringing the Equations (24)-(26) to the RPSM to get the equivalent model 
RPSM1: 

( )
2

2 1
1 1 1

min
m m m

j
j j j m j m

j j m j j j

lq
lq uq

uq lq
ρ ρ ρ µ− +

= = + =

 
− ⋅ + ⋅ + ⋅ +  − 

∑ ∑ ∑      (27) 

s.t. 

1
1

m

jt
t

x
=

=∑ , { }1, 2, ,j m∀ ∈                       (28) 

1
1

m

jt
j

x
=

=∑ , t T∀ ∈                          (29) 

1
0

m

it jt ij
j

y x w
=

− ⋅ =∑ , { }1,2, ,i n∀ ∈  , t T∀ ∈               (30) 

1it it ita l h+ − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈               (31) 

, 1 0it i ta a +− ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −           (32) 

, 1 0i t itl l+ − ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −           (33) 

1it ita l− − ≤ − , { }1,2, ,i n∀ ∈  , t T∀ ∈           (34) 

0it ity a− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (35) 
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0it ity l− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (36) 

0it it ith d y− − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈              (37) 

2 1
1 1 1

1 n m n

j m j m i it jt ij i
i t ij j

lc d x w uc
uq lq

ρ ρ ρ+ +
= = =

− + + ⋅ = ⋅ ⋅ + ⋅
− ∑∑ ∑ , { }1, 2, ,j m∀ ∈  (38) 

0jρ ≥ , { }1,2, , 2 1j m∀ ∈ +                     (39) 

{ }, , , , , 0,1jt it it it it itx y h a l d ∈ , { }1,2, ,i n∀ ∈  , { }1, 2, ,j m∀ ∈  , t T∀ ∈  (40) 

It is observed that the Equation (38) contains nonlinear part 
1 1

n m

i it jt
i t

lc d x
= =

⋅ ⋅∑∑ .  

In order to convert the nonlinear constraints into linear constraints, we intro-
duce variable j

it∆ , let 1j
it it jtd x∆ ≥ + − , { }0,1j

it∆ ∈ , { }1,2, ,i n∀ ∈  ,  
{ }1,2, ,j m∀ ∈  , t T∀ ∈ . Then we can obtain the following 0-1 mixed linear 

programming model RPSM2: 

( )
2

1 2 1
1 1 1

min
m m m

j
j j j m j m

j j m j j j

lq
z lq uq

uq lq
ρ ρ ρ µ− +

= = + =

 
= − ⋅ + ⋅ + ⋅ +  − 
∑ ∑ ∑    (41) 

s.t. 

1
1

m

jt
t

x
=

=∑ , { }1, 2, ,j m∀ ∈                      (42) 

1
1

m

jt
j

x
=

=∑ , t T∀ ∈                         (43) 

1
0

m

it jt ij
j

y x w
=

− ⋅ =∑ , { }1,2, ,i n∀ ∈  , t T∀ ∈             (44) 

1it it ita l h+ − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈             (45) 

, 1 0it i ta a +− ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −          (46) 

, 1 0i t itl l+ − ≤ , { }1,2, ,i n∀ ∈  , { }1,2, , 1t m∀ ∈ −          (47) 

1it ita l− − ≤ − , { }1,2, ,i n∀ ∈  , t T∀ ∈           (48) 

0it ity a− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (49) 

0it ity l− ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈                (50) 

0it it ith d y− − ≤ , { }1,2, ,i n∀ ∈  , t T∀ ∈              (51) 

2 1
1 1 1

1 n m n
j

j m j m i it ij i
i t ij j

lc w uc
uq lq

ρ ρ ρ+ +
= = =

− + + ⋅ − ⋅∆ = ⋅
− ∑∑ ∑ , { }1,2, ,j m∀ ∈  (52) 

1j
jt it itx d+ − ∆ ≤ , { }1,2, ,i n∀ ∈  , { }1,2, ,j m∀ ∈  , t T∀ ∈     (53) 

0jρ ≥ , { }1,2, , 2 1j m∀ ∈ +                   (54) 

{ }, , , , , , 0,1j
jt it it it it it itx y h a l d ∆ ∈ , { }1,2, ,i n∀ ∈  , { }1,2, ,j m∀ ∈  , t T∀ ∈ (55) 

It is observed that the difference between the above two models is the Equa-
tion (38) in RPSM1 and the Equation (52), Equation (53) in RPSM2. However, 
RPSM1 and RPSM2 have the same optimal solution and objective function value. 
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The reason is the coefficients symbol of jρ , m jρ + , 2 1mρ +  in Equation (41) and 
Equation (52) are the same (positive or negative simultaneously). So the change 
of the variable value in Equation (52) will have the same effect in Equation (41). 
From Equation (53), it can be known that when at least one of itd  and jtx  is 0, 

j
it∆  can be 1 or 0. However, in the process of finding the optimal solution, j

it∆  
should be 0 as much as possible, because if 1j

it∆ = , then in the Equation (52), 

jρ  decreases or m jρ + , 2 1mρ +  increases, in the corresponding Equation (41), 

jρ  decreases or m jρ + , 2 1mρ +  increases, the objective value increases(When 
other variables remain unchanged). The performance of this solution is worse 
than the solution corresponding to 0j

it∆ = . So when at least one of itd  and 

jtx  is 0, 0j
it∆ = , only when 1it jtd x= = , 1j

it∆ = . In summary, variable j
it∆  is 

introduced to transform the nonlinear programming RPSM1 into linear pro-
gramming RPSM2 successfully. 

4.2. Performance Scheduling Algorithm H 

We denote 

2

j
j

j j

p
p lq uq=

+
, and sort the registration programs from large to  

small according to jp  value. Without loss of generality, we assume that the 
program sequence is { }1 2, , , ks s s . The algorithm H for solving P0 is described 
as follows: 

Algorithm H: 
Step 1. Select a set of program number{ }1 2, , , xm m m  that may be accepted, 

1 21 , , , xm m m k≤ ≤ . 1τ = . 
Step 2. The number of the accepted programs is mτ , the set of performance 

program is { }1 2, , , ms s s
τ

 . 
Step 2.1. Build a robust performance scheduling model RPSM of these ac-

cepted programs. Through the method in Section 4.1, we can get the perfor-
mance sequence of { }1 2, , , ms s s

τ
  and the performance cost 1z . 

Step 2.2. Calculate the difference between the revenue of mτ  accepted programs  

and the penalty cost of ( )k mτ−  rejected programs, namely 2
1 1

m k

j j
j j m

z p f
τ

τ= = +

= −∑ ∑ ,  

and get the performance revenue ( ) 2 1z m z zτ = − . 
Step 3. 1τ τ= + . If xτ ≤ , go back step 2, otherwise go step 4. 
Step 4. Denote ( ) ( ) ( ){ }1 2arg max , , , xm z m z m z m=  , select program set 

{ }1 2, , , ms s s  to perform, get the maximum performance revenue ( )z m  and 
the performance sequence.  

5. Numerical Experiment 

We use Matlab 2017b software for numerical experiments. The experiment was 
carried out under the Windows 10 Professional 64-bit i5-3230M 8GB RAM op-
eration environment. RPSM2 is a 0 - 1 mixed linear programming model, so it 
can be solved by the Intlinprog function in Matlab 2017b.  

Although RPSM2 contains ( ) 21 5 2 1n m mn m+ + + +  variables,  
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2 8 3 2nm mn m n+ + −  constraints, after observation, we find that the zero ele-
ment in the coefficient matrix of the constraints is the majority, which is a sparse 
matrix [17]. Its density is the ratio of non-zero elements to total elements in the 
matrix, namely  

( ) ( )
( )

2

2 2

2 4 18 3 4
1 5 2 1 8 3 2

n m n m n
n m mn m nm mn m n

+ + + −

   + + + + + + −   
. 

And as the values of m and n increase, the density of the RPSM2 coefficient ma-
trix decreases sharply. For sparse matrices, Matlab only stores non-zero element 
values and their positions. Therefore, we use the sparse feature of RPSM2 coeffi-
cient matrix to reduce the variable storage space of the computer and improve 
the running speed of the procedure. 

The parameter setting of the problem P0 is as the following: 
1) There are 15 registration programs. These programs require 30 performers 

to participate in. The relationship between the performers and the programs is a  
0 - 1 matrix, defined as ( )30 15ijW w

×
= . The value of each element is generated by  

Matlab according to the random uniform probability. 
2) The duration jq  of program js  is a bounded interval value,  

{ }1,2, ,15j∀ =  . The lower bound jlq  of jq  obeys the random uniform dis-
tribution between the interval [3, 5], and the upper bound juq  obeys the ran-
dom uniform distribution between the interval [6, 10]. 

3) The unit time waiting cost ilc  obeys the random uniform distribution 
between the interval [10, 20], and the unit time appearance fee iuc  obeys the 
random uniform distribution between the interval [50, 80]. 

4) The revenue jp  of the accepted program js  obeys the random uniform 
distribution between the interval [5000, 20000], and the penalty cost jf  of the 
rejected program js  obeys the random uniform distribution between the in-
terval [800, 1000]. 

Due to time and layout restrictions, the decision maker decides to accept 8 to 
13 programs, namely { }8,9,10,11,12,13m∈ . In order to explain the influence of  

decision maker’ risk preference on performance cost, 0, ,
2
m mµ =  is selected to  

conduct experiments, which represent that decision maker is extremely prefe-
rences, moderate risk preferences and very conservative. 

The numerical experiment results are shown in Table 3. The first column is 
the number of the accepted programs, and the second column is the overall per-
formance revenue z, performance cost 1z  and procedure running time when 
the decision maker prefers the risk. Columns 3 and 4 and so on. (A negative 
value in the table indicates that the performance revenue is negative). 

In Table 3, as the number of accepted programs increases, the variables and 
constraints in the model increase correspondingly. However, our procedure gets 
the scheduling scheme within the acceptable time, indicating that the algorithm 
H has a robust practicality in the actual performance scheduling. The horizontal 
axis of Figure 1 is the µ  value, indicating risk preference degree of the decision  
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Table 3. Numerical experiment results. 

m 
0µ =  

2
mµ =  mµ =  

z z1 time/s z z1 time/s z z1 time/s 

8 73,541 44,978 54 36,863 81,656 57 15,598 102,921 53 

9 77,901 54,175 70 37,835 94,241 124 13,150 118,926 144 

10 81,488 61,789 73 37,340 105,937 141 9158 134,119 283 

11 84,608 70,084 152 37,433 117,259 194 4131 150,561 230 

12 89,063 74,499 220 36,589 126,973 197 −651 164,213 433 

13 91,288 79,870 223 29,452 141,706 350 −7779 178,937 437 

 

 
Figure 1. Relationship between performance cost and risk preference of decision maker. 
 
maker, and the vertical axis is the performance cost 1z . In the figure, 8m =  
means that 8 programs are accepted, others and so on. It can be seen from this 
figure that in the case of determining the set of the accepted programs, the per-
formance cost increases with the increase of µ , namely if the decision maker 
avoids the risk, the performance cost will increase and the performance revenue 
will reduce. Therefore, decision maker can obtain an ideal performance sche-
duling solution based on their own risk preference. 

6. Conclusions 

This paper studies a problem of uncertain duration performance scheduling un-
der accepting strategy, the accepted programs will bring in revenue, and the re-
jected programs will produce corresponding penalty cost. After determining the 
set of the accepted performance programs, the decision maker’s risk preference 
coefficient is introduced, and the min-max robust performance scheduling 
model of these accepted programs is built, and then it is transformed into a 0 - 1 
mixed linear programming model to minimize the performance cost. Based on 
this, we combined with the revenue of the accepted programs and the penalty 
cost of the rejected programs, the algorithm H for solving the performance 
scheduling problem under accepting strategy is proposed, which provides a ref-
erence for decision maker to choose the ideal program scheduling scheme.  
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This article does not limit the sequence of program performance, but in the 
actual world, the decision maker will arrange a program at the opening or finale. 
Or depending on the type of program, some programs must not be adjacent. In 
addition, multi-objective functions can also be studied, such as maximizing 
overall revenue on the basis of ensuring that the performance cost does not ex-
ceed the budget. 
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