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Abstract 
This paper studies the existence and stability of the artificial equilibrium 
points (AEPs) in the low-thrust restricted three-body problem when both the 
primaries are oblate spheroids. The artificial equilibrium points (AEPs) are 
generated by canceling the gravitational and centrifugal forces with conti-
nuous low-thrust at a non-equilibrium point. Some graphical investigations 
are shown for the effects of the relative parameters which characterized the 
locations of the AEPs. Also, the numerical values of AEPs have been calcu-
lated. The positions of these AEPs will depend not only also on magnitude 
and directions of low-thrust acceleration. The linear stability of the AEPs has 
been investigated. We have determined the stability regions in the xy, xz and 
yz-planes and studied the effect of oblateness parameters ( )1 10 1A A< <  and 

( )2 20 1A A< <  on the motion of the spacecraft. We have found that the sta-
bility regions reduce around both the primaries for the increasing values of 
oblateness of the primaries. Finally, we have plotted the zero velocity curves 
to determine the possible regions of motion of the spacecraft.  
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1. Introduction 

Generally, the restricted three-body problem is one of the most important 
problem in the field of celestial mechanics. In the Restricted Three-Body Problem 
(R3BP), the mass of the third body (i.e., the spacecraft) is assumed to be 
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negligible in comparison to the two more massive bodies, defined as the primary 
and the secondary. It is assumed that the two primaries revolving in circular 
orbits about their common center of mass, known as the barycenter. It is then 
possible to model the motion of the spacecraft in a frame of reference that 
rotates about the barycenter at the same rotation rate as the two primaries. The 
motion of the spacecraft is affected by the motion of the primaries but not affect 
them. To study the motion of the third body is known as restricted three-body 
problem. There are five equilibrium points in the classical restricted three-body 
problem (R3BP), three of them are on the straight line joining the primaries, 
called collinear equilibrium points, and two of them setup equilateral triangle 
with the primaries. The collinear equilibrium points 1,2,3L  are always unstable 
in the linear sense for any value of mass parameter µ  whereas the triangular 
points 4,5L  are stable if 0.03852cµ µ< = � . Szebehely [1]. Many perturbing 
forces, like oblateness, radiation forces of the primaries, Coriolis and centrifugal 
forces etc., have been included in the study of the R3BP. Many results have been 
published to the study in the restricted three-body problem with effect of 
oblateness; see Subbarao and Sharma [2], Bhatnagar and Chawla [3], Tsirogiannis 
et al. [4], Mittal et al. [5], Singh [6], Beevi and Sharma [7], Abouelmagd [8], Jain 
and Aggarwal [9]. Zotos [10] has determined the basins of attraction associated 
with the equilibrium points in the planar CR3BP where one of the primary 
bodies is an oblate spheroid or an emitter of radiation. Also, he has noticed that 
the structure of the basins of convergence is more affected by the mass ratio and 
radiation pressure parameters than the oblateness parameter. Srivastava et al. [11] 
have introduced Kustaanheimo-Stiefel (KS)-transformation to reduce the order 
of singularities arising due to the motion of an infinitesimal body in the vicinity 
of smaller primary in the R3BP when the bigger primary is a source of radiation 
and smaller one as an oblate spheroid. They have found that KS-regularization 
reduces the order of the pole from five to three at the point of singularity of the 
governing equations of motion.  

The new equilibrium points can be generated if the continuous constant 
acceleration uses by a spacecraft to balance the gravitational and centrifugal 
forces. These points are usually referred to Artificial Equilibrium Points (AEPs). 
Recently, low-thrust propulsion systems as solar-sail and the electric propulsion 
are being developed not only for controlling satellite orbit, but also as main 
engines for interplanetary transfer orbits. These low-thrust propulsion systems 
are able to provide continuous control acceleration to the spacecraft and thus, 
increase mission design flexibility. Farquhar [12] has studied the concept of 
telecommunication systems using equilibrium points and investigated ballistic 
periodic orbits about these points in the Earth-Moon system. Dusek [13], 
McInnes et al. [14], Broschart and Scheeres [15] have studied the stability of 
equilibrium points with continuous control acceleration. Morimoto et al. [16] 
have studied the existence and stability of the AEPs in the low-thrust R3BP and 
found the stable regions. They have used the discriminant of cubic equation and 
the Descartes sign rule to study the stability of these AEPs. Baig and McInnes [17] 
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have investigated the artificial three-body equilibria for hybrid low-thrust 
propulsion. In their study, they have introduced a new concept of creating AEPs 
in the R3BP when the third body uses a hybrid of solar-sail and electric 
propulsion. Further, there are many precise work related to the low-thrust 
restricted three-body problem; see Bombardelli and Pelaez [18], Aliasi et al. [19] 
[20], Ranjana and Kumar [21], Yang et al. [22], Lei and Xu [23]. Bu et al. [24] 
have investigated the positions and dynamical characteristic of AEPs in a binary 
asteroid system with continuous low-thrust. They have found the stable regions 
of AEPs by a parametric analysis and studied the effect of the mass ratio and 
ellipsoid parameters on the stable region. Further, they have analyzed the effect 
of the continuous low-thrust on the feasible region of motion by ZVCs.  

In the present work, we have focussed on the study of the motion of the 
spacecraft in the low-thrust restricted three-body problem when both the 
primaries are oblate spheroids. Here, we have extended the work of Morimoto et 
al. [16]. We have arranged the present work as follows: In Secttion 2, we have 
derived the equations of motion of the spacecraft. In Secttion 3, we have found 
the locations of the AEPs. In Secttion 4, we have determined the linear stability. 
In Secttion 5, we have computed the zero velocity curves. Finally, in Secttion 6, 
we have concluded the results obtained. 

2. Equations of Motion 

In this section, we shall determine the equations of motion of the spacecraft in 
the low-thrust restricted three-body problem when both the primaries are oblate 
spheroids. Suppose two bodies of masses m1 and m2 ( )1 2m m>  are the 
primaries moving with angular velocity ω  in circular orbits about their center 
of mass O taken as origin, and let the infinitesimal body (spacecraft) of mass m3 
be also moving in the plane of motion of m1 and m2. The motion of the 
spacecraft is affected by the motion of m1 and m2 but not affect them. The line 
joining the primaries m1 and m2 is taken as X-axis and the line passes through 
the origin O and perpendicular to the X-axis and lying in the plane of motion of 
m1 and m2 is considered as Y-axis, the line which passes through the origin and 
perpendicular to the plane of motion of the primaries is taken as Z-axis. In a 
synodic frame, the system of synodic coordinates ( )O xyz , initially coincident 
with the system of inertial coordinates ( )O XYZ , rotating with the angular 
velocity ω  about Z-axis; (the z axis is coincident with Z-axis). Let the primaries 
of masses m1 and m2 be located at ( ),0,0µ−  and ( )1 ,0,0µ−  respectively and 
the spacecraft be located at the point ( ), ,x y z  (see Figure 1). The angular  

velocity of the primaries is given by the relation ( )1 2
3

G m m
l

ω
+

= , where l is  

distance between the primaries, and G is Gravitational constant. We scale the 
units by taking the sum of the masses and the distance between the primaries  

both equal to unity. Therefore 1 1m µ= − , 2m µ=  and 2

1 2

m
m m

µ =
+

 with  

https://doi.org/10.4236/ijaa.2018.84028


A. Mittal, K. Pal 
 

 

DOI: 10.4236/ijaa.2018.84028 409 International Journal of Astronomy and Astrophysics 
 

 
Figure 1. Configuration of the problem. 

 

1 2 1m m+ = . Also, the scale of the time is chosen so that the gravitational 
constant is unity. Let 1 1 1, ,a b c  and 2 2 2, ,a b c  are the semi axes of rigid bodies 
of masses m1 and m2 respectively. The equation of motion of the spacecraft in 
vector form is expressed as 

2

2

d d2 ,
dd tt

+ × = −∇Ω =
r rw a F                    (1) 

where Ω  is the potential (McCuskey [25]) of the system that combines the 
gravitational potential and the potential from the centripetal acceleration which 
is defined as 

( ) ( )2
12 2 2

3 3
1 2 1 2

11 ,
2 2 2

A An x y
r r r r

µ µµ µ −−
Ω = − + − − − −  

and  
F  = total force acting on m3 = 1 2+F F , 

1F  = Gravitational force exerted on m3 due to m1 along m3m1, 

2F  = Gravitational force exerted on m3 due to m2 along m3m2. 
The vector ( ), ,x y za a a=a  is low-thrust acceleration and ( )T, ,x y z=r  is 

the position vector of the spacecraft from the origin. Thus, the equations of 
motion of the spacecraft with continuous low-thrust in dimensionless co-ordinate 
system can be written as Morimoto et al. [16]  

*

*

*

2 ,

2 ,

,

x x x

y y y

z z z

x ny a

y nx a

z a

− = −Ω + = −Ω
+ = −Ω + = −Ω 


= −Ω + = −Ω 

�� �

�� �

��

                   (2) 

where *Ω  is the effective potential of the system with continuous low-thrust 
can be written as 

( ) ( )

*

2
12 2 2

3 3
1 2 1 2

11 ,
2 2 2

x y z

x y z

a x a y a z

A An x y a x a y a z
r r r r

µ µµ µ

Ω = Ω− − −

−−
= − + − − − − − − −

 

where 

( )2 2 2
1 ,r x y zµ= + + +  

( )2 2 2
2 1 ,r x y zµ= + − + +  
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2 2 2 .x y za a a a= + +  

The required mean motion of the primaries denoted by n, which is given by 
the relation:  

( )2
1 2

31 ,
2

n A A= + +  

where A1 is the oblateness parameter of m1 which is defined as  

( )
2 2
1 1

1 1 1 1 1 12 ,0 1,
5

a cA A a b a c
l
−

= < < = > , and A2 is the oblateness parameter of m2 

which is also defined as ( )
2 2
2 2

2 2 2 2 2 22 ,0 1,
5

a cA A a b a c
l
−

= < < = > , where l be the 

distance between the primaries. 

3. Locations of the Artificial Equilibrium Points 

In order to find the AEPs of the system, taking velocity and acceleration of the 
system equal to zero. For obtaining the artificial equilibrium points (AEPs) of 
the system, we have adopted the similar procedures of McInnes et al. [14], 
Morimoto et al. [16], Baig and McInnes [17], and Bu et al. [24] in the low-thrust 
R3BP when both the primaries are oblate spheroid. The AEPs denoted by 
( )0 0 0, ,x y z  are the solution of the equations given by: 

( ) ( )2 1 2
0 0 03 2 3 2

1 1 2 2

2 1 2
0 0 03 2 3 2

1 1 2 2

1 2
0 03 2 3 2

1 1 2 2

3 31 1 1 1 0,
2 2

3 31 1 1 0,
2 2

3 31 1 1 0.
2 2

x

y

z

A An x x x a
r r r r

A An y y y a
r r r r

A Az z a
r r r r

µ µµ µ

µ µ

µ µ

   −
− + + + + + − + − =    

    
   − − + + + + − =    

    
   − + + + − =        

   (3) 

The control acceleration components ( ), ,x y za a a  of an AEP ( )0 0 0, ,x y z  
are  

 
( ) ( )2 1 1

0 0 03 2 3 2
1 1 2 2

3 31 1 1 1 ,
2 2x

A Aa n x x x
r r r r
µ µµ µ

   −
= − + + + + + − +   

   
 

2 1 2
0 0 03 2 3 2

1 1 2 2

3 31 1 1 ,
2 2y

A Aa n y y y
r r r r
µ µ   −

= − + + + +   
   

 

1 2
0 03 2 3 2

1 1 2 2

3 31 1 1 .
2 2z

A Aa z z
r r r r
µ µ   −

= + + +   
   

 

When ( )1 20, 0, 0,0,0A A= = =a , the above Equations (3) reduce to the clas- 
sical equations obtained by Szebhely [1]. When 1 2 0A A= =  and ( )0,0,0≠a , 
the above Equations (3) reduce to the equations obtained by Morimoto et al. 
[16]. Solving Equations (3) for 0z = , then the AEPs are lie in the xy-plane and 
obtained by solving * *0, 0x yΩ = Ω = . We have obtained the five AEPs for given 
thrust and oblateness parameters denoted by 1 2 3 4, , ,L L L L  and L5 as shown in 
Figure 2. 
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Figure 2. The locations of the five AEPs in the low-thrust R3BP with the effect of constant control acceleration and oblateness 
parameters. Panel-(a) for 0.1µ = , 1 0.0015A = , 2 0.0015A =  and for different values of ( )( )0.0001,0,0 gray, red=a ,  

( )( )0.01,0,0 gray,green , ( )( )0.02,0,0 gray,magenta , ( )( )0.03,0,0 gray,orange , and panel-(b) for 0.1µ = , 1 0.0015A = ,  

( )0.0001,0,0=a  and for different values of ( )2 0.0015 gray, redA = , ( )0.15 gray,green , ( )0.35 gray,magenta ,  

( )0.55 gray,orange , panel-(c) for 0.1µ = , 2 0.0015A = , ( )0.0001,0,0=a  and for different values of ( )1 0.0015 gray, redA = ,  

( )0.15 gray,green , ( )0.35 gray,magenta , ( )0.55 gray,orange , panel-(d) shows the zoomed part of panel-(c) near the primary m2. 

 
From Figure 2(a), we have observed that when ( ),0,0xa=a  is increasing, 

the movement of AEPs L1, L2 and L3 is almost negligible and the AEPs L4 and L5 
move towards the y-axis. From Figure 2(b), we have observed that when A2 is 
increasing, the AEP L1 is shifted from right to left towards the bigger primary m1,  
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the AEP L2 is shifted from left to right away from the primary m2, the AEP L3 is 
shifted from left to right towards the bigger primary m1, and the AEPs L4 and L5 
move towards the x-axis. 

From Figure 2, panel-c, we have observed that when A1 is increasing, the AEP 
L1 is shifted from left to right towards the primary m2, the AEP L2 is shifted from 
right to left towards the primary m2, the AEP L3 has almost negligible movement, 
and the AEPs L4 and L5 move towards the x-axis. In addition, we have calculated 
the numerical values of the AEPs and shown in Tables 1-3. We have observed 
that there exist three collinear and two non-collinear AEPs. Further, we have 
observed that the AEPs L4 and L5 are symmetric about the x-axis. Also, it is 
observed that the AEPs are the new positions of equilibrium points with the 
effect of continuous low-thrust and oblateness parameters which are different 
from the natural equilibrium points. 
 
Table 1. The AEPs in the xy-plane when a  is varying. 

1 20.1, 0.0015, 0.0015A Aµ = = =  

a  L1 L2 L3 L4,5 

( )0.0001,0,0=a  (0.607238, 0) (1.26105, 0) (−1.04099, 0) (0.399632, ±0.865334) 

( )0.01,0,0=a  (0.606555, 0) (1.25943, 0) (−1.04409, 0) (0.360261, ±0.882827) 

( )0.02,0,0=a  (0.605864, 0) (1.25783, 0) (−1.04724, 0) (0.313254, ±0.901830) 

( )0.03,0,0=a  (0.605170, 0) (1.25623, 0) (−1.05042, 0) (0.256260, ±0.922021) 

 
Table 2. The AEPs in the xy-plane when A2 is varying. 

( )10.1, 0.0015, 0.0001, 0, 0Aµ = = =a  

2A  L1 L2 L3 L4,5 

2 0.0015A =  (0.607238, 0) (1.26105, 0) (−1.040990, 0) (0.399632, ±0.865334) 

2 0.15A =  (0.517691, 0) (1.33070, 0) (−0.978206, 0) (0.337489, ±0.826131) 

2 0.35A =  (0.469823, 0) (1.35936, 0) (−0.914454, 0) (0.278167, ±0.782639) 

2 0.55A =  (0.439717, 0) (1.37309, 0) (−0.865643, 0) (0.235596, ±0.746951) 

 
Table 3. The AEPs in the xy-plane when A1 is varying.  

( )20.1, 0.0015, 0.0001, 0, 0Aµ = = =a  

1A  L1 L2 L3 L4,5 

1 0.0015A =  (0.607238, 0) (1.26105, 0) (−1.04099, 0) (0.399632, ±0.865334) 

1 0.15A =  (0.640227, 0) (1.23015, 0) (−1.04628, 0) (0.462511, ±0.826131) 

1 0.35A =  (0.665587, 0) (1.20039, 0) (−1.05001, 0) (0.521833, ±0.782639) 

1 0.55A =  (0.682196, 0) (1.17863, 0) (−1.05213, 0) (0.564404, ±0.746951) 
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4. Stability of the Artificial Equilibrium Points 

To determine the linear stability of the system of AEPs in the low-thrust R3BP 
when both the primaries are oblate spheroid. We have followed the linear 
stability procedure of Morimoto et al. [16]. Firstly, we have linearized the 
equations of motion of the spacecraft and then linear stability is studied. To 
establish the spacecraft at a non-equilibrium point, a continuous low-thrust is 
provided to the spacecraft. Now, giving the small displacement to ( )0 0 0, ,x y z  
as ( )0 0 0, , , , , 1x y z x y zx x y y z zδ δ δ δ δ δ= + = + = + � . After using above displace- 
ments, the linearized equations corresponding to Equations (2) are given by  

0 0 0

0 0 0

0 0 0

2 ,

2 ,

,

x y xx x xy y xz z

y x yx x yy y yz z

z zx x zy y zz z

n

n

δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ

− = Ω +Ω +Ω
+ = Ω +Ω +Ω 


= Ω +Ω +Ω 

�� �

�� �

��

                (4) 

where the superscript “0” in Equations (4) indicates that the values are to be 
calculated at the AEP ( )0 0 0, ,x y z  under consideration. The characteristic root 
λ  satisfies the given characteristic equation 

( ) ( ) (
( ) ( ) ( ) )

( ) ( ) ( )

6 0 0 0 2 4 0 0 0 0 0 0

2 2 20 0 0 2 0 2 0 0 0

2 2 20 0 0 0 0 0 0 0 0

4

4

2

0.

xx yy zz xx yy xx zz yy zz

xy xz yz zz xx yy zz

xy xz yz xy zz xz yy yz xx

f n

n

λ λ λ

λ

= + Ω +Ω +Ω + + Ω Ω +Ω Ω +Ω Ω

− Ω − Ω − Ω + Ω +Ω Ω Ω

+ Ω Ω Ω − Ω Ω − Ω Ω − Ω Ω

=

  (5) 

If a characteristic root λ  satisfies the Equation (5), then Equation (5) can be 
rewritten as  

( ) (
( ) ( ) ( ) )

( ) ( ) ( )

6 0 0 0 2 4 0 0 0 0 0 0

2 2 20 0 0 2 0 2 0 0 0

2 2 20 0 0 0 0 0 0 0 0

4

4

2 0.

xx yy zz xx yy xx zz yy zz

xy xz yz zz xx yy zz

xy xz yz xy zz xz yy yz xx

n

n

λ λ

λ

+ Ω +Ω +Ω + + Ω Ω +Ω Ω +Ω Ω

− Ω − Ω − Ω + Ω +Ω Ω Ω

+ Ω Ω Ω − Ω Ω − Ω Ω − Ω Ω =

      (6) 

We see that all the powers of λ  in Equation (6) are even numbers and 
Equation (6) be a six degree equation in λ . If 2k λ= , then we get  

( ) (
( ) ( ) ( ) )

( ) ( ) ( )

3 0 0 0 2 2 0 0 0 0 0 0

2 2 20 0 0 2 0 0 0 0

2 2 20 0 0 0 0 0 0 0 0

4

4

2 0.

xx yy zz xx yy xx zz yy zz

xy xz yz zz xx yy zz

xy xz yz xy zz xz yy yz xx

k n k

n k

+ Ω +Ω +Ω + + Ω Ω +Ω Ω +Ω Ω

− Ω − Ω − Ω + Ω +Ω Ω Ω

+ Ω Ω Ω − Ω Ω − Ω Ω − Ω Ω =

     (7) 

Equation (7) is a cubic equation in k and can be rewritten as  
3 2

1 2 3 0,k d k d k d+ + + =                       (8) 

where 
0 0 0 2

1 4 ,xx yy zzd n= Ω +Ω +Ω +  

( ) ( ) ( )2 2 20 0 0 0 0 0 0 0 0 2 0
2 4 ,xx yy xx zz yy zz xy xz yz zzd n= Ω Ω +Ω Ω +Ω Ω − Ω − Ω − Ω + Ω  
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( ) ( ) ( )2 2 20 0 0 0 0 0 0 0 0 0 0 0
3 2 ,xx yy zz xy xz yz xy zz xz yy yz xxd = Ω Ω Ω + Ω Ω Ω − Ω Ω − Ω Ω − Ω Ω  

and d1, d2, and d3 are the real coefficients of k that depend on the second ordered 
derivatives of Ω  with respect to x and y. Now, we determine the linear stability 
of the AEPs by finding the characteristic roots of Equation (8). We know that all 
the characteristic roots of a cubic equation are either real numbers or one of 
them is a real number and other characteristic roots are imaginary numbers. 
According to stability theory, a necessary and sufficient condition for an AEP to 
be linearly stable is that all the characteristic roots of Equation (5) lie in the 
left-hand side of the λ-plane (i.e., 0λ ≤ ). If one or more characteristic roots of 
Equation (5) lie in the right-hand side of the λ-plane, then the system of AEPs is 
always unstable. If all the characteristic roots of Equation (5) lie to the left-hand 
side of λ-plane, then Equation (8) must have three real and negative roots. The 
resulting linear stability conditions according to Morimoto et al. [16] and 
Descartes sign rule, the system of AEPs is linearly stable if and only if  

1 20, 0, 0D d d≥ > >  and 3 0d > , where D is the discriminant of the cubic 
Equation (8) and is given by:  

2 33 2
1 1 2 1

3 2
2 91 1 .

4 27 27 3
d d d dD d d

   −
= + + −   

   
              (9) 

It is concluded that the system of AEPs is linearly stable when 10, 0,D d≥ >  
2 0d >  and 3 0d > . Now, we have found the stability regions in the xy, xz and 

yz-planes as shown in Figures 3-8. In Figure 3, Figure 5, Figure 7, we have 
drawn the stability regions for the fixed values of 0.1µ = , 1 0.0015A =  and for 
different values of oblateness parameter 2 0.0015,0.15,0.35,0.55,0.75,0.95A = . 
In Figure 4, we have plotted the stability regions for the fixed values of 0.1µ = ,  

2 0.0015A =  and for different values of oblateness parameter  

1 0.0015,0.015,0.035,0.055,0.075,0.095A = . In Figure 6 and Figure 8, we have 
plotted the stability regions for the fixed values of 0.1µ = , 2 0.0015A =  and 
for different values of oblateness parameter 1 0.0015,0.15,0.35,0.55,0.75,0.95A = . 
From, Figures 3-8, we have observed that the stability regions decrease around 
both primaries for the increasing values of oblateness parameters ( )1 2, 0,1A A ∈  
and for fixed value of mass parameter 0.1µ = . Also, it is observed that the 
AEPs located in the stable regions are linearly stable otherwise unstable. 

5. Zero Velocity Curves 

In this section, we shall determine the possible regions of motion of the 
spacecraft in the low-thrust restricted thee-body problem when both the primaries 
are oblateness spheroid. The Jacobian Integral of the equations of motion (2) is 
defined as  

( )2 2 22 .C x y z= Ω+ + +� � �                  (10) 

The Jacobian Integral of the equations of motion (2) with continuous 
low-thrust is defined as 
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Figure 3. Stable regions (gray area) in the xy-plane for fixed values of 0.1µ = , 1 0.0015A =  and for different values of 
oblateness parameter ( )2 20 1A A< <  (a) for 2 0.0015A = ; (b) 2 0.15A = ; (c) 2 0.35A = ; (d) 2 0.55A = ; (e) 2 0.75A = ; (f)  

2 0.95A = . 
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Figure 4. Stable regions(gray area) in the xy-plane for 0.1µ = , 2 0.0015A =  and for different values of oblateness parameter 

( )1 10 1A A< <  (a) for 1 0.0015A = ; (b) 1 0.015A = ; (c) 1 0.035A = ; (d) 1 0.055A = ; (e) 1 0.075A = ; (f) 1 0.095A = . 
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Figure 5. Stable regions (gray area) in the xz-plane for 0.1µ = , 1 0.0015A =  and for different values of oblateness parameter 

( )2 20 1A A< <  (a) for 2 0.0015A = ; (b) 2 0.15A = ; (c) 2 0.35A = ; (d) 2 0.55A = ; (e) 2 0.75A = ; (f) 2 0.95A = . 
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Figure 6. Stable regions (gray area) in the xz-plane for 0.1µ = , 2 0.0015A =  and for different values of oblateness parameter 

( )1 10 1A A< <  (a) for 1 0.0015A = ; (b) 1 0.15A = ; (c) 1 0.35A = ; (d) 1 0.55A = ; (e) 1 0.75A = ; (f) 1 0.95A = . 
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Figure 7. Stable regions (gray area) in the yz-plane for 0.1µ = , 1 0.0015A =  and for different values of oblateness parameter 

( )2 20 1A A< <  (a) for 2 0.0015A = ; (b) 2 0.15A = ; (c) 2 0.35A = ; (d) 2 0.55A = ; (e) 2 0.75A = ; (f) 2 0.95A = . 
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Figure 8. Stable regions (gray area) in the yz-plane for 0.1µ = , 2 0.0015A =  and for different values of oblateness parameter 

( )1 10 1A A< <  (a) for 1 0.0015A = ; (b) 1 0.15A = ; (c) 1 0.35A = ; (d) 1 0.55A = ; (e) 1 0.75A = ; (f) 1 0.95A = . 
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( )* 2 2 22 .C x y z′ = Ω + + +� � �                 (11) 

The zero velocity curves have been determined from Equation (11) by taking 
0x y z= = =� � � . The black dots show the positions of the five AEPs, while the blue 

dots indicate the positions of two primaries m1 and m2. In Figures 9(a)-(d), we 
have plotted the ZVCs for fixed values of mass 0.1µ =  at the energy value of  
 

 
Figure 9. The ZVCs in the low-thrust restricted three-body problem when both the primaries are oblate spheroid for fixed value 
of mass parameter 0.1µ =  (a) for fixed values of 3.608652C′ = − , 2 0.0015A = , ( )0.0001,0,0=a  and for different values of 

1 0.0015,0.049,0.095,0.187,0.25,0.3A =  at the energy values of L1; (b) for fixed values of 3.608652C′ = − , 1 0.0015A = , 

( )0.0001,0,0=a  and for different values of 2 0.0015,0.025,0.15,0.35,0.45,0.55A = ; Panel-(c) for fixed values of 1 0.0015A = , 

2 0.0015A = , ( )0.0001,0,0=a  and for different values of Jacobian constant 3.608652, 3.478652, 3.288652, 3.108652,C′ = − − − −   
3.058652, 2.958652− − , and (d) for fixed values of 3.608652C′ = − , 1 0.0015A = , 2 0.0015A = , and for different values of 

low-thrust acceleration ( )0.0001,0,0=a , ( )0.065,0,0 , ( )0.2,0,0 , ( )0.25,0,0 , ( )0.3,0,0 , ( )0.33,0,0 . 
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L1. The bounded curves in the panels-(a, b, c, d) indicate the forbidden regions. 
The forbidden regions are those regions where the motion of the spacecraft is 
not possible. The motion of the spacecraft is possible outside the bounded 
curves. We have observed that the spacecraft is free to move only in the regions 
outside the bounded curves. From Figure 9(a), we have observed that when A1 
is increasing the regions of motion increase in which the spacecraft can freely 
move. From Figure 9(b), it is observed that the regions of motion increase for 
the increasing values of oblateness parameter A2 in which the spacecraft can 
move. On the other hand, from Figure 9(c), we have observed that when 
Jacobian constant C′  is increasing the regions of motion increase in which the 
spacecraft can freely move. Further, from Figure 9(d), we have observed that 
when a  is increasing, the possible regions of motion increase in which the 
spacecraft can freely move. Furthermore, from Figures 9(a)-(d), we observe that 
the spacecraft can freely move from one primary to other for the increasing 
values of 1 2, ,A A C′  and a  respectively. Thus, the nature of the ZVCs in the 
low-thrust R3BP depend on the Jacobian constant C′ , oblateness parameters 

1 2,A A  and continuous control acceleration a  of the low-thrust propulsion 
system of the spacecraft. 

6. Conclusions 

In this paper, we have studied the combined effect of oblateness of the primaries 
on the motion of the spacecraft in the low-thrust R3BP. The AEPs are obtained 
by introducing the continuous control acceleration at the non-equilibrium 
points. The numerical values of few AEPs have been calculated and displayed in 
Tables 1-3. It has been observed that there exist three collinear and two 
non-collinear AEPs for given parameters. We have observed that the non-collinear 
AEPs L4 and L5 are symmetric with respect to x-axis. The movements of AEPs 
have been studied graphically and shown in Figure 2. We find that the oblatness 
parameter of the bigger primary has less impact on the position of L3 than 
oblateness of the smaller primary. Also, we have observed that the oblateness 
parameter of the primaries has more impact on the locations of the AEPs.  

Further, we have plotted the stability regions in the xy, xz and yz-planes as 
shown in Figures 3-8. From, these figures, we have observed that the stability 
regions reduce around both the primaries m1 and m2 for the increasing values of 
oblateness parameters ( )1 2, 0,1A A ∈  and for fixed value of mass parameter 

0.1µ = . Also, we find that the oblateness of the primaries has more impact on 
the stable regions. Our results are different from Morimoto et al. [16] in some 
aspects like, 1) they have generated the AEPs in the low-thrust R3BP, whereas 
we have generated the AEPs in the low-thrust R3BP with the effect of oblateness 
of the primaries. In our case, the AEPs are new positions of natural equilibrium 
points different from McInnes et al. [14], Morimoto et al. [16], Baig and 
McInnes [17], and Bu et al. [24] due to the presence of oblateness parameters 

( )1 10 1A A< <  and ( )2 20 1A A< < . When both the oblateness parameters A1 
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and A2 are zero and ( )0,0,0≠a , the results obtained in this work are similar 
with the work of McInnes et al. [14], Morimoto et al. [16], Baig and McInnes 
[17], and Bu et al. [24]. When 1 0A = , 2 0A =  and ( )0,0,0=a , the obtained 
results are similar with the work of Szebehely [1]. 2) they have obtained the 
stable regions in the Sun-Earth system, whereas we have obtained the stable 
regions for 0.1µ =  and for different values of oblateness parameters  

( )1 10 1A A< <  and ( )2 20 1A A< < .  
Finally, we have determined the ZVCs to study the possible regions of motion 

in which the spacecraft is free to move. We have observed that the regions of 
motion increase in which the spacecraft can freely move from one place to other 
place. Further, it has been observed that the unreachable regions can become 
reachable in the presence of continuous low-thrust. This paper is applicable in 
the Earth-Moon system for communications for the spacecraft missions. 
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