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Abstract 

This paper mainly talks about a popular approach of volatility of a 
GARCH-type model in R, while the disturbances are independent and have 
identical Student-t distribution. It uses the Metropolis-Hastings method to 
perform the computations and gives the programs in details in R. 
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1. Introduction 

The R-project is an open statistics programming software. Modelling and fore-
casting volatility or, in other word, the covariance structure of asset returns, is 
important. A central property of economic time series, being common to many 
financial time series, is that their volatility varies over time. Describing the vola-
tility of an asset is a key issue in financial economics. Returns were modelled as 
independent and identically distributed over time. The most popular class of 
models for time-varying volatility is represented by GARCH type models [1]. 
GARCH models are commonly used for describing, estimating and predicting 
the dynamics of financial returns. Recent surveys of the existing GARCH models 
literature can be found in Davidson [2] and Rombouts et al. [3]. In contrast to 
Engle’s [4] ARCH model, a double autoregressive (DAR) model, which is a spe-
cial case of the ARMA-ARCH models in Weiss [5] and an example of weak 
ARMA models in Francq and Zakoïan [6] [7], is also increasingly concerned 
about researchers. Under the assumption of the disturbance following a normal 
distribution, Ling [8] considered the structure and the maximum likelihood es-
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timation. In addition, stochastic volatility (SV) models have enjoyed great popu-
larity in analyzing financial data in the last couple of decades [9]. 

In this paper, an R package named bayesGARCH [10] was mentioned to con-
trast with our procedure. This package makes use of the priors based on the 
work of Nakatsuma [11], consists of Metropolis-Hastings (MH) algorithm [12] a 
proper algorithm to sample the posterior distribution. 

The remainder of this paper is organized as follows. In Section 2 we describe 
the GARCH (1, 1)-t process and introduce how to estimate the parameters by 
using the Metropolis-Hastings method. Through an example, we contrast our 
model with the bayesGARCH package in Section 3. Section 4 provides the R 
procedure to execute our model in details. An empirical example is reported in 
Section 5, and Section 6 concludes this paper. 

2. Univariate GARCH-t Model 

Let tY  denote a asset return. The general structure of an asset return series 
modeled by a GARCH-type models can be written as Audronė Virbickaitė et al. 
2014 [13]: 

.t t t t t tY a hµ µ= + = +   

In general   is a Normal variable. Without loss information, we set 0tµ = . 
To capture the fat tail so prominent a Student-t distribution is used for condi-
tional density. The model is, GARCH-t, is 

( )2 2 2 2
1 0 1 1 1| 0, ,    .t t t t t t tY S h h Y h

ψ
α α β− − −= + +F 

            
(1) 

where ( )20,t tS h
ψ

 is a Student-t distribution with mean 0 and ψ  is the degree 
of freedom parameter. th  is the conditional variance given 1t−F  in the 
GARCH (1, 1) model. 0 0α > , 1, 0α β ≥  are restrictions for positive variance, 
and 1α β+ <  for the covariance stationarity. Then the posterior density func-
tion could be: 
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It is indicated that the   obey the Student-t distribution in (1). The follow-
ing, we will show how we get (2), the density distribution of   is 
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Through the equation t t tY h= ⋅ , the distribution of tY  is 

( ) ( ) ( ) ( )1 1
tt t t t t t t t t tP Y y P h y P h y F h y− −≤ = ⋅ ≤ = ≤ =    

So the density is 
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Because, ( )
2tVar ψ

ψ
=

−
 , to ensure the conditional variance of tY  to be 2

th , 

we replace “ th ” with “ 2
thψ

ψ
−

⋅ ”, then the (3) changed into (2). 

Given a dataset ( )1 2, , ,t TY y y y=  , model parameter ( )0 1, , ,α α β ψΓ = Γ  
and the posterior density is 

( ) ( ) ( )1
1

| |
T

T t t
t

p Y p f y −
=

Γ ∝ Γ ⋅∏ F  

According to Jensen [14], the priors are independent and identically distri-
buted (IID) as N (0, 100) with the following restrictions 0 0α > , 1 0α ≥ , 0β ≥  
to impose identification and 2ψ > . Since the variance is non-negative, the pos-
itive constraints on coefficients are reasonable. The restriction on the degrees of 
freedom parameter ψ  ensures the conditional variance to be finite and the re-
strictions on the GARCH parameters 0α , 1α  and β  guarantee its positivity. 
One of the most popular MCMC algorithm used in estimating GARCH model 
parameters, is the Metropolis-Hastings (MH) method. We emphasize the fact 
that only positivity constraints are implemented in the MH algorithm; no sta-
tionarity conditions are imposed in the simulation procedure. We employ a MH 
sampler. Given the current value Γ  of the chain, the proposal ′Γ  is sampled 
from 
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, and 0.9p =  empirically. After the test sample col-

lecting the new ( ){ }
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Γ , the predictive density is 
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3. The Priors and bayesGARCH Package 

In this section, an R package named bayesGARCH was applied to deal with the 
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GRACH model, then we’ll describe the difference of the priors between our 
model and the package. The package bayesGARCH provides functions for the 
Bayesian estimation of the parsimonious and effective GARCH (1, 1) model with 
Student-t innovations. The priors in the bayesGARCH package distributions on 

0α  is a bivariate truncated Normal distribution; 1α  is a univariate truncated 
Normal distribution; β  is a translated Exponential distribution. The estima-
tion procedure is fully automatic and thus avoids the tedious task of tuning an 
MCMC sampling algorithm. It is obviously there are some differences set of 
priors between our model and the package, so we couldn’t cite the package di-
rectly. Next, we will show the estimation results to demonstration that the dif-
ferent priors could inference the estimation result. 

3.1. Example 

We set the initial value of Γ  is (1, 0.2, 0.4, 5). 800 simulation values are ob-
tained by simulation in R. 

800R T> =  

( (0, ))R y c rep T> =  

[1] 0.5; [1] 0.5R y h> = =  

0 1; 1 0.2; 0.4; 5R alpha alpha beta psi> = = = =  

( 2 : )R for iin T>  

{+  

2[ ] 0 1 [ 1] [ 1]h i alpha alpha y i beta h i+ = + ∗ − + ∗ −  

[ ] (1, )y i rt psi+ =  

[ ] ( [ ]) [ ]y i sqrt h i y i+ = ∗  

}+  

Then we use bayesGARCH package to estimate Γ , we remain the number of 
MCMC chains and the length of each MCMC chain to be the default value. 

( )MCMC bayesGARCH y< −  

( , . 50)smpl formSmpl MCMC l bi< − =  

( )summary smpl  

We receive the estimation of Γ  is (1.2630, 0.2367, 0.4829, 11.3285). Obviously, 
there’s a big difference estimation of ψ  and the estimation of other parameters 
is equally unsatisfactory. 

3.2. The Priors 

The difference sets of the priors see Table 1. The GARCH (1, 1) model with 
Student-t innovations in package bayesGARCH is written in Geweke [15]. 
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Table 1. The difference sets of priors. 

 our GARCH-t bayesGARCH package 

0α  N (0, 100) a bivariate truncated Normal distribution 

1α  N (0, 100) a bivariate truncated Normal distribution 

β  N (0, 100) a univariate truncated Normal distribution 

ψ  U (2, 100) a translated Exponential distribution 

Note. This table shows the priors set in our model are all independent each other and more typical. 

4. Conducting GARCH-t in R 

The estimate results in our model 
In this section, we design and developed the R program. We will show the 

whole procedure of how we conduct GARCH-t in R. Our results is (1.0103, 
0.1838, 0.4694, 9.2587) is closer to the true value, and we can see the procedure 
in Figure 1. 

The R program 
We set the all necessary initial values to be zero, the number of MCMC 

chain to be 10,000, meanwhile Γ  is a 10,000 times 4 matrix. We leave out the 
R programs for these simple settings, giving only the necessary parts of the 
program. 

(   2 : )R for i in N>  

{R >  

(1,0,1)R u runif> =  

(1, [ 1,1],0.1 ) ( 0.9)R gammaA rnorm gamma i v u> = − ∗ ∗ <=  

(1, [ 1,1],5 ) ( 0.9)rnorm gamma i v u+ − ∗ ∗ >  

(   2 : )R for j in T>  

{R >  

2 2 2 2[ ] [ 1, 2] [ 1] [ 1,3] [ 1]R hh j gammaA gamma i y j gamma i hh j> = + − ∗ − + − ∗ −  

2 2 2

2

[ ] [ 1,1] [ 1,2] [ 1]

[ 1,3] [ 1]

R oldhh j gamma i gamma i y j
gamma i oldhh j

> = − + − ∗ −

+ − ∗ −
( / ( ), [ 1, 4]) / ( )R prop dt y sqrt hh gamma i sqrt hh> = −  

 / ( ) ( ),  ()        .where y sqrt hh t and dt returns the density value of the t distributionψ  

( / ( ), [ 1, 4]) / ( )R old dt y sqrt oldhh gamma i sqrt oldhh> = −  

( ( ) ( ))R ratio sum log prop log old> = −  

( )R ratio exp ratio> =  

[ ,1] [ 1,1] ( [ 1,1])*( (1) )R gamma i gamma i gammaA gamma i runif ratio> = − + − − <  

The above procedure could give the estimate value of 0α , and the estimation 
of the other rest of the parameters is very like it, we won’t go back to that. 
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5. Empirical Application 

This section will use Metropolis-Hastings method by the actual financial data to 
fit the model. The using data is the DAX(Ibis) index of German in European 
stock market, a total of 1860 data. In order to make the data smooth, we need to 
do some processing to the original data. Let tx  denote the logarithm and ty  
denote the order difference of tx , i.e. 1t t ty x x −= − , see Figure 2. 

 

 
Figure 1. MCMC results of GARCH (1, 1)-t. 
 

 
Figure 2. We can see the data in figures (a) and (b) shows a growing trend, while data in figure (c) is stable through the numeric 
transform. 

https://doi.org/10.4236/ojs.2018.86062


M. Wang, Y. S. Wu 
 

 

DOI: 10.4236/ojs.2018.86062 937 Open Journal of Statistics 

 

We apply the R program in the section 5 to estimate the DAX data, achieve 
the result of Γ  is (0.0028, 0.0600, 0.0676, 7.7485). That is, the equation of va-
riance is 2 2 2

1 10.0028 0.0600 0.676t t th Y h− −= + ∗ + ∗ . Through compute the 
Ljung-Box test statistic for examining the null hypothesis of independence in 
ARCH model, we get the χ  squared 0.0023 with p-value 0.9621. It obvious to 
show our GARCH (1, 1)-t model is sufficient. 

6. Conclusion 

In this article, the R program to estimate GARCH-t model has been developed. 
The parameters’ distribution has been modeled using Gaussian model with the 
most common setting. The results we achieved in each of our experiments with 
either simulation study or real data application, are quite encouraging. 

Foundation 

This research was partially supported by the PhD research startup foundation of 
Guizhou Normal University (Grant No. GZNUD[2017]27) & Science and 
Technology Foundation of Guizhou Province (LKS[2013]5 & LKS[2012]11), 
China. & Teaching Project of Guizhou Normal University in 2016: Contract No. 
[2016] XJ No. 09.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 

[1] Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroscedasticity. 
Journal of Econometrics, 31, 307-327.  
https://doi.org/10.1016/0304-4076(86)90063-1 

[2] Davidson, J. (2012) Moment and Memory Properties of Linear Conditional Hete-
roscedasticity Models, and a New Model. Journal of Business & Economic Statistics, 
22, 16-29. https://doi.org/10.1198/073500103288619359 

[3] Rombouts, J., Stentoft, L. and Violante, F. (2014) The Value of Multivariate Model 
Sophistication: An Application to Pricing Dow Jones Industrial Average Options. 
International Journal of Forecasting, 30, 78-98.  
https://doi.org/10.1016/j.ijforecast.2013.07.006 

[4] Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of 
the Variance of U.K. Inflation. Econometrica, 50, 987-1007.  
https://doi.org/10.2307/1912773 

[5] Weiss, A.A. (1986) Asymptotic Theory for ARCH Models: Estimation and Testing. 
Econometric Theory, 2, 107-131. https://doi.org/10.1017/S0266466600011397 

[6] Francq, C. and Zakoïan, J.M. (1998) Estimating Linear Representations of Nonli-
near Processes. Journal of Statistical Planning & Inference, 68, 145-165.  
https://doi.org/10.1016/S0378-3758(97)00139-0 

[7] Francq, C. and Zakoïan, J.M. (2000) Covariance Matrix Estimation for Estimators of 
Mixing Weak ARMA Models. Comptes Rendus de I Académie des Sciences-Series 

https://doi.org/10.4236/ojs.2018.86062
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1198/073500103288619359
https://doi.org/10.1016/j.ijforecast.2013.07.006
https://doi.org/10.2307/1912773
https://doi.org/10.1017/S0266466600011397
https://doi.org/10.1016/S0378-3758(97)00139-0


M. Wang, Y. S. Wu 
 

 

DOI: 10.4236/ojs.2018.86062 938 Open Journal of Statistics 

 

I—Mathematics, 83, 369-394. https://doi.org/10.1016/S0378-3758(99)00109-3 

[8] Ling, S. (2007) A Double AR(p) Model: Structure and Estimation. Statistica Sinica, 
17, 161-175. 

[9] Jacquier, E., Polson, N.G. and Rossi, P. (2004) Bayesian Analysis of Stochastic Vola-
tility Models with Fat-Tails and Correlated Errors. Journal of Econometrics, 122, 
185-212. https://doi.org/10.1016/j.jeconom.2003.09.001 

[10] Ardia, D. (2007) bayesGARCH: Bayesian Estimation of the GARCH(1,1) Model 
with Student-t Innovations in R.  
http://CRAN.R-project.org/package=bayesGARCH 

[11] Nakatsuma, T. (1998) A Markov-Chain Sampling Algorithm for GARCH Models. 
Studies in Nonlinear Dynamics & Econometrics, 3, 107-117.  
https://doi.org/10.2202/1558-3708.1043 

[12] Chin, S. and Greenberg, E. (1995) Markov Chain Monte Carlo Simulation Methods 
in Econometrics. Econometrics, 12, 409-431. 

[13] Virbickaitė, A., Ausín, M.C. and Galeano, P. (2015) A Bayesian Non-Parametric 
Approach to Asymmetric Dynamic Conditional Correlation Model with Applica-
tion to Portfolio Selection. Computational Statistics and Data Analysis, 100, 
814-829. https://doi.org/10.1016/j.csda.2014.12.005 

[14] Jensen, M.J. and Maheub, J.M. (2013) Bayesian Semiparametric Multivariate 
GARCH Modeling. Journal of Econometrics, 176, 3-17.  
https://doi.org/10.1016/j.jeconom.2013.03.009 

[15] Geweke, J. (1993) Bayesian Treatment of the Independent Student-t Linear Model. 
Journal of Applied Econometrics, 8, S19-S40.  
https://doi.org/10.1002/jae.3950080504 

 
 

https://doi.org/10.4236/ojs.2018.86062
https://doi.org/10.1016/S0378-3758(99)00109-3
https://doi.org/10.1016/j.jeconom.2003.09.001
http://cran.r-project.org/package=bayesGARCH
https://doi.org/10.2202/1558-3708.1043
https://doi.org/10.1016/j.csda.2014.12.005
https://doi.org/10.1016/j.jeconom.2013.03.009
https://doi.org/10.1002/jae.3950080504

	Estimating GARCH Modeling Using Metropolis-Hastings Method in R
	Abstract
	Keywords
	1. Introduction
	2. Univariate GARCH-t Model
	3. The Priors and bayesGARCH Package
	3.1. Example
	3.2. The Priors

	4. Conducting GARCH-t in R
	5. Empirical Application
	6. Conclusion
	Foundation
	Conflicts of Interest
	References

