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Abstract 

It is well-known that the power of Cochran’s Q test to assess the presence of 
heterogeneity among treatment effects in a clinical meta-analysis is low due 
to the small number of studies combined. Two modified tests (PL1, PL2) were 
proposed by replacing the profile maximum likelihood estimator (PMLE) in-
to the variance formula of logarithm of risk ratio in the standard chi-square 
test statistic for testing the null common risk ratios across all k studies 
( 1, ,i k=  ). The simply naive test (SIM) as another comparative candidate 
has considerably arisen. The performance of tests in terms of type I error rate 
under the null hypothesis and power of test under the random effects hypo-
thesis was done via a simulation plan with various combinations of signific-
ance levels, numbers of studies, sample sizes in treatment and control arms, 
and true risk ratios as effect sizes of interest. The results indicated that for 
moderate to large study sizes ( 16k ≥ ) in combination with moderate to large 
sample sizes ( , 50T C

i in n ≥ ), three tests (PL1, PL2, and Q) could control type I 
error rates in almost all situations. Two proposed tests (PL1, PL2) performed 
best with the highest power when 16k ≥  and moderate sample sizes 
( , 50,100T C

i in n = ); this finding was very useful to make a recommendation to 
use them in practical situations. Meanwhile, the standard Q test performed 
best when 16k ≥  and large sample sizes ( , 500T C

i in n ≥ ). Moreover, no tests 
were reasonable for small sample sizes ( , 10T C

i in n ≤ ), regardless of study size 
k. The simply naive test (SIM) is recommended to be adopted with high per-
formance when k = 4 in combination with ( , 500T C

i in n ≥ ). 
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1. Introduction 

In a clinical trial with binary outcomes, the risk ratio (RR) as an intervention ef-
fect is defined by the ratio of probabilities (risks) of having an adverse event be-
tween a treatment group and a control group [1] [2]. Let xT and xC be the num-
ber of events out of nT and nC, the total number of persons (or the total of times 
that every person exposed) in the treatment arm and the control arm, respec-
tively. Then the maximum likelihood estimate for RR is obtained as  

ˆˆ
ˆ

T T T

C C C

p x nRR
p x n

= =  [3] [4]. 

A meta-analysis of study size k is a statistical approach that combines the re-
sults from k studies, conducted on the same topic and with the similar methods, 
into a single summary result. In clinical trials, meta-analysis is an essential tool 
to obtain a better understanding of how well the treatment effects work. Two 
popularly statistical models used are the fixed effect model and the random ef-
fect model. Under the assumption of the fixed effect model, we assume that all 
studies share a common effect size. It means that there is no heterogeneity be-
tween the studies; all studies contain only one true effect size over all k indepen-
dent trials, and the observed effect is determined by the common true effect plus 
the sampling error (within-study error). On the contrast, under the random ef-
fects model, the true effect is not the same in all studies; we allow that there is a 
distribution of true effect sizes. It follows that the combined estimate is not an 
estimate of one value, but rather it is the average of distribution values. Hence, 
there are two levels of errors (within-study error and between-study error). 
Consequently, the observed effect is determined by the mean of all true effects 
plus the within-study error and the between-study error. In this sense, hetero-
geneity may refer to various true effect sizes from studies to studies, or the dif-
ference of studies gives the difference of the effect sizes so that one can incorpo-
rate this heterogeneity into a random effect model. Alternatively, heterogeneity 
in the effect sizes from different studies may be explained by a set of covariates, 
such as characteristics of studies, type of treatment status, some average or ag-
gregate characteristics of patients, even publication bias; therefore, a me-
ta-regression approach may be used to account for variation from such cova-
riates among these heterogeneous effects. 

Traditionally, before combining the effects of separate studies by using either 
the fixed effect model as homogeneity or the random effect model as hetero-
geneity, the conventional Cochran’s Q test is adopted to test whether these 
treatment effects are homogeneous, or not. Unfortunately, it is widely known 
that the standard Q test may be inaccurate in testing the null homogeneity of ef-
fect sizes in the sense of low power of test. Kulinskaya and Dollinger [5] and 
Boissel et al. [6] stated that Cochran’s Q test had low power in most situations, 
especially, when the number of studies (k) was small. The work of Kulinskaya, 
Dollinger, and Bjørkestøl [7], Lipsitz et al. [1] and Lui’s [2] were also confirmed 
the low power problem of Cochran’s Q test. The low power of Q test implies the 
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low ability to detect the effect when the effect actually exists (i.e. the low chance 
of rejecting the null homogeneous effects when the different effects exist). The 
simple correction for Q test to solve the problem of low power is taking a larger 
level of significance; Fleiss [8] recommended using a cut-off significance level of 
0.1, rather than the usual 0.05. This has also been a common customary practice 
for the Cochran’s Q homogeneity test in meta-analysis. Considerably, the way to 
increase the power is equivalent to the reduction of the chance of type II error. 
But this reduction of the chance of type II error also increases the risk or the 
chance of type I error. Obviously, when we make a low power problem better by 
using a cut-off of 10% for significance criterion, the new problem of allowance 
for the increase of the chance of type I error may occur. The increasing risk of 
type I error potentially leads to the problem of not maintaining the type I error 
at the conventional level of significance. Additionally, Shandish and Haddock [9] 
stated that when the sample sizes in each study were very large, the null hypo-
thesis of the equal population effects might be rejected even if the individual ef-
fect estimates did not really differ much. 

Profile likelihood estimation, stated by Ferrari et al. [10] and Böhning et al. 
[11], deals with elimination of the nuisance parameters. Generally, let the 
log-likelihood ( ),l p q  depend on a vector p  of parameters of interest and a 
vector q  of nuisance parameters. If pq  as a function of p  is the solution 
such that ( ) ( )| |l l≥pq p q p  for all q , then ( ) ( )*|l l=pq p p  is called the 
profile log-likelihood. Profile log-likelihood ( ) ( )*|l l=pq p p  is not an ordi-
nary log-likelihood, but log-likelihood maximized over nuisance parameters 
given the values of the parameter of interest. We can observe that the profile 
log-likelihood ( )*l p  now depends only on the parameter of interest. 

With the Q limitations of low power and not maintaining type I error at the 
conventional level of significance, many scientists have attempted to propose 
some new tests and/or some modified tests to be alternative candidates. To meet 
the gaps of limitations, our proposed tests modified from the standard 2χ  test 
of homogeneity as an alternative choice are based on the substitution of profile 
maximum likelihood estimates derived by Böhning et al. [11] into the variance 
formula of logarithm of risk ratio as the effect measure of interest over all k stu-
dies. Another comparative test was the simply naive test based on the variance 
estimate of the conventional Poisson likelihood. Some numerical examples are 
illustrated later. Then, the next contribution focuses on a comparison of the 
performance among these homogeneity tests via a simulation plan. The result is 
related to the mentioned tests through the type I error probability and the power 
criteria lying on the later section. The conclusion and discussion are presented 
finally. 

2. Motivational Applications 

Two examples of meta-analysis are presented to illustrate the implementation of 
the related Q test and the other usefulness demonstrates how to set the parame-
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ters in a simulation plan. Farquhar et al. [12] conducted a meta-analysis on k = 7 
studies to assess 5 years follow up of high dose chemotherapy and autograft 
comparable with the conventional chemotherapy for poor prognosis breast can-
cer. The outcome of treatment is event free survival. The value of Cochran’s 
Q-test was 4.72. Since Q is distributed as a standard chi-square statistic with 
k-1 degrees of freedom (df), leading to the p-value of 0.58 for accepting the 
null homogeneity of risk ratios across trials. Additionally, the 2I  statistic de-
noted as ( )2 100%I Q df Q= × −  describing the percentage of variation across 
studies due to heterogeneity is very low of 0%; consequently, a fixed effects 
model might be appropriate. The conclusion of acceptation of the null hypothe-
sis was that there was no presence of heterogeneity (Figure 1). In addition, there 
was no difference between treatment and control groups on binary events; the 
pooled estimate of RR being of 1.01 under a fixed effects model lies on the 95% 
confidence interval (CI.) of [0.97, 1.06], covering the null value 1. Forest graph 
of meta-analysis is created by R package provided by Schwarzer et al. [13], 
http://meta-analysis-with-r.org/.  

Mottillo et al. [14] considered the data from meta-analysis of 16 trails about 
the metabolic syndrome and cardiovascular risk. The value of Cochran’s Q-test 
is 6.12. The Chi-square approximation with 15 degrees of freedom provides 
0.0003 of the p-value for testing the null homogeneity. The heterogeneity value 
of 2I  index was 64%. The result shows evidence to conclude heterogeneity of 
across studies (Figure 2). Furthermore, there exist the treatment effects on the 
binary outcomes since RR of 2.34 under a random effect model lies away from 1; 
the 95% CI has the range of [2.02, 2.72], not covering 1. 

3. Deriving Profile Likelihood Tests for Common Risk Ratio 

The purposes of study are 1) to derive the profile likelihood tests for testing a 
null common risk ratio RR across k studies in which is equivalent to homogene-
ity of treatment effects overall k studies ( 1, ,i k=  ) by replacing the profile like-
lihood estimator into the formulas of the estimate of variance of logarithmic rel-
ative risk, ( )( )ˆˆvar log iRR , of the standard chi-square test; 2) to compare the 
performance of test statistics based on the profile likelihood method regarding  

 

 
Figure 1. Forest plot of meta-analysis comparing high dose chemotherapy and autograft with the conven-
tional chemotherapy. 
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Figure 2. Forest plot of meta-analysis of 16 trials about the metabolic syndrome and cardiovascular risk. 

 
the different formulas of the variance estimates of logarithm of risk ratio with 
the conventional Cochran’s Q test for testing a null common risk ratio RR across 
k studies ( 0 1 2: kH RR RR RR RR= = = = ) against 1 0: a false H H , (i.e. 

1 : iH RR  has a specific distribution). 
We followed the work and the notation of Böhning et al. [11] and further 

proposed some profile likelihood tests by modifying the standard 2χ  test for 
homogeneity through the various ways of the variance estimates of the logarithm 
of risk ratios at the ith study. 

3.1. Profile Likelihood Estimator under a Fixed Effect Point for a 
Common Risk Ratio across Studies 

The result of the work of Böhning et al. [11] under profile likelihood concept 
provides a fixed-effect point RR for all k studies ( 1, ,i k=  ) as 

( )
( ) ( )

1

1

1

k
T

T T C ik i i i i
T C T T C Tki i i i i i i

T C
i i i

xx n RR n
RR

x x n x x n

n RR n

=

=

=

+
= =

+ +

+

∑
∑

∑
, 

leading to the iterative processes of the profile maximum likelihood estimator 
(PMLE) in the following 

( )
( ) ( )

1

1

1

ˆ
ˆ

ˆ

k
TT T C ik i i PMLE i i

PMLE T C T T C Tki i i i i i i

T C
i i PMLE i

xx n RR n
RR

x x n x x n

n RR n

=

=

=

+
= =

+ +

+

∑
∑

∑
, 

where T
ix  and C

ix  are the numbers of events in treatment and control arms 
for each clinical trial i and T

in  and C
in  are the numbers of persons at risk or 

person-times. 
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3.2. Some Tests Based on Various Formulas of Variance Estimate 
of Logarithmic RRi 

For testing the null hypothesis, the true relative risks ( iRR ) are the same in all k 
centers/studies, 0 1 2: kH RR RR RR RR= = = = , for 1, ,i k=   versus the al-
ternative that at least one of the effect sizes ( iRR ) differs from the remainder. 
Alternatively, this is reasonable to assume that all null parameters of the centers 
to be combined are summarized into a single underlying population parameter, 
against the alternative parameters different among centers are likely to have a 
wholly random with a specific distribution. Our proposed tests are modified on 
the base of a standard 2χ  test for homogeneity in the following form: 

( ) ( )( )
( )( )

2

2

1

ˆ ˆln ln

ˆvar ln

k i PMLE

i i

RR RR

RR
χ

=

−
= ∑  

where k is the number of studies being combined, ˆ
PMLERR  is a PMLE of a 

common RR, ( ) ( )ˆ T T C C
i i i i iRR x n x n=  is an estimate of iRR  at the ith study, 

two natural logarithm transformations, such as ( )ˆln iRR  and ( )ˆln PMLERR , are 
needed to adapt the non-symmetric distribution, and 1k −  is degrees of free-
dom of 2χ  test. It is a common way that the variance of the logarithm of risk 
ratios at the ith study, ( )( )ˆvar ln iRR , is replaced by its various estimates, 

( )( )ˆˆvar ln iRR , leading to the several candidates 2χ  tests, finally. 
1) Simply naive 2χ  test (SIM), based on variance estimate at the ith study 

under Poisson likelihood by Delta method, is denoted as 

( ) ( )( )
( )( )

2

2

1

ˆ ˆln ln

ˆˆvar ln

k i PMLE

i i

RR RR

RR
χ

=

−
= ∑  

where ( )( ) 1 1 1 1ˆˆvar ln
ˆ ˆi T T C C T C

i i i i i i

RR
n p n p x x

= + = + , ˆ T T T
i i ip x n= , and  

ˆ C C C
i i ip x n= . 

2) Profile likelihood 2χ  test (PL1) with the same form above will be ob-
tained but getting the different formula due to the variance estimate under the 
null hypothesis as 

( )( ) 1 1 1ˆˆvar ln ˆ ˆi C CT
i ii PMLE

RR
n pn RR

 
= +  
 

 

where 
( )
( )1

ˆ
ˆ

T T C
k i i PMLE i

PMLE T C T
i i i i

x n RR n
RR

x x n=

+
=

+
∑  and ˆ C C C

i i ip x n= . 

3) Profile likelihood 2χ  test (PL2) will also be obtained after using the dif-
ferent formulas of variance estimate as 

( )( ) ( )
( )

2ˆ1 1 1ˆˆvar ln ˆ ˆˆ

C T
i PMLE i

i C CT T C C T
i ii PMLE i i PMLE i i

n RR n
RR

n pn RR n n RR x x

+ 
= + =   + 
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where 
( )
( )1

ˆ
ˆ

T T C
k i i PMLE i

PMLE T C T
i i i i

x n RR n
RR

x x n=

+
=

+
∑  and ˆ ˆ

T C
C i i
i C T

i PMLE i

x x
p

n RR n
+

=
+

 are the re-

sults of Böhning et al. [11] under profile likelihood concept. 
4) Cochran’s Q test as the weighted sum of squares is distributed as a 

chi-square statistic with k − 1 degrees of freedom, under the null of homogeneity 
of treatment effects across k studies, denoted as 

( )2

1

ˆ
k

i i
i

Q w δ δ
=

= −∑  

where ˆ ˆlni iRRδ = , 
( )
1 1 1

ˆ ˆ ˆˆvar
i T T C C

i i i ii

w
n p n pδ

= = + , ˆ T T T
i i ip x n= , ˆ C C C

i i ip x n= , 

and 
1

ˆ
k

i i i
i

w wδ δ
=

= ∑ ∑ . 

4. Monte Carlo Simulation 

We perform two simulation plans. One is conducted on type I error for testing a 
null common risk ratio, RR, over all k studies or in other words for testing the 
null homogeneity we have 0 1 2: kH RR RR RR RR= = = = . The other is used 
for comparing the performance of tests with the highest power after all test sta-
tistics could be controlled within the same limit range of the empirical type I error. 

4.1. Simulation Plan for Studying Type I Error 

Parameters Setting: The values of parameter setting followed two motivational 
examples. Let the common relative risk (RR) be 1, 2 and 4. Baseline risks C

ip  in 
the control arm for the ith center ( )1,2, ,i k= 

 are generated from a uniform 
distribution in which its range depends on the values of RR. For example, if 

1RR =  then ( )~ 0,0.9C
ip U  and the correspondent treatment risks have the 

possible values less than or equal to 0.9 as ( )~ 0,0.9T C
i ip p RR U= ×  for the ith 

center. If 2RR =  then ( )~ 0,0.45C
ip U  and ( )~ 0,0.9T C

i ip p RR U= × . The 
sample sizes T

in  and C
in  are distributed from Poisson with the mean of 5, 10, 

50, 100, 500, 1000. The number of centers k is 4, 16, and 32. 
Statistics: Poisson random variables T

iX  and C
iX  in treatment and control 

arms for center i ( )1,2, ,i k= 
 are generated with parameters ( )T T

i in p  and 

( )C C
i in p , respectively. All candidate tests are then computed. The procedure is 

replicated 5000 times. From these replicates, the number of the null hypothesis 
rejections is counted for the actual (empirical) type I error. 

Type I error among the tests is considered by comparing the actual (estimated) 
type I error ( α̂ ) with the nominal level of significance (α ). The departure of the 
estimated type I error from the nominal level of significance must not exceed the 
precise limit. In this study, the evaluation for two-sided tests in terms of the 
probability is based on Bradley limit [15] yielding the limiting ranges of 

[ ]0.5 ,1.5α α . For an example, at 1%α =  level of significance, α̂  value lies 
between [0.5%, 1.5%], at 5%α =  level of significance, α̂  value lies between 
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[2.5%, 7.5%], at 10%α =  level of significance, α̂  value lies between [5%, 
[15%]. 

If the empirical type I error lies within the range of Bradley limit, then the sta-
tistical test can capture type I error. 

4.2. Simulation Plan for Studying Power of Tests 

Before comparing the power of test statistics, all test statistics could be calibrated 
to have the same limit range of type I error rate under the null hypothesis. It 
means that power comparisons of tests are reliable if all tests are previously 
based on the same range of type I error rate before the process of power com-
parisons is employed. 

Under the alternative hypothesis that iRR  has been assumed a specific dis-
tribution around the mean ( 0RR ) of 1, 2, 4, we let  

( )0 0ln ln ln 2 1i mRR RR U RR mm U= + = + −  where mU  is a uniform over (-mm, 
mm) for a given mm = 0.2, 0.4, 0.6, and U is a uniform over (0, 1). Baseline risks 

C
ip  are still generated from a uniform distribution over [0, 0.25]. Poisson ran-

dom variables T
iX  and C

iX  are generated with parameters ( )T T
i in p  and 

( )C C
i in p , respectively. The procedure is replicated 5000 times and the number of 

the null hypothesis rejections is counted for the empirical power. 

5. Results 

Since it is difficult to present all enormous results from the simulation study, we 
just have illustrated some instances, coping with 0.05 levels of significances, 
some common true relative risk values of 1 and 2, in both equal and unequal 
sample sizes. 

5.1. Equal Sample Sizes ( T C
i in n= ) 

5.1.1. Studying Type I Errors 
• From Table 1, the results show that for small sample sizes ( , 10T C

i in n ≤ ), re-
gardless of study size k, almost all tests cannot control type I error. 

• For moderate to large study sizes ( 16k ≥ ) in combination with moderate to 
large sample sizes ( , 50T C

i in n ≥ ), two proposed tests (PL1, PL2) can maintain 
type I error rates in almost all situations. Meanwhile, for moderate to large 
study sizes ( 16k ≥ ), the Q test seems to handle type I error when sample siz-
es are large ( , 500T C

i in n ≥ ). 
• For small center size (k = 4), the SIM test can capture type I error on some 

moderate and large sample sizes ( , 100T C
i in n ≥ ) and the Q test can control 

type I error on sample size being moderate ( , 50,100T C
i in n = ). 

• In summary, for study size is moderate to large ( 16k ≥ ), two profile likelih-
ood tests (PL1 and PL2) perform well with maintaining type I error rates 
when sample sizes are moderate to large ( , 50T C

i in n ≥ ); in the meanwhile, the 
Q test can capture type I error on sample size being quite large  
( , 500T C

i in n ≥ ). 
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Table 1. At 5% significance level, a comparison of the empirical type I error rates among 
four statistical tests with the equal in the mean of sample sizes. 

RR k T C
i in n=  SIM PL1 PL2 Q 

1 4 5 0.00 0.30 0.10 0.02 

  
10 0.00 2.24 1.38 0.04 

  
50 1.64 12.98 13.78 2.84 

  
100 3.04 14.74 15.40 5.54 

  
500 5.40 14.44 15.62 8.82 

  
1000 6.06 14.34 14.74 9.00 

 
16 5 0.00 0.00 0.00 0.00 

  
10 0.00 0.04 0.00 0.00 

  
50 0.10 8.24 6.22 0.48 

  
100 0.52 8.54 6.94 2.34 

  
500 1.76 5.80 4.92 4.52 

  
1000 2.66 5.64 4.94 6.10 

 
32 5 0.00 0.00 0.00 0.00 

  
10 0.00 0.00 0.00 0.00 

  
50 0.00 6.54 4.44 0.12 

  
100 0.18 6.40 4.48 0.90 

  
500 1.10 4.56 3.96 4.38 

  
1000 1.08 3.42 2.76 4.92 

2 4 5 0.02 2.46 0.60 0.66 

  10 0.10 6.04 2.48 1.24 

  50 1.86 11.46 13.38 4.66 

  100 3.22 12.42 14.56 6.38 

  500 4.44 13.38 13.76 9.08 

  1000 5.36 13.02 13.72 9.82 

 16 5 0.00 0.24 0.00 0.00 

  10 0.00 1.26 0.06 0.04 

  50 0.10 5.58 6.02 1.72 

  100 0.68 5.48 5.62 2.94 

  500 1.60 4.36 4.18 6.08 

  1000 1.74 3.82 3.92 6.56 

 32 5 0.00 0.02 0.00 0.00 

  10 0.00 0.40 0.00 0.00 

  50 0.06 4.16 3.62 0.84 

  100 0.14 3.34 3.82 1.82 

  500 0.70 2.58 2.75 5.24 

  1000 0.70 1.98 1.76 5.36 

Note: Bold values indicate that the test statistics can control type I error rate. 
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5.1.2. Comparing Powers of Tests 
• The process of power comparisons is conducted after all candidate tests can 

previously maintain the same limit range of type I error. 
• Table 2 showed that both of the PL1 test and the PL2 test are best with the 

highest powers when study size is moderate to large ( 16k ≥ ) and sample 
sizes are moderate ( , 50,100T C

i in n = ) in every degrees of variation (mm = 0.2, 
0.4, 0.6), coping with RR = 1, 2. Additionally, in more detail, PL2 seems bet-
ter than PL1 with higher power. 

• When study size  is moderate to large ( 16k ≥ ) and sample size is large 
( , 500T C

i in n ≥ ), the Q test is best with the highest power of test in every de-
grees of variation (mm = 0.2, 0.4, 0.6), coping with RR = 1, 2. 

• For the number of studies is small (k = 4) in combination with large sample 
sizes ( , 500T C

i in n ≥ ), the best performance of test is the SIM test since it is 
only one test that can formerly meet the criterion of controlling type I error. 

5.2. Unequal Cases ( T C
i in n≠ ) 

5.2.1. Studying Type I Errors 
• Table 3 indicates that for RR = 2 and moderate to large study size ( 16k ≥ ), 

three tests (PL1, PL2, Q) can capture type I error when both of sample sizes 
in treatment and control groups are moderate to large ( 50T

in ≥ , 100C
in ≥ ). 

The SIM cannot control type I error in every case of sample sizes. 
• Table 4 is considered to highlight only for small study sizes (k = 4). For small 

study sizes (k = 4), the SIM seems to control type I error at least when one 
sample size of treatment groups is large. Both of PL1 and PL2 tests can con-
trol type I error when one sample size of treatment groups is small. The Q 
test can rarely control type I error in every sample size for small study sizes. 

5.2.2. Studying Power of Tests 
• Table 5 indicates that for moderate to large study sizes ( 16k ≥ ) in combina-

tion with moderate sample sizes ( 50, 100T C
i in n= = ), two proposed tests (PL1, 

PL2) perform best and quite close together. 
• For moderate to large study sizes ( 16k ≥ ) in combination of at least one 

treatment arm being large sample sizes ( 50, 500T C
i in n≥ ≥ ), Q test seems to 

have best performance with the highest power, followed by PL2 and PL1 
tests. 

• Additionally, when the sample sizes of both treatment and control arms are 
quite small ( , 5,10T C

i in n = ), regardless of study size (k), no tests among four 
tests (SIM, PL1, PL2, Q) are reasonable since almost all tests cannot control 
type I error rates and they give too low powers. 

6. Discussion 

In this study, we further focus on a comparison of the performance among four 
statistical tests including the simply naive test approach (SIM), the convention-
ally null approach of profile likelihood (PL1), the full profile likelihood approach  
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Table 2. Comparisons of the power of tests after capturing type I error at 0.05 signific-
ance level when means of sample sizes in treatment groups are equal ( T C

i in n n= = ). 

mm k n 
RR = 1 RR = 2 

SIM PL1 PL2 Q SIM PL1 PL2 Q 

0.2 4 50 1.80 14.14 15.54 3.48 2.32 13.08 15.68 5.74 

  
100 4.50 18.26 18.78 7.84 4.98 15.94 18.22 9.46 

  
500 17.66 33.14 33.88 24.64 21.18 36.32 37.38 31.06 

  
1000 32.78 48.18 48.86 40.68 39.72 54.92 56.06 50.90 

 
16 50 0.16 10.38 7.66 0.68 0.38 7.34 7.68 2.52 

  
100 1.18 11.50 10.38 4.18 2.14 9.36 10.80 8.18 

  
500 20.78 30.96 31.34 35.46 28.56 37.36 38.92 51.72 

  
1000 51.28 59.90 60.74 68.30 67.32 73.38 74.12 83.70 

 
32 50 0.02 8.52 6.58 0.22 0.04 5.32 6.42 1.64 

  
100 0.50 11.60 10.04 3.24 1.00 8.20 9.52 7.62 

  
500 27.24 40.32 40.34 50.70 39.28 48.48 50.28 70.96 

  
1000 72.04 78.52 79.16 87.56 86.30 89.34 90.22 96.74 

0.4 4 50 3.18 19.22 21.20 6.04 5.46 19.68 22.52 11.22 

  
100 10.42 27.68 29.74 15.98 13.82 30.06 33.66 22.92 

  
500 54.58 68.90 69.08 61.94 64.94 76.50 76.70 72.74 

  
1000 77.72 85.92 85.94 81.82 84.96 90.46 90.82 88.72 

 
16 50 0.70 16.06 15.44 2.94 2.10 15.30 17.50 8.90 

  
100 7.68 29.48 28.54 18.18 14.70 30.82 34.54 33.86 

  
500 86.10 89.84 90.84 92.24 94.84 96.34 96.88 98.10 

  
1000 99.02 99.32 99.44 99.56 99.84 99.96 99.92 99.96 

 
32 50 0.20 17.70 15.24 2.02 1.42 17.24 19.08 10.48 

  
100 8.20 34.50 33.76 22.70 15.72 36.70 41.66 45.10 

  
500 98.18 99.02 99.02 99.36 99.60 99.76 99.78 99.96 

  
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 4 50 7.36 28.50 31.06 12.62 11.96 31.24 34.22 21.18 

  
100 22.40 43.82 46.36 30.48 32.30 51.14 53.48 43.82 

  
500 80.78 87.62 87.80 84.28 86.58 91.86 92.08 90.00 

  
1000 92.58 95.42 95.48 93.86 95.36 97.04 97.02 96.22 

 
16 50 4.00 30.32 31.50 11.44 10.36 34.56 38.26 27.96 

  
100 32.52 57.08 60.66 51.06 51.52 68.12 72.20 74.22 

  
500 99.42 99.60 99.72 99.70 99.84 99.94 99.94 99.96 

  
1000 99.96 99.98 99.98 99.98 99.98 100.0 100.0 100.0 

 
32 50 3.62 39.78 40.16 14.12 12.26 44.48 49.34 39.50 

  
100 46.78 73.78 76.76 69.80 71.48 85.24 87.64 91.08 

  
500 99.98 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

  
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Note: Bold values indicate that the statistic tests can previously control type I error rates. 
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Table 3. At 5% significance level, a comparison of the estimated type I error rates for 
moderate to large study sizes ( 16k ≥ ) with the unequal sample sizes ( T C

i in n≠ ). 

RR k T
in  C

in  SIM PL1 PL2 Q 

2 16 50 100 0.16 6.06 5.00 1.72 

   500 0.60 6.16 5.02 5.64 

   1000 0.72 6.74 6.14 7.10 

  100 500 0.78 5.68 4.36 4.80 

   1000 0.70 5.18 4.52 6.22 

  500 1000 1.34 3.82 3.54 6.02 

2 32 50 100 0.02 4.26 2.82 0.96 

   500 0.18 4.64 3.50 4.42 

   1000 0.16 4.12 3.62 6.24 

  100 500 0.14 3.66 2.38 3.88 

   1000 0.22 3.24 2.52 4.96 

  500 1000 0.60 1.78 1.46 5.34 

Note: Bold words denoting the statistic test can control type I error. 
 

Table 4. At 5% significance level, a comparison of the actual type I error rates for small 
study size (k = 4) with the unequal sample sizes ( T C

i in n≠ ). 

k RR T
in  C

in  SIM PL1 PL2 Q 

4 1 5 10 0.02 0.46 0.74 0.40 

   50 5.70 4.48 6.82 15.02 

   100 12.92 4.88 7.82 25.12 

   500 26.04 5.26 6.14 39.40 

   1000 27.68 5.60 5.94 41.38 

  10 50 1.50 2.72 4.46 5.26 

   100 4.26 3.34 4.74 10.54 

   500 14.60 4.02 4.28 22.70 

   1000 16.18 4.16 4.38 24.70 

  50 100 2.18 14.34 14.60 4.50 

   500 4.66 16.06 16.04 8.02 

   1000 5.20 15.78 15.64 8.98 

  100 500 4.46 15.72 15.66 7.42 

   1000 5.50 17.54 17.42 9.22 

  500 1000 5.82 16.36 15.76 9.44 

4 2 5 10 0.00 2.24 1.02 0.18 

   50 0.76 1.96 3.32 6.48 

   100 2.00 2.20 3.22 12.82 

   500 9.78 2.14 2.46 25.94 

   1000 12.56 2.34 2.56 29.68 

  10 50 0.58 5.82 6.66 3.54 
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Continued 

   100 1.62 6.82 7.58 7.68 

   500 4.70 6.18 6.40 16.08 

   1000 6.54 6.10 6.04 18.30 

  50 100 2.46 12.20 13.68 5.52 

   500 2.68 11.72 11.72 8.14 

   1000 2.92 11.82 11.58 8.44 

  100 500 2.80 12.00 11.82 7.50 

   1000 3.66 12.46 12.16 9.04 

  500 1000 4.62 12.64 12.78 9.36 

4 4 5 10 0.12 4.34 1.26 3.40 

   50 0.02 2.96 3.30 1.78 

   100 0.26 1.86 2.08 3.94 

   500 1.90 1.44 1.50 11.68 

   1000 3.78 1.44 1.38 15.54 

  10 50 0.12 5.18 5.82 3.08 

   100 0.26 4.18 4.42 4.20 

   500 1.24 3.66 3.68 10.82 

   1000 1.46 3.66 3.50 13.04 

  50 100 1.92 8.86 10.92 6.80 

   500 1.14 6.22 6.26 8.36 

   1000 1.10 6.40 6.16 9.24 

  100 500 1.86 7.48 7.68 7.80 

   1000 1.84 6.92 6.46 9.44 

  500 1000 3.24 8.88 9.26 8.48 

Note: Bold words denoting the statistic test can control type I error. 
 

Table 5. Comparison of the power of tests at 0.05 significance level for moderate to large 
study sizes ( 16k ≥ ) with the unequal sample sizes ( T C

i in n≠ ) at mm = 0.2.  

RR k T
in  C

in  SIM PL1 PL2 Q 

2 16 50 100 0.66 9.64 8.06 4.92 

   500 1.88 12.50 10.90 14.74 

   1000 2.66 12.98 11.92 20.00 

  100 500 5.54 16.98 15.28 24.08 

   1000 6.50 17.86 16.88 30.72 

  500 1000 48.96 57.50 57.88 73.18 

2 32 50 100 0.06 7.38 5.90 3.44 

   500 1.56 11.32 9.88 19.84 

   1000 1.50 11.80 10.82 25.12 

  100 500 4.00 16.24 14.08 30.96 

   1000 6.38 19.26 17.70 41.68 

  500 1000 67.72 74.88 74.90 90.86 

Note: Bold words denoting the statistic test can formerly control type I error. 
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(PL2), and the conventionally weighted sum of square approach (Q). The main 
results found in the followings. 
• No tests could not capture type I error rates for small sample sizes 

( , 10T C
i in n ≤ ), regardless of study size k. This same result happened to the 

study of Mathes and Kuss [16]; they stated that estimating between-study 
heterogeneity in meta-analysis of a small number of sample sizes ( , 5T C

i in n ≤ ) 
is difficult in this situation. 

• The work of Willis and Riley [17] was also confirmed the properties of Q test 
to be a good test when there are large study sizes (50 studies or more), but for 
fewer studies the Q test has the low power. 

• We are scientist group that have attempted to propose some new/modified 
tests to bridge the gaps of limitation of the Q test. The idea of this paper 
shows how to use two proposed tests (PL1, PL2) based on substituting profile 
maximum likelihood estimates into the different variance formulas for ob-
taining the modified standard chi-square tests of heterogeneity. 

• Our profile likelihood tests (PL1 and PL2) for moderate to large study sizes 
( 16k ≥ ) in combination with moderate sample sizes ( , 50,100T C

i in n = ) can 
defeat the Q test with the higher power after capturing the same range of type 
I error limits. 

• The work of Bagheri, Ayatollahi and Jafari [18] and Viechtbauer [19] which 
also could evaluate the influence of the size of centers (k) and sample sizes 
( ,T C

i in n ) on the type I error and the power for the null homogeneity testing 
in some situations. It means that the investigators should pursue their at-
tempts to find some new/modified tests further. 

• In contrast, although two proposed tests (PL1, PL2) perform well in above 
situations, they cannot defeat the Q test when the number of studies is mod-
erate to large ( 16k ≥ ) in combination with large sample sizes ( , 500T C

i in n ≥ ). 
Additionally, in unbalanced cases, for moderate to large study sizes ( 16k ≥ ) 
and combination of moderate sample size and large sample sizes 
( 50, 500T C

i in n≥ ≥ ), the Q test performs best with the highest power, fol-
lowed by PL2 and PL1 tests. 

7. Conclusion 

In summary, the idea of replacement of profile likelihood estimates into the 
variance formulas of logarithm of relative risks works well when 16k ≥  in 
combination with ( , 50,100T C

i in n = ). 

8. Recommendation 

Two proposed tests (PL1, PL2) based on substituting profile maximum likelih-
ood estimates into the different variance formulas, perform best with the highest 
power (under formerly within the same range of type I error limits) in some sit-
uations, for examples, when the number of studies is moderate to large sizes 
( 16k ≥ ) in combination with moderate sample sizes ( , 50,100T C

i in n = ). This re-
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sult leads to the suggestion of the use of two proposed tests in such practical sit-
uations. 

In contrast, although two proposed tests (PL1, PL2) perform well with the 
high powers in above situations, they cannot defeat the Q test when numbers of 
studies are moderate to large ( 16k ≥ ) in combination with large sample sizes 
( , 500T C

i in n ≥ ) in both balanced and unbalanced cases. This result leads to the 
suggestion to use the Q test in these situations. It means that it should be further 
investigated to find the new appropriate test to fill the gaps of low power of Q 
test in such situations. 
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