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Abstract 
 
Many Optimization problems in engineering and economics involve the challenging task of pondering both 
conflicting goals and random data. In this paper, we give an up-to-date overview of how important ideas 
from optimization, probability theory and multicriteria decision analysis are interwoven to address situations 
where the presence of several objective functions and the stochastic nature of data are under one roof in a 
linear optimization context. In this way users of these models are not bound to caricature their problems by 
arbitrarily squeezing different objective functions into one and by blindly accepting fixed values in lieu of 
imprecise ones. 
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1. Introduction 
 
Many concrete real life problems may be put into a Lin-
ear Programming framework (see e.g., [1-8]). For some 
of these problems, the Decision maker has to ponder 
conflicting objective functions. Such competing goals 
cannot be arbitrarily squeezed within the narrow frame-
work of a unique objective function, without running the 
risk of invalidating all implications that are supposed to 
be drawn from the analysis. Simple examples (see e.g., 
[9-13]) are in line with the endorsed paradox [14] and the 
Arrow’s impossibility Theorem [15], where there are no 
good ways of aggregating conflicting criteria into a sin-
gle one. This has given rise to the field of Multiobjective 
Programming (MOP). For discussions on Multiobjective 
Programming problems, the reader may consult [16-21]. 

Over and above the presence of several conflicting 
goals, the above mentioned problems may involve some 
level of uncertainty about the values to be assigned to 
various parameters. In this connection the noted phi-
losopher Nietzche was quoted as saying, 

“No one is gifted with immaculate perception”.  
False certainty is bad science and it could be danger-

ous if it stunts articulation of critical choices. Interested 
readers are referred to [22-32] for problems where uncer-

tainty should be accommodated in an optimization setting. 
Uncertainty presents unique difficulties in constrained 

optimization problems, because the Decision makers are 
faced with doubtful situations, requiring an analysis of 
multiple outcomes in different states of nature. When the 
uncertainty in question is stochastic in nature, then we 
enter the field of Multiobjective Stochastic Linear Pro-
gramming (MOSLP); the subject matter of this paper. 

In such a turbulent environment, the notion of “opti-
mum optimorum” no longer applies. One has, then, to 
resort to the notion of satisficing solution, based upon 
Simon’s bounded rationality principle [33]. 

Methods for singling out a compromise solution in a 
MOSLP problem have been developed in the literature, 
leading to three main trends, namely: the hard, the soft 
and the metaheuristics. For the first trend, we refer the 
reader to [34-37]. For the second one, the reader may 
consult [38,39]. Examples of the third trend may be 
found in [40-42].  

Within each group, the original problem may be either 
reduced to a single objective stochastic program (stochas-
tic approach) or converted to a deterministic multiobjec-
tive program (multiobjective approach). A third alternative 
is to combine in an appropriate manner a technique of 
single objective Stochastic Programming with a technique 
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of Multiobjective Programming (hybrid approach). 
For the sake of space, this review focuses on the hard 

trend. An interested reader is referred to [43-47] where 
he may find details about the other two trends. 

The methodological line followed in this overview 
consists of discussing upstream, existing solution con-
cepts and placing extant results in a coherent and com-
putational framework. Some existing applications are 
then listed downstream. 

We also take a step towards comparing the approaches 
mentioned. Such a comparison may help in designing a 
Decision Support System for MOSLP. The above men-
tioned extension is outside the scope of the present paper, 
and has therefore, been left for further research. 

Despite the purely mathematical nature of many works 
in the field of MOSLP as illustrated in [48-50], research 
in this field has been suggested by a specific class of con-
crete, real-life problems. Such a class of problems includes 
reservoir operation [51], coal mining [11], water resource 
management [52] and transportation planning [14]. 

The paper is organized as follows. In the next section, 
we give a mathematical formulation of the problem at 
hand and discuss related solution concepts. Section 3 
deals with some mathematical results in connection with 
MOSLP. Section 4 is devoted to a discussion of meth-
odological aspects of MOSLP along with a comparison 
of the above mentioned approaches. In Section 5, we 
point out some existing applications. We end with a 
number of concluding remarks along with suggestions 
for further developments in this field. 
 
2. Problem Formulation and Solution  

Concepts 
 
2.1. Problem Formulation 
 
A Multiobjective Stochastic Linear Programming pro- 
blem is a problem of the type: 

    1

( )
, ,min

K

x D
c x c x


 


           (1) 

where 

    ( ) : ; 0nD x A x b x       

   1 , , Kc c   are n-dimensional random vectors 
defined on a probability space   , , ,    A   and 
 b   are respectively m × n and m × 1 random matrices 

defined on the same probability space. 
As an example of a concrete problem that may be put 

into the form of (1), we mention the automated manufac- 
turing system in a production planning situation, with 
several objective functions, where the costs and time of 
production are known only stochastically [53]. 

For other problems that may be modelled in the same 
way as (1), we may mention reconfigurable manufac- 
turing systems [40], distributed energy resources planning 
[54], water use planning [55], manufacturing planning 
[56], power systems planning [57-59] energy and reserves 
markets [60] and multi-product batch plant design [61]. 

Owing to the presence of conflicting goals and the 
randomness surrounding data, the mathematical program 
described in (1) is an ill-stated problem. Therefore, 
neither the notion of feasibility nor that of optimality is 
clearly defined for this problem. One, then, has to resort 
to the Simon’s bounded rationality principle [33] and 
seek for a satisficing solution instead of an optimal one. 

Before discussing some existing solution concepts for 
this problems along with some related mathematical 
results and methodological approaches, let us attempt to 
provide some meaning to problem (1).  
 
2.2. Transformation of the Feasible Set 
 
One generally transform  D   to a deterministic set, 
say  according to the rules used in Stochastic Pro- 
gramming (see e.g. [62-64]). 

D

Some commonly used deterministic counterparts of 
 D   are listed below:  

1)       : ;nD x E A x E b x  0      

where E  stands for the expected value. 

2)        : ;nD x P A x b x   0       

where   is a probability level pre-defined by the Deci- 
sion maker. 

3)   1 1
, ,

m

m ii
D iD 


     where for each fixed  

 = 1, ,i m   

       : ,n
i i i i iD x P A x b x   0       

here i  are probability levels a-priori fixed by the 
Decision maker and  iA  ,  ib   are respectively 
the  row of thi  A   and the  component of thi
 b  .  

4)    probability 1D x  :n ,Q x  , with iv   

where  

 
 inf ;

,  if 

;  if 

q y

Q x y







    
   

 

where  q   is a penalty cost,  W   is a recourse 
matrix and  

       : ;my W y b A x y   0        

In the next section, we discuss some existing solution 
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concepts for MOSLP problems. 
 
3. Solution Concepts for Multiobjective  

Stochastic Linear Programming Problems 
 
To avoid complications unrelated to our subject, we as- 
sume that involved random data have known distributions 
with finite expected values and variances. 
 
3.1. Expected Value and Variance Optimalities 
 
Consider the following deterministic mathematical pro- 
grams:  

  min
x D

E c x


              (2) 

  min
x D

V c x


              (3) 

with E and V denoting the expected value and the 
variance respectively. 

Definition 3.1 If *x  is an optimal solution for Pro- 
gram (2), ((3)) then *x  is called an expected value (a 
variance) optimal solution for problem (1), when D is a 
transformation of D   obtained through technique of 
stochastic optimization. 

Where  c   is an aggregation of    1 , , Kc c   
based on techniques of multiattribute utility theory [65]. 

From now on E  and V  stand respectively for the 
set of expected value and variance optimal solutions for 
problem (2). 

A shortcoming of the above defined solution concepts 
is that, the expected value and the variance do not 
exhaust the information contained in the distributions of 
involved random variables [34]. To overcome this draw- 
back, other solution concepts have been proposed. We 
discuss some of them in the next three subsections. 
 
3.2. Tammer and Minimum Risk Optimalities 

and Optimality in Probability  
 
Definition 3.2 *x  is a Tammer  -optimal solution for 
Problem (1), if there is no x D  such that  

    *: 1P c x c x      

and  

    *: <P c x c x   > 0  

when D is a transformation of  D   obtained through 
technique of stochastic optimization. Here   is a pro- 
bability level pre-defined by the Decision maker.  

For details on this solution concept, we invite the 
reader to consult [66].  

Definition 3.3 *x  is an  -minimum risk optimal 

solution for Problem (1), if *x  is an optimal solution 
for the following program:  

  max
x D

P c x 


             (4) 

when D is a transformation of  D   obtained through 
technique of stochastic optimization. Where   is an 
aspiration level a-priori fixed by the Decision maker.  

An interested reader is referred to [67] for key facts 
about the minimum risk solution concept. 

Definition 3.4 *x  is a  -optimal solution in proba- 
bility for Problem (1), if there is  such that * 
 * *,x   is optimal for the program:  

 

  

,
min

subject to

=

x D

P c



x



  

 R



D

           (5) 

when D is a transformation of    obtained through 
technique of stochastic optimization. Where   is a 
probability level pre-defined by the Decision maker.  

A reader interested to know more about this solution 
concept is referred to [68].  
 
3.3. Expected Value and Variance Efficiencies 
 
Consider the following deterministic multiobjective pro- 
grams:  

      1
min

K

x D
E c x c x


, , E          (6) 

      1
min

K

x D
V c x c x


, ,V          (7) 

        
   

1 1, , , , ,min

         

x D

K

E c x E c x c x

c x

 

 


 K 
 (8) 

where   stands for the standard deviation. 
Definition 3.5 *x  is called an expected value, a 

variance or an expected value/standard deviation effi- 
cient solution for problem (1), If *x  is efficient for 
Programs (6), (7) or (8) respectively, when  is a 
transformation of 

D
 D   obtained through technique of 

stochastic optimization. 
The sets of expected value, variance and expected 

value/standard deviation efficient solutions for Program 
(1) are denoted by E , V  and E   respectively. 

The concept of expected value weak efficiency, 
variance weak efficiency and expected value/standard 
deviation weak efficiency and those of expected value 
proper efficiency, variance proper efficiency and ex- 
pected value/standard deviation proper efficiency are 
obtained by replacing “efficiency” by “weak efficiency” 
and by “proper efficiency” respectively. 

Copyright © 2011 SciRes.                                                                                AJOR 



A. S. ADEYEFA  ET  AL. 206 

In the sequel w
E ( ), p

E p
E ( p

V ) and w
E  ( p

E  ) 
denote the sets of expected value weakly (properly) 
efficient solutions, variance weakly (properly) efficient 
solutions and expected value/standard deviation weakly 
(properly) efficient solutions for program (1) respectively. 
 
3.4. Minimum Risk Efficiency and Efficiency in 

Probabilities  
 
Minimum risk efficiency is defined as follows.  

Definition 3.6 *x  is an  1, , K 
*

-minimum risk 
efficient solution for problem (1), if x  is efficient for 
the multiobjective program:  

     1
1 , ,max

K
K

x D
P c x P c x   


     (9) 

when D is a transformation of  D   obtained through 
technique of stochastic optimization. Here  1, , K   
are aspiration levels a-priori fixed by the Decision maker.  

Characterizations of minimum risk efficiency with 
aspiration levels, may be found elsewhere [69]. 

As in the case of expected value efficiency, the 
concepts of  1, , K 


-minimum risk weak efficiency 

and 1 , , K  -minimum risk proper efficiency may be 
obtained by respectively replacing “efficiency” by “weak 
efficiency” or “proper efficiency” in the above definition. 

In what follows  1, ,MR K   ,  1, ,w
MR K    

and 1 , ,p MR K     denote the sets of  1, , K 
, ,

- 
minimum risk efficient solutions,  1 K 

 1, ,
-mini- 

mum risk weakly efficient solutions and K  - 
minimum risk properly efficient solutions for Program (1) 
respectively. 

For efficiency with given probabilities we give the 
following definition.  

Definition 3.7 *x  is a  1, , K  -efficient solution 
in probability for problem (1), if there is 

1* *= , , *
K    such that  * *,x   is efficient for the 

mathematical program:  

 
 

  

1
,

, ,min

subject to

, = 1, ,

K
Kx D

k
k kP c x k K


 

  

 

 

R





     (10) 

when D is a transformation of  D   obtained through 
technique of stochastic optimization. Where 1, , K   
are probability levels that are a-priori fixed by the 
Decision maker.  

An interested reader may consult [14] for a thorough 
discussion on this efficiency concept. 

Concepts of  1, , K 
, ,

-weak efficiency in pro- 
bability and  1 K  -proper efficiency in pro- 
bability may also be obtained in a way similar to the one 
in which minimum risk weak and proper efficiencies 

were obtained. 
From now on  1, ,KT K   ,  1, ,w

KT K    and 
 1, ,P

KT K    denote the sets of  1, , K 
 1, ,

-effi- 
cient solutions in probability, K 

1, ,
-weakly 

efficient solutions in probability and  K  - 
properly efficient solutions in probability for Program (1) 
respectively. 

In the next section we present some theoretical results 
related to problem (1). 
 
4. Related Mathematical Results 
 
Most stochastic constraint transformations yield noncon- 
vexity on resulting deterministic feasible sets. This pre- 
cludes the application of existing powerful convex opti- 
mization algorithms (see e.g. [70,71]). It is therefore, 
relevant to know when a deterministic counterpart of 
 D   is convex. The following four propositions; the 

proofs of which may be found in [72], provide some 
insights to this issue. 

Proposition 4.1  0D ,  1D , ,   0 ; = 1, ,iD i  m
 1 ; 1, ,iD i   m ivD and  are convex sets.  

Proposition 4.2 Consider Problem (1) and suppose 
that  A   is a fixed matrix with maximal rank. Then  

 ( ) : ( ) ; 1, ,n
i i i i iD x F A x i      m  

are convex for every probability distribution iF  of  
 ib  .  
Proposition 4.3 Assume that the probability space 

under consideration is discrete, that is,  1, , L     
and   0l lP p   , 1, ,l L  . Let  

 l L * max 1 :1l p l   then the set  l lD   is 
convex for any l

*>l  D and    is convex for any 
*> ,  * where   and *

l  are real numbers. 
Proposition 4.4 Suppose that the probability space 

under consideration is  1, , L     and suppose 
that  = >l lp P  0  if and only if  1, ,l N r  

N
. 

Assume also that only one element  exists such 
that  

ol 

minl lo l N
p p


 , 

then the sets  D   and  lD   are convex for every 

1
> 1 lp   where 

 1 \{ }
l l

l N lo
minp p . 

The next two results established in [73,74], bridge the 
gap between solution concepts based on the first two 
moments (Proposition 4.5) and establish a connection 
between a minimum risk efficient solution with aspiration 
levels and an efficient solution with given probabilities 
(Proposition 4.6). 

Proposition 4.5  
1) E V E      
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2) w
E V E      

3) w w w
E V E     

 AsProposition 4.6 sume that the probability distribu- 
tions of the random vectors    1 , , Kc c   are con- 
tinuous and strictly increasing
 1, ,

. Then for any  
K

K    ,  *
1, ,MR Kx      if a  only if nd

 *
1, ,KT Kx     , where

k

  

 k kP c  x    ;  1, ,k K   

Moreover, we have: 

1

Proposition 4.7  

 1, 
 


 11

, ,, ,

, , ,
K

KK

MR K KT
BR   

K     
 




   

with  

    1, , : 0,1 ; 1, ,K kB       k K

Well-known characterizations of proper efficiency 
have been explored to relate optimality and efficiency of 
program (1). This is the subject matter of the next two 
propositions. 

Proposition 4.8 If *x  is an expected value optimal 
solution for problem (2  then *), x  is an expected value 
properly efficient solution for program (6). That is,  

P
E E   

Proposition 4.9 If is a convex set and 
ions, then 

D  
,  kc x ; = 1,k K  are convex functE

*x  is an 
the

expected v  palue roperly efficient solution for 
 multiobjective program (6), if and only if, *x  is an 

expected value optimal solution for the problem ). That 
is,  

(2

=P
E E   

An interested reader is referred to [14] for more details 
on

ogical Approaches for Solving 

 
h ed in the previous sections have served 

tochastic Approach 

ethod described in [38] for 

olving problem (1), using the stochastic approach. For 

 this matter. 
 
. Methodol5

Multiobjective Stochastic Linear  
Programs 

e ideas discussT
as guidelines in implementing efficient techniques for 
solving Multiobjective Stochastic Linear Programming 
problems. 

In what follows we outline a method within each of 
the three existing approaches namely, the stochastic 
approach, the multiobjective approach and the hybrid 
one. 
 

.1. S5
 
In this section we present a m

s
this method the following assumptions should be met: 

 iA  , = 1, ,i m ;  b   and  kc  , = 1, ,k K  
are normally distributed random vectors. k ,  

,  

interval 

= 1,k K  are strictly positive real numbers in the  

 0,1  such that  = 1
K  . 

=1 kk

 the follo  notations are used: Moreove wing
1) 

r,
   =h x A x , b i i i   1,, = ,i m . 

2)   denotes the cumulative distribution function of 
the standard normal random variable. 

ion of
3) 1  and 2q  are weights associated with the ex- 

pected value and the standard deviat
q

  c   res- 
pectiv . 

4) 
ely

 1= , , m    where i , = 1, ,i m  pro- 
bability le

 
on m

are
bed by the Decisi aker for 

constraints satisfaction
vels prescri

.  
A stepwise description of the method is as follows: 
Step 1. Read k , =k 1, , ; K  kc  , = 1, ,k K ; 
 , x , 1, ,i mih   ; i , = 1, ,i m  
Step 2. Find  

K

   
=1

= k
k

k

c c    

 D   by  Step 3. Replace 

  
   1         ( ) , 0, 1, , ; 0

v n
i

i i

h

h x i m x



  

: ,D x R E x 

   
 



Step 4. Solve the mathematical program:  

      1 2min
vx D

q E c q c  


       (11) 

Let *x  
Step 5. Stop. 

be a solution of (11). 
 

an  transforms the original 
pr ngle objective problem, that has been 
pu

As c be seen, this algorithm
oblem into a si
t in the deterministic form (11), using the expected 

value model approach [63]. 
The solution *x  obtained is an expected value/stan- 

dard deviation efficient solution for problem (1) as de- 
fin

olving problem (1) include, decomposition 
m

ach 

n the multiobjective 
proach. For this method, we need

ed in §3.1. 
Other techniques closely related to the stochastic 

approach for s
ethod [75-77], chance-constrained method [4,78], si- 

mulation based techniques [79-81], two stage method [61] 
and multistage method [82]. 
 
5.2. Multiobjective Appro
 
Here we outline a method withi
ap  k , = 1, ,k K ;  

such that > 0k , 
1

1
K

kk



  as in §5.1. 
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: 
Read 

The steps of the method are as follow
Step 1. k , = 1, ,k  K ;  kc  , 
 A

= 1, ,k K ; 
 ;  b  . 

Step 2. Replace  D   by  

      : 0D x E A x E b x   nR   ; 0  (12) 

Step 3. Find:  

     1 , , KE c E c   

Step 4. Solve the mathematical program: 

       (13) 

Let 

  min
K

kE c x  
 

=1
k

x D k
  

   

*x  
Step 5. Stop. 

be a solution of (13) 
 

is m tackle randomness, while 
St objective functions. The 
so

In th ethod, Steps 2 and 3 
ep 4 als with multiplicity of de
lution *x  obtained is an expected value efficient solu- 

tion for MOSLP problem (1) as defined in §3.3.  
For a more thorough discussion of other methods for 

solving MOSLP problem (1) based on the multiobjective 
approach, the reader is referred to [83-89]. 
 
5.3. Hybrid Approach 
 
In this section, we describe
for solving MOSLP proble

 a hybrid method due to [90], 
m (1). This method is based 

on the assumptions given in § 5.1. The following nota- 
tions are used in the sequel. 

1) s
 , = 1, ,s S ; t

 , = 1, ,t T ; u
 , u

 ,  
= 1, ,u U  denote positive, and two sided 

deviations from targets 
 negative 

sg , = 1, ,s S ; tg ,  
= 1, u,t T ; g , = 1, ,u U  respectively. S , T  and 

U  are respectively the total number of positive, negative 
and two-sided deviations m targets  fro sg , tg  an ud g . 

2) s , = 1, ,s S ; t , = 1, ,t T ; u ,  
= 1, ,u U  are probability levels a-priori fixed by the 

Decision maker.  
Her he steps of the method. 
Step 1. Read S , T , U , 

e are t

sg , s , = 1, ,s S ; tg , 

t , = 1, ,t T ; ug , u , = 1, ,u U ;  kc  ,  
= 1, , K ; k  ,h x , = 1, ,i m  i

Step 2. Put  D    the following form


in :  

 

  
   

  

  

  

1

1

1

:

           ) 0sc x g      ( ,

            1, , ;

           1 ( ) 0,

            1, , ;

1
           0

2

vi s

s s s

t

t
t t t

u

ku
u

D x E x

s S E c x

c x g

t T E c x

c x g







   




 



 



 





    



    
 







 

n c

  
    



1

  1, , ; ,

 , 0

 1, , ; 0, 0, 0

i

i i

s t

u U E h x

h x

i m x



  

 



 



 

   





 

Step 3. Solve the mathematical program:  

1

T

 
1 1

min
vi

U S

u u s t
x D u s t

     

  

    
 
    



     (14) 

Let *x  
Step 4. Stop. 

be a solution of (14). 
 

It is clear that this method combines the goal program- 
ming technique for solving a multiobjective program 
with the chance-constrained method for so ing a sto- 
chastic optimization problem. 

Other methods pertaining to the hybrid approach may 
be
 
5.4. Comparison of Different Approach
 
Th in n while comparing the 
ab ed above are as follow:  

nt than 
requires 

lv

 found in [91-93]. 

es 

e ma  lessons that can be draw
 pproaches outlinove described a

1) The stochastic approach takes into account depen- 
dencies between objective functions, whereas the multi- 
objective approach does not (see for example [94]). This 
makes the stochastic approach closer to reality. Therefore, 
the stochastic approach is more effective for finding 
solutions to a MOSLP problem than the multiobjective 
pproach. a

2) The multiobjective approach is more efficie
he stochastic approach, in the sense that it t

fewer computations. These computations are easier to 
handle than those required by the stochastic approach. 
(see e.g., [49,58,95]). 

3) The hybrid approach combines the strengths of the 
stochastic and the multiobjective approaches. Conse- 
quently, the hybrid approach could perform better than 
either of the other two approaches for a given problem. 
Interested readers may consult [96] for a substantiation 
of this claim. 

4) Methods pertaining to the hybrid approach create 
more flexibility in allowing the Decision maker to 
specify his preferences (see e.g., [91]).  

Nevertheless, it is the nature and the structure of the 
problem that determines which approach to use.  

In what follows, we briefly discuss some applications 
of Multiobjective Stochastic Linear Programming to 
concrete real-life problems. 
 
6. Applications 
 
6.1. Applications of the Stochastic Approach 
 
Production planning problems, lend themselves better to 
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 matter of fact, 
th

ns and 
la

wer system security problem 
preventive maintenance scheduling 
ing [99], hydro-thermal electricity 

 res- 
ant 

esign [61].  

 problems [86], 
ar

rtation network design problem [85] and 
. 

6.3. s within the Hybrid Approach 

s, it is 
be

ch, to 
e 

thods described in this field are valuable 
re

 caricature the underlying problem by 
itional (deterministic) 

Paraphrasing Howard [110], the scientific approach to 

es, along with the meaning of 
in

 of MOSLP. To cater best for a 
br

logical aspects and applications) 
ha

ration Research techniques ignore managerial 
ne

been 
us

nagement needs have evolved and are more 
co

uided 
an

cy 
ob

velopments in this field we 
m

to

ltiobjective Fuzzy Linear Pro- 
gr

der uncertainty. 

the use of the stochastic approach. As a
e structure of these problems dictates that one starts 

dealing with the multiplicity of objective functio
ter tackles the randomness in data [97]. 
Some other applications of the stochastic approach to 

MOSLP problems include po
[98], power plant 
[75], capacity plann
generation [100], deployment of roadway incident
ponse vehicles [101] and multi-product batch pl
d
 
6.2. Applications along the Multiobjective 

Approach 
 
Water resource planning and management

e most appropriately dealt with using the multiobjective 
approach. Random parameters are first transformed into 
appropriate fixed data, before the conflicting goals are 
sorted out. The literature is rich in models using the 
multiobjective approach. We list a few of them: 

Water use planning [55], workforce scheduling model 
[102], transpo
nuclear generation of electricity problem [57,103]
 

 Application
 
To significantly bridge the dangerous gap between the 
problems of designing reliable portfolio assets and the 
mathematical programming models used to solve them, 
the Decision maker should be able to consider different 
objective functions and incorporate imprecision into the 
model. Owing to the complexity of such problem

st to couple different techniques in an appropriate way 
to solve them. 

There are several good papers using this approa
which the reader may refer. The papers [96,104-109] ar
some of them. 
 
7. Concluding Remarks 
 
Multiobjective Stochastic Linear Programming is a 
worthwhile topic. It provides a glimpse into what it 
means to jostle with the complicated issue (which is 
nevertheless useful for applications) of combining ran- 
domness and multiplicity of objectives into an optimiza- 
tion setting. Me

sources for those facing optimization problems in- 
volving conflicting goals and random parameters and 
wishing not to
blindly replacing it with a trad
optimization problem. 

decision making and problem solving has demonstrated 
that, it can provide efficient tools to those few who have 
the resources and the will to use it. The new challenge is 
to provide this help at an affordable price to all who 
could benefit from it.  

There is a rich array of methods that can be used to 
deal with both Multiobjective Programming and Stochas- 
tic Programming problems. This paper has somewhat 
demonstrated that, the Howards view applies to Multi- 
objective Stochastic Programing. Nevertheless, theoretical 
and computational issu

troduced solution concepts, play a crucial role in such a 
turbulent environment. 

In this paper we have presented the main principle of 
MOSLP. We have also indicated that there are concrete 
realizations in this field. We have also discussed oppor- 
tunities and limitations

oad readership, the paper has the following distinctive 
features: 

1) It is organized towards the technique-oriented for- 
mat in contrast to the theoretically speculative one. 

2) Practical aims take precedence over mathematical 
niceties. 

3) The basic ideas (solution concepts, related mathe- 
matical results, methodo

ve been presented in an understandable manner. 
4) The paper is filled with references for those whose 

appetite have been sufficiently wetted.  
Kirby [111] has argued that the main objections 

against Operation Research techniques are as follows: 
1) Ope
eds (perversion criticism). 
2) Operation Research methods have already 
ed wherever they were needed (obsolescence criticism). 
3) Ma
mplex than those which Operation Research caters for 

(inadequacy criticism). 
4) Operation Research’s practice has been misg
d has undermined the confidence managers had in it 

(counter-performance criticism).  
This paper makes some contributions towards reme- 

dying the above mentioned perversion and inadequa
jections. 
Among lines for further de
ay mention: 
1) Extension of the theory and methods outlined here 
 the nonlinear cases. 
2) Comparison of Multiobjective Stochastic Linear 

Programming with Mu
amming [28,50,112]. 
3) Design of a user-friendly Decision Support System 

for Multiobjective Programming un
4) Incorporation of both randomness and fuzziness 
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pment of Intelligent Hybrid Algorithms for 
ta

sful developments in the above
m

en the language used in Multiob- 
je

8.

[1]
er, New

raw Hill, 

into a multiobjective optimization context [113]. 
5) Develo

ckling these complex optimization problems.  
Let us hope that succes  
entioned directions will proceed in the near future, thus 

reducing the gaps betwe
ctive Stochastic Programming techniques and the lan- 

guage used by potential users of these techniques. 
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