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Abstract 
We consider a parametrized family of compact G2-calibrated solvmanifolds, 
and construct associative (so volume-minimizing submanifolds) 3-tori with 
respect to the closed G2-structure. We also study the Laplacian flow of this 
closed G2 form on the solvable Lie group underlying to each of these solvma-
nifolds, and show long time existence of the solution. 
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1. Introduction 

A G2-structure on a seven-dimensional manifold M is defined by a positive 
3-form ϕ  (the G2 form) on M, which induces a Riemannian metric gϕ  and a 
volume form dVϕ  on M such that  

( ) 1, ,
6 X Yg X Y dVϕ ϕ ι ϕ ι ϕ ϕ= ∧ ∧                 (1) 

for any vector fields X, Y on M. If the 3-form ϕ  is covariantly constant with 
respect to the Levi-Civita connection of the metric gϕ  or, equivalently, the 
3-form ϕ  is closed and coclosed [1], then the holonomy group of gϕ  is a 
subgroup of the exceptional Lie group G2, and the metric gϕ  is Ricci-flat. 
When this happens, the G2-structure is said to be torsion-free [2]. The first 
compact examples of Riemannian manifolds with holonomy G2 were 
constructed first by Joyce [3], and then by Kovalev [4]. Recently, other examples 
of compact manifolds with holonomy G2 were obtained in [5] [6]. 

There are many different G2-structures attending to the behavior of the 
exterior derivative of the G2 form [1] [7]. In the following, we will focus our 
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attention on G2-structures where the 3-form ϕ  is closed. In this case, the 
G2-structure is said to be closed (or calibrated). The first example of a compact 
G2-calibrated manifold, which does not admit any torsion-free G2-structure, was 
obtained in [8]. This example is a compact nilmanifold, that is a compact 
quotient of a simply connected nilpotent Lie group by a lattice, endowed with an 
invariant calibrated G2-structure. In [9], Conti and the first author classified the 
7-dimensional compact nilmanifolds admitting a left invariant closed G2-structure. 
More examples were given in [10] [11] [12] [13]. 

Calibrated geometry was introduced by Harvey and Lawson in [14] and it 
concerns to a special type of minimal submanifolds of a Riemannian manifold, 
which are defined by a closed form (the calibration) on the manifold. Such 
submanifoldds are called calibrated submanifolds (see Section 5 for details). 
Every compact calibrated submanifold is volume-minimizing in its homology 
class ([15] Proposition 3.7.2). 

In addition to compact Kähler manifolds and compact 7-manifolds with a 
torsion-free G2-structure, 7-manifolds with a closed G2-structure are also 
calibrated manifolds. In fact, if M is a 7-manifold with a closed G2-structure ϕ , 
then ϕ  is a calibration [14]. The 3-dimensional orientable submanifolds 
Y M⊂  calibrated by the G2 form ϕ , that is, those 3-dimensional submanifolds 
Y M⊂  such that ϕ  restricted to Y is a volume form for Y, are called 
associative 3-folds of ( ),M ϕ . 

In this paper, we consider a parametrized family of 7-dimensional compact 
solvmanifolds ( )7M k  with an invariant closed G2-structure kϕ , which is not 
coclosed, where k is a real number such that k ke e−+  is an integer number 
different from 2. We show that ( )7M k  is formal (Proposition 4.1) and its first 
Betti number ( )( )7

1 3b M k = . Moreover, we construct associative calibrated (so 
volume-minimizing) 3-tori in ( )7M k  with respect to the closed G2 form kϕ  
(Proposition 5.3). 

By [16] [17], a closed G2-structure on a compact manifold cannot induce an 
Einstein metric, unless the induced metric has holonomy contained in G2. It is 
still an open problem to see if the same property holds on noncompact 
manifolds. For the homogeneous case, a negative answer has been recently given 
in [18]. Indeed, in [18] it is proved that if a solvable Lie algebra has a closed 
G2-structure then the induced inner product is Einstein if and only if it is flat. 

Natural generalizations of Einstein metrics are given by Ricci solitons, which 
have been introduced by Hamilton in [19]. All known examples of nontrivial 
homogeneous Ricci solitons are solsolitons. They are right invariant (or left 
invariant) metrics on simply connected solvable Lie groups, whose Ricci 
curvature tensor satisfies the condition  

( ) ,Ric g I Dλ= +  

for some λ ∈  and some derivation D of the corresponding Lie algebra, where 
I is the identity map. 

A natural question is thus to see if a closed G2-structure on a noncompact 
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manifold induces a (non-Einstein) Ricci soliton metric. For the metric 
determined by the invariant closed G2 form kϕ  on ( )7M k  mentioned before, 
we show that if ( )H k  is the simply connected solvable (non-nilpotent) Lie 
group underlying to ( )7M k , then kϕ  induces a solsoliton on ( )H k  (see 
Proposition 4.2). 

The other motivation of this paper comes from the Laplacian flow on 
7-manifolds admitting closed G2-structures. Let M be a 7-dimensional manifold 
with a closed G2-structure ϕ . The Laplacian flow on M starting from ϕ  is 
given by  

( ) ( )

( )
( )

,

0,

0 ,

tt t
t

d t

ϕ ϕ

ϕ

ϕ ϕ

∂ = ∆∂
 =

 =

 

where ( )tϕ  is a closed G2 form on M and * *
t d d d d∆ = +  is the Hodge 

Laplacian operator associated with the metric ( )tgϕ  induced by the 3-form 
( )tϕ . This geometric flow was introduced by Bryant in [16] as a tool to find 

torsion-free G2-structures on compact manifolds. Short-time existence and 
uniqueness of the solution, in the case of compact manifolds, were proved in 
[20]. Properties of this flow were proved in [21] [22] [23]. 

The first noncompact examples with long-time existence of the solution were 
obtained on seven-dimensional nilpotent Lie groups in [24], but in those 
examples the Riemannian curvature tends to 0 as t goes to infinity. Further 
solutions on solvable Lie groups were described in [25] [26] [27] [28]. Moreover, 
a cohomogeneity one solution converging to a torsion-free G2-structure on the 
7-torus was worked out in [29]. 

In Section 6, we consider the solvable (non-nilpotent) Lie group ( )H k  
underlying to the compact solvmanifold ( )7M k , and we show that the 
Laplacian flow of kϕ  on ( )H k  exists for all time. In fact, in Theorem 6.2, we 
explicitly determine the solution ( )k tϕ  for the flow of kϕ  on ( )H k , and we 
prove that it is defined on a time interval of the form ( ),T ∞ , where 0T <  is a 
real number. (This solution was previously given in [25] from a family of 
symplectic half-flat structures on a 6-dimensional ideal of the Lie algebra ( )kh  
of ( )H k .) We also show that the Ricci endomorphism ( )( )kRic g t  of the 
underlying metric ( )kg t  of ( )k tϕ  is independent of the time t, and so the 
solution ( )k tϕ  does not converge to a torsion-free G2-structure as t goes to 
infinity. 

2. Closed G2-Structures 

In this section we collect some basic facts and definitions concerning G2 forms 
on smooth manifolds (see [1] [2] [7] [14] [15] [16] [30] [31] [32] [33] for 
details). 

Let us consider the space   of the Cayley numbers, which is a 
non-associative algebra over   of dimension 8. Thus, we can identify 7  
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with the subspace of   consisting of pure imaginary Cayley numbers. Then, 
the product on   defines on 7  the 3-form given by  

127 347 567 135 236 146 245e e e e e e e+ + + − − −                (2) 

(see [1] [32] [33] [34] for details), where { }1 7, ,e e  is the standard basis of 

( )*7 . Here, 127e  stands for 1 2 7e e e∧ ∧ , and so on. The group G2 is the 
stabilizer of (2) under the standard action of ( )GL 7,  on ( )*3 7Λ  . G2 is one 
of the exceptional Lie groups, and it is a compact, connected, simply connected 
simple Lie subgroup of ( )SO 7  of dimension 14. 

A G2- structure on a 7-dimensional manifold M is a reduction of the structure 
group of its frame bundle from ( )GL 7,  to the exceptional Lie group G2, 
which can actually be viewed naturally as a subgroup of ( )SO 7 . Thus, a 
G2-structure determines a Riemannian metric and an orientation on M. In fact, 
one can prove that the existence of a G2-structure is equivalent to the existence 
of a global differential 3-form ϕ  (the G2 form) on M, which can be locally 
written as (2) with respect to some (local) basis { }1 7, ,e e  of the (local) 
1-forms on M. Such a 3-form ϕ  was introduced by Bonan in [35], and it 
induces a Riemannian metric gϕ  and a volume form dVϕ  on M satisfying (1). 
We say that the manifold M has a closed (or calibrated) G2-structure if there is a 
G2-structure ϕ  on M such that ϕ  is closed, that is 0dϕ = , and so ϕ  
defines a calibration [14]. 

Now, let G be a 7-dimensional simply connected nilpotent Lie group with Lie 
algebra g . Then, a G2-structure on G is left invariant if and only if the 
corresponding 3-form ϕ  is left invariant. Thus, a left invariant G2-structure on 
G corresponds to an element ϕ  of ( )3 *Λ g  that can be written as (2), that is,  

127 347 567 135 146 236 245 ,e e e e e e eϕ = + + + − − −              (3) 

with respect to some orthonormal coframe { }1 7, ,e e  of the dual space ∗g . 
We say that a G2-structure on g  is calibrated if ϕ  is closed, i.e.  

0,dϕ =  

where d denotes the Chevalley-Eilenberg differential on ∗g . If Γ  is a discrete 
subgroup of G, a G2-structure on g  induces a G2-structure on the quotient 

\ GΓ . In particular, if g  is solvable and Γ  is a discrete subgroup of G such 
that the quotient \ GΓ  is compact, then a G2-structure on g  determines a 
G2-structure on the compact manifold \ GΓ , which is called a compact 
solvmanifold; and if g  has a calibrated G2-structure, the G2-structure on \ GΓ  
is also calibrated. 

3. Formal Manifolds 

First, we need some definitions and results about minimal models. Let ( ),A d  
be a differential algebra, that is, A is a graded commutative algebra over the real 
numbers, with a differential d which is a derivation, that is,  
( ) ( ) ( ) ( ) ( )deg1 ad a b da b a db⋅ = ⋅ + − ⋅ , where ( )deg a  is the degree of a. 
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A differential algebra ( ),A d  is said to be minimal if it satisfies the following 
two conditions:  

1) A is free as an algebra, that is, A is the free algebra V over a graded vector 
space iV V= ⊕ , 

2) there exists a collection of generators { },a Iτ τ ∈ , for some well-ordered 
index set I, such that ( ) ( )deg dega aµ τ≤  if µ τ<  and each daτ  is expressed 
in terms of preceding aµ  ( µ τ< ). This implies that daτ  does not have a 
linear part, that is, it lives in 0 0V V V> >Λ ⋅Λ ⊂ .  

Morphisms between differential algebras are required to be degree-preserving 
algebra maps which commute with the differentials. Given a differential algebra 
( ),A d , we denote by ( )*H A  its cohomology. We say that A is connected if 

( )0H A =  , and A is one-connected if, in addition, ( )1 0H A = . 
We will say that ( ), d  is a minimal model of the differential algebra 

( ),A d  if ( ), d  is minimal and there exists a morphism of differential 
graded algebras ( ) ( ): , ,d A dρ →  inducing an isomorphism  

( ) ( )* * *: H H Aρ →  on cohomology. Halperin [36] proved that any 
connected differential algebra ( ),A d  has a minimal model unique up to 
isomorphism. 

A minimal model ( ), d  is said to be formal if there is a morphism of 
differential algebras ( ) ( )( )*: , , 0d H dΨ → =   that induces the identity 
on cohomology. The formality of a minimal model can be distinguished as 
follows. 

Theorem 3.1 [37] A minimal model ( ), d  is formal if and only if 
V= Λ  and the space V decomposes as a direct sum V C N= ⊕  with 

( ) 0d C = , d is injective on N and such that every closed element in the ideal 
( )I N  generated by N in VΛ  is exact.  
A minimal model of a connected differentiable manifold M is a minimal 

model ( ),V dΛ  for the de Rham complex ( )* ,M dΩ  of differential forms on 
M. If M is a simply connected manifold, the dual of the real homotopy vector 
space ( )i Mπ ⊗  is isomorphic to iV  for any i. (For details see, for example, 
[37] [38].) 

Definition 3.2 We will say that a differentiable manifold M is formal if its 
minimal model is formal or, equivalently, the differential algebras ( )* ,M dΩ  
and ( )( )* , 0H M d =  have the same minimal model.  

Many examples of formal manifolds are known: spheres, projective spaces, 
compact Lie groups, symmetric spaces, flag manifolds, and all compact Kähler 
manifolds [37]. 

We will also use the following property  
Lemma 3.3 Let 1M  and 2M  be differentiable manifolds. Then, the product 

manifold 1 2M M M= ×  is formal if and only if 1M  and 2M  are formal.  
In [39], the condition of formal manifold is weaken to s-formal manifold as 

follows.  
Definition 3.4 Let ( ), d  be a minimal model of a differentiable manifold 

M. We say that ( ), d  is s-formal, or M is an s-formal manifold ( )0s ≥  if 
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V= Λ  such that for each i s≤ , the space iV  of generators of degree i 
decomposes as a direct sum i i iV C N= ⊕ , where the spaces iC  and iN  
satisfy the three following conditions:  

1) ( ) 0id C = ,  
2) the differential map : id N V→  is injective,  

3) any closed element in the ideal ( )i
s s i s

I I N
≤

= ⊕ , generated by i

i s
N

≤
⊕  in 

( )i

i s
V

≤
Λ ⊕ , is exact in VΛ .  

The relation between the formality and the s-formality for a manifold is given 
in the following theorem.  

Theorem 3.5 Let M be a connected and orientable compact differentiable 
manifold of dimension 2n or ( )2 1n − . Then M is formal if and only if it is 
( )1n − -formal.  

4. The Compact Solvmanifolds M7(k) 

Let ( )G k  be the simply connected and solvable Lie group of dimension 5 
consisting of matrices of the form  

5

5

5

5

1

2

3

4

5

0 0 0 0
0 0 0 0
0 0 0 0 ,
0 0 0 0
0 0 0 0 1
0 0 0 0 0 1

kx

kx

kx

kx

e x
e x

e xa
e x

x

−

−

 
 
 
 

=  
 
 
  
 

                 (4) 

where ix ∈ , for 1 5i≤ ≤ , and k is a real number such that k ke e−+  is an 
integer number different from 2. Then a global system of coordinates 
{ },1 5ix i≤ ≤  for ( )G k  is defined by ( )i ix a x= , and a standard calculation 
shows that a basis for the right invariant 1-forms on ( )G k  consists of  

1 2
1 1 5 2 2 5

3 4
3 3 5 4 4 5

5
5

, ,

, ,

.

e dx kx dx e dx kx dx

e dx kx dx e dx kx dx

e dx

= − = +

= − = +

=

                 (5) 

We notice that the Lie group ( )G k  may be described as a semidirect 
product ( ) 4

k
G k ρ=   , where   acts on 4  via the linear transformation 

( )k tρ  of 4  given by the matrix  

( )

0 0 0
0 0 0

.
0 0 0
0 0 0

kt

kt

k kt

kt

e
e

t
e

e

ρ
−

−

 
 
 =  
  
 

 

Thus the operation on the group ( )G k  is given by  

( )5 5 5 5
1 1 2 2 3 3 4 4 5 5, , , , ,kx kx kx kxx a e x a e x a e x a e x a− −⋅ = + + + + +x a  

where ( )1 5, ,a a=a   and similarly for x . Therefore ( ) 4
k

G k ρ=   , where 
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  is a connected abelian subgroup, and 4  is the nilpotent commutator 
subgroup. 

Now we show that there exists a discrete subgroup ( )kΓ  of ( )G k  such that 
the quotient space ( ) ( )G k kΓ  is compact. To construct ( )kΓ  it suffices to 
find some real number 0t  such that the matrix defining ( )0k tρ  is conjugate 
to an element A of the special linear group ( )SL 4,  with distinct real 
eigenvalues λ  and 1λ− . Indeed, we could then find a lattice 0Γ  in 4  
which is invariant under ( )0k tρ , and take ( ) ( )0 0k

k t ρΓ = Γ  . To this end, we 
choose the matrix ( )SL 4,A∈   given by  

2 1 0 0
1 1 0 0

,
0 0 2 1
0 0 1 1

A

 
 
 =
 
 
 

                       (6) 

with double eigenvalues 3 5
2
+  and 3 5

2
− . Taking 0

1 3 5log
2

t
k

 +
=   

 
, we 

have that the matrices ( )0k tρ  and A are conjugate. In fact, put  

( )
( )

( )
( )

11 5 1 0 0
2
11 5 1 0 0
2 .

10 0 1 5 1
2
10 0 1 5 1
2

P

 − 
 
 − + 

=  
 −
 
 
 − +
 

              (7) 

Then a direct calculation shows that ( )0kPA t Pρ= . So, if ( )1 2 3 4, , , tm m m m  
is the transpose of the vector ( )1 2 3 4, , ,m m m m , where 1 2 3 4, , ,m m m m ∈ , the 
lattice 0Γ  in 4  defined by  

( )0 1 2 3 4, , , ,tP m m m mΓ =                    (8) 

is invariant under the subgroup  . Thus ( ) ( )0 0k
k t ρΓ = Γ   is a cocompact 

subgroup of ( )G k . So, the quotient space  

( ) ( ) ( )S k G k k= Γ                       (9) 

is a 5-dimensional compact solvable manifold. 
Alternatively, ( )S k  may be viewed as the total space of a T4-bundle over the circle 

1S . In fact, let 4 4
0T = Γ  be the 4-dimensional torus and ( )4: Diff Tν →  

the representation defined as follows: ( )mν  is the transformation of T4 covered 
by the linear transformation of 4  given by the matrix  

( )

0

0

0

0

0

0 0 0
0 0 0 .
0 0 0
0 0 0

kmt

kmt

k kmt

kmt

e
emt

e
e

ρ
−

−

 
 
 =  
  
 

 

So   acts on 4T ×  by  
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( )( ) ( ) ( )( )1 2 3 4 5 0 1 2 3 4 5, , , , , , , , ,t
kx x x x x mt x x x x x mρ ⋅ +  

and S is the quotient ( )4T ×  . The projection π  is given by  

( ) [ ]1 2 3 4 5 5, , , , .x x x x x xπ   =   

Next, we consider the 7-dimensional compact manifold  

( ) ( )7 2 ,M k S k T= ×                        (10) 

where T2 is the 2-torus 2 2 2T =   . 
To compute the real cohomology of ( )7M k , we notice that ( )S k  is 

completely solvable, that is the map ( ) ( ):Xad k k→g g  has only real eigenvalues 
for all ( )X k∈g , where ( )kg  denotes the Lie algebra of ( )G k . Thus Hattori’s 
theorem [40] says that the de Rham cohomology ring ( )( )*H S k  is isomorphic 
to the cohomology ring ( )( )**H kg  of the Lie algebra ( )kg  of ( )G k . For 
simplicity we denote the right invariant forms { }ie  ( )1, ,5i =   on ( )G k  and 
their projections on ( )S k  by the same symbols. Then, if we denote by 6 7,e e  
the (right invariant) closed 1-forms on the 2-torus T2 whose cohomology classes 
generate the De Rham cohomology group ( )1 2 ,H T  , we have that the 1-forms 

ie  ( )1 7i≤ ≤  on ( )7M k  are such that  
1 15 2 25 3 35 4 45, , , , 0, 5,6,7,ide ke de ke de ke de ke de i= − = = − = = =   (11) 

and such that at each point of ( )7M k , { }1 2 3 4 5 6 7, , , , , ,e e e e e e e  is a basis for the 
1-forms on ( )7M k . Here 15e  stands for 1 5e e∧ , and so on. Then, the real 
cohomology groups of ( )7M k  are:  

( )( )
( )( )
( )( )
( )( )

0 7

1 7 5 6 7

2 7 12 14 23 34 56 57 67

3 7 125 126 127 145 146 147 235

236 237 345 346

1 ,

, , ,

, , , , , , ,

, , , , , , ,

, , ,

H M k

H M k e e e

H M k e e e e e e e

H M k e e e e e e e

e e e e

=

     =      

             =              

             =              

             
347 567, , ,e e       

 

( )( )

( )( )

4 7 1234 1256 1257 1267 1456 1457 1467

2356 2357 2367 3456 3457 3467

5 7 12345 12346 12347 12567 14567 23

, , , , , , ,

, , , , , ,

, , , , ,

H M k e e e e e e e

e e e e e e

H M k e e e e e e

             =              

                      

         =          

( )( )
( )( )

567 34567

6 7 123456 123457 123467

7 7 1234567

, ,

, , ,

.

e

H M k e e e

H M k e

      

     =      

 =  

(12) 

Thus, the Betti numbers of ( )7M k  are  

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

7 7
0 7

7 6
1 6

7 7
2 5

7 7
3 4

1,

3,

7,

13.

b M k b M k

b M k b M k

b M k b M k

b M k b M k

= =

= =

= =

= =

                 (13) 
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Proposition 4.1. The 5-manifold ( )S k  is 2-formal and so formal. Therefore, 
( ) ( )7 2M k S k T= ×  is formal.  

Proof. To prove that ( )S k  is 2-formal, we see that its minimal model must 
be a differential graded algebra ( ), d , where   is the free algebra of the 
form ( ) ( ) 3

1 2 2 2 2, , ,a a b c e V ≥= Λ ⊗Λ ⊗Λ , where the generator 1a  has degree 
1, the generators 2 2 2 2, , ,a b c e  have degree 2, and the differential d is given by 

1 2 2 2 2 0da da db dc de= = = = = . The morphism ( )( ): S kρ →Ω , inducing 
an isomorphism on cohomology, is defined by  
( ) ( ) ( ) ( )5 12 14 23

1 2 2 2, , ,a e a e b e c eρ ρ ρ ρ= = = =  and ( ) 34
2e eρ = . 

According to Definition 3.4, we get 1
1C a=  and 1 0N = , thus ( )S k  is 

1-formal. Moreover, ( )S k  is 2-formal since 2
2 2 2 2, , ,C a b c e=  and 2 0N = . 

Hence, ( )S k  is 2-formal, and so formal by Theorem 3.5. Now, Lemma 3.3 
implies that ( ) ( )7 2M k S k T= ×  is formal.  

We define the 3-form ϕ  on ( )7M k  given by  
127 347 567 135 146 236 245.k e e e e e e eϕ = + + + − − −            (14) 

Clearly, kϕ  is a G2 form on ( )7M k  which is closed. Indeed, on the 
right-hand side of (14) all the terms are closed, and so kϕ  is closed. Note that 
the dual form 

k kϕ ϕ  has the following expression  
1234 1256 1367 1457 2357 2467 3456.

k k e e e e e e eϕ ϕ = + + + + − +  

So, taking into account (11) and (12), we see that 1367e  and 2467e  are the 
unique nonclosed summands in 

k kϕ ϕ . In fact,  

( )13567 245672 0
k kd k e eϕ ϕ = − ≠ . Therefore, kϕ  does not define a torsion-free 

G2-structure on ( )7M k . 
Now, let ( )H k  be the simply connected solvable (non-nilpotent) Lie group 
( ) ( ) 2H k G k= × . Then, { }1 2 3 4 5 6 7, , , , , ,e e e e e e e  is a basis for the right 

invariant 1-forms on ( )H k  and the structure equations of ( )H k  are given 
by (11). So, the closed G2 form kϕ  defined in (14) is a right invariant closed G2 
form on ( )H k . 

Let N be a simply connected solvable Lie group of dimension n, and denote by 
n  its Lie algebra. Recall that a right invariant metric g on N is called a Ricci 
solsoliton metric (or simply solsoliton metric) if its Ricci endomorphism 

( )Ric g  differs from a derivation D of n  by a scalar multiple of the identity 
map nI , i.e. if there exists a real number λ  such that  

( ) .nRic g I Dλ= +  

Not all solvable Lie groups admit solsoliton metrics, but if a solsoliton exists, 
then it is unique up to automorphism and scaling [41]. 

Proposition 4.2. Let ( )H k  be the seven dimensional Lie group 
( ) ( ) 2H k G k= × , and let kϕ  be the right invariant closed G2 form on ( )H k  

defined in (14). Then the metric kg  determined by kϕ  is a solsoliton on 
( )H k .  
Proof. Clearly, the metric kg  induced on ( )H k  by kϕ  is such that the 
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basis { }1 2 3 4 5 6 7, , , , , ,e e e e e e e  for the 1-forms on ( )H k  is orthonormal, that is 

( )27
1

i
k ig e

=
= ∑ . Then, kg  is a solsoliton since  

( ) ( )2 2
7diag 0,0,0,0, 4 ,0,0 4 ,kRic g k k I D= − = − +  

where  

( )2 2 2 2 2 2diag 4 , 4 , 4 , 4 ,0, 4 , 4 ,D k k k k k k=  

is a derivation of the Lie algebra ( )kh  of ( )H k .  

5. Associative 3-Folds in M7(k)  

In this section, we show associative 3-folds of the compact G2-calibrated 
solvmanifold ( )7M k  defined in (10) with the closed G2 form kϕ  given by 
(14). First, we need some definitions and results about calibrations (see [14] [15] 
for details). 

Let ( ),M g  be a Riemannian manifold. An oriented tangent k-plane V on M 
is a vector subspace V of some tangent space pT M  to M, with dimV k=  and 
equipped with an orientation. If V is an oriented tangent k-plane on M, then 

|Vg  is a Euclidean metric on V. So, combining |Vg  with the orientation on V 
gives a natural volume form Vvol  on V, which is a k-form on V. 

Let θ  a closed k-form on a Riemannian manifold ( ),M g . We say that θ  is 
a calibration on M if for any p M∈  and every oriented k-dimensional 
subspace V of the tangent space pT M  we have VV volθ λ= , for some 1λ ≤  
(see [14] and [15] 3.7). Thus, if Y is an oriented submanifold of M with 
dimension k then, for any p Y∈ , the tangent space pT Y  is an oriented tangent 
k-plane on M. We say that Y is a calibrated submanifold if ( )

pp
T YT Y

p volθ = , for 
all p Y∈ . 

All calibrated submanifolds are minimal submanifolds. Even more, every 
compact calibrated submanifold is volume-minimizing in its homology class 
([15] Proposition~3.7.2). 

Harvey and Lawson in [14] proved that any closed G2 form ϕ  on a 
7-manifold M is a calibration on M. The 3-dimensional orientable submanifolds 
Y M⊂  calibrated by the G2 form ϕ , i.e. those submanifolds Y M⊂  that 
satisfy ( ) ( )

p
YT Y

p vol pϕ = , for each p Y∈  and for some unique orientation of 
Y, are called associative 3-folds. 

Next, we shall produce examples of associative 3-folds in ( )7M k  from the 
fixed locus of a G2-involution of the compact manifold ( )7M k  applying the 
following. 

Proposition 5.1 ([15] [Proposition 10.8.1]) Let N be a 7-manifold with a 
closed G2 form φ , and let : N Nσ →  be an involution of N satisfying 

*σ φ φ=  and such that σ  is not the identity map. Then the fixed point set 
( ){ }|P p N p pσ= ∈ =  is an embedded associative 3-fold. Furthermore, if N is 

compact then so is P.  
Remark 5.2 Note that Proposition 10.8.1 in [15] is stated for the G2-structures 
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that are closed and coclosed, but the coclosed condition is not used in the proof.  
Proposition 5.3 There exist nine disjoint copies of 3-tori in ( )7M k , which 

define nine embedded, associative (calibrated by kϕ ), minimal 3-tori in 
( )7M k .  

Proof. Let ( )H k  be the seven dimensional Lie group ( ) ( ) 2H k G k= ×  
defined in Proposition 4.2. We consider on ( )H k  the involution given by  

( ) ( )1 2 3 4 5 6 7 1 2 3 4 5 6 7: , , , , , , , , , , , , ,x x x x x x x x x x x x x xσ − − − −        (15) 

that is σ  is the product of the involutions ( ) ( )1 : G k G kσ →  with the 
identity map of 2 , where 1σ  is defined by  

( ) ( )1 1 2 3 4 5 1 2 3 4 5: , , , , , , , , .x x x x x x x x x xσ − − − −  

The involution 1σ  is such that ( )( ) ( )1 k kσ Γ = Γ , and so 1σ  descends to 
the 5-dimensional compact manifold ( ) ( ) ( )S k G k k= Γ . Hence, σ  defines 
also an involution of ( )7M k . From now on, we denote by  

( ) ( )7 7: M k M kσ →  

the involution of ( )7M k  induced by the involution σ  of ( )H k  defined in 
(15). Then, taking into account (5), we have that the induced action on the 
1-forms ie  is given by  

* *, 1, 2,3, 4, , 5,6,7.i i j je e i e e jσ ρ= − = = =            (16) 

Therefore, the G2 form kϕ  on ( )7M k  defined in (14) is preserved by the 
involution σ  of ( )7M k . In fact, by (16), each term on the right-hand side of 
(14) is σ-invariant. 

Let P be the fixed locus of σ . Then, P consists of all the 3-dimensional spaces 
Pa  given as follows:  

( ) ( ){ } ( )3 7
1 2 3 4 5 6 7 5 6 7, , , , , , | , , ,P a a a a x x x x x x T M k= ∈ ⊂a  

where ( )1 2 3 4, , ,a a a a=a  with  

( ) ( ) ( ) ( ) ( )1 2 3 4
1 1 1 1, , , 0,0 , , , 5 1 , 5 1 .
2 2 4 4

a a a a   ∈ − − +  
  

 

Consequently, P is a disjoint union of 9 copies of a 3-torus T3. 
Since the G2 form kϕ  on ( )7M k  defined in (14) is preserved by the 

involution σ  of ( )7M k , each of the 9 torus Pa  in ( )7M k  fixed by 
( ) ( )7 7: M k M kσ →  is an associative 3-fold in ( )( )7 , kM k ϕ  by Proposition 

5.1.  

6. The Laplacian Flow 

The purpose of this section is to prove that the Laplacian flow of kϕ  on the 
7-dimensional Lie group ( )H k  exists for all time. Moreover, we prove that the 
Ricci endomorphisms ( )( )kRic g t  of the underlying metrics ( )kg t  of the 
solution ( )k tϕ  are independent of the time t, and so the solution ( )k tϕ  does 
not converge to a torsion-free G2-structure as t goes to infinity. 
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Consider a 7-manifold M endowed with a calibrated G2-structure 0ϕ . The 
Laplacian flow starting from 0ϕ  is the initial value problem  

( ) ( )

( )
( ) 0

,

0,
0 .

t
d t t
dt
d t

ϕ ϕ

ϕ
ϕ ϕ

 = ∆
 =

=

                       (17) 

where t∆  denotes the Hodge Laplacian of the Riemannian metric ( )g t  
induced by ( )tϕ . This flow was introduced by Bryant in [16] to study 
seven-dimensional manifolds admitting calibrated G2-structures. Notice that the 
stationary points of the flow Equation in (17) are harmonic G2-structures, which 
coincide with torsion-free G2-structures on compact manifolds. 

Short-time existence and uniqueness of the solution of (17) when M is 
compact were proved in [20].  

Theorem 6.1 Assume that M is compact. Then, the Laplacian flow (17) has a 
unique solution defined for a short time [ )0,t ε∈ , with ε  depending on 0ϕ .  

In the following theorem, we determine a global solution of the Laplacian flow 
of the closed G2 form kϕ  given by (14) on the Lie group ( ) ( ) 2H k G k= × , 
where ( )G k  is the Lie group defined in Section 4. 

Theorem 6.2 On the simply connected solvable (non-nilpotent) Lie group 
( ) ( ) 2H k G k= × , the solution of the Laplacian flow (17) starting from the 

calibrated G2-structure kϕ  is given by  

( )
3 4 3 4

127 347 567 135 236 146 24516 161 1 ,
3 3k t e e e kt e e e kt eϕ    = + + + + − − − +   

   
(18) 

where 2
3 ,

16
t

k
 

∈ − +∞ 
 

.  

Proof. Let ( )i if f t=  ( )1, , 7i =   be some differentiable real functions 
depending on a parameter t I∈ ⊂   such that ( )0 1if =  and ( ) 0if t ≠ , for 
any t I∈ , where I is a real open interval. For each t I∈ , we consider the basis 

{ }1 7, ,x x  of left invariant 1-forms on ( )H k  defined by  

( ) ( ) , 1 7.i i i
ix x t f t e i= = ≤ ≤  

Taking into account (11), the structure equations of ( )H k  with respect to 
the basis { }1 7, ,x x  are  

1 15 2 25

5 5

3 35 4 45

5 5
5 6 7

1 1, ,

1 1, ,

0.

dx k x dx k x
f f

dx k x dx k x
f f

dx dx dx

= − =

= − =

= = =

                 (19) 

From now on, we write ( ) ( ) ( )ij ij i jf f t f t f t= = ,  

( ) ( ) ( ) ( )ijk ijk i j kf f t f t f t f t= = , and so forth. Then, for any t I∈ , we consider 

the G2-structure ( )k tϕ  on ( )H k  given by  
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( ) 127 347 567 135 146 236 245

127 347 567 135 146 236 245
127 347 567 135 146 236 245 .

k t x x x x x x x

f e f e f e f e f e f e f e

ϕ = + + + − − −

= + + + − − −
(20) 

Note that the 3-form ( )k tϕ  defined by (20) is such that ( )0k kϕ ϕ=  and, for 
any t, ( )k tϕ  determines the metric ( )kg t  on ( )H k  such that the basis  

1 ; 1, , 7i i
i

x e i
f

 
= = 

 
  of left invariant vector fields on ( )H k  dual to 

{ }1 7, ,x x  is orthonormal. Moreover, by (19), ( )k tϕ  is closed, for any t I∈ . 

Therefore, to solve the flow (17) of kϕ  it is sufficient to determine the functions 

if  and the interval I so that ( ) ( )k t k
d t t
dt
ϕ ϕ= ∆ , for t I∈ . 

Clearly ( ) ( )t k t t kt d d tϕ ϕ∆ = −    since ( ) 0kd tϕ = . Moreover,  

( ) 1234 1256 1367 1457 2357 2467 3456.t k t x x x x x x xϕ = + + + + − +  

So, 1367x  and 2467x  are the unique nonclosed summands in ( )t k tϕ . Then, 
taking into account (19), we obtain  

( ) ( )
2

135 245
2

5

4 .t k
kt x x
f

ϕ∆ = −  

Thus, in terms of the forms ijke , the expression of ( )t k tϕ∆  becomes  

( ) ( )
2

135 245
13 24

5

4 .t k
kt f e f e
f

ϕ∆ = −                 (21) 

On the other hand,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

127 347 567 135
127 347 567 135

146 236 245
146 236 245 .

k
d t f e f e f e f e
dt

f e f e f e

ϕ ′ ′ ′ ′= + + +

′ ′ ′− − −

      (22) 

Comparing (21) and (22) we have that ( ) ( )k t k
d t t
dt
ϕ ϕ= ∆  if and only if the 

functions if  satisfy the following equations  

( ) ( ) ( ) ( ) ( )127 347 567 236 146 0,f f f f f′ ′ ′ ′ ′= = = = =             (23) 

( ) 2 13
135

5

4 ,ff k
f

′ =                        (24) 

( ) 2 24
245

5

4 .ff k
f

′ =                        (25) 

The equations (23) with the initial conditions ( )0 1if =  ( )1, , 7i =   imply  

127 347 567 236 146 1.f f f f f= = = = =  
Now, the equalities 127 347f f=  and 236 146f f=  imply 12 34f f=  and 

23 14f f= , respectively, and thus  

1 3 2 4and .f f f f= =                      (26) 

Moreover, from 127 236 1f f= =  we have  

6 7 121 ,f f f= =                        (27) 
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and from 567 1f =  we have  
2

5 12.f f=                             (28) 

Now, using (26) and (28), the system of differential equations formed by the 
Equations (24) and (25) is written as  

( )( )
( )( )

22 2
1 1 2 2

2

22 2
2 1 2 2

1

14 ,

14 .

f f f k
f

f f f k
f

 ′
=




′ =

                    (29) 

Multiplying the first equation of (29) by 2
2f , and the second one by 2

1f , one 
can check that (29) implies that  

( ) ( )2 4 2 2 2 4
2 1 2 1 1 2 ,f f f f f f′ ′=  

that is,  

( ) ( )2 1 1 2 .f f f f′ ′=  

Then, using that ( ) ( )1 20 0 1f f= = , we have  

1 2.f f=                           (30) 

Thus, the system (29) is written as follows  

( )6 2
1 2

1

14 .f k
f

′ =  

Integrating this equation, we obtain  

8 2
1

3 4 ,
4

f k t C= +  

for some constant C∈ . But the initial condition ( )1 0 1f =  implies 3
4

C = , 

and hence  

( ) 28
1

16 1.
3

f t k t= +                       (31) 

From (26), (27), (28), (30) and (31), we get  

( ) ( ) ( ) ( )

( ) ( ) ( )

28
1 2 3 4

2
5 6 7

24

16 1,
3

16 11, .
3 16 1

3

f t f t f t f t k t

f t k t f t f t
k t

= = = = +

= + = =
+

 

Therefore, taking into account (20), the family of closed G2 forms ( )k tϕ  

given by (18) is the solution of the Laplacian flow of kϕ  on ( )H k , and it is 

defined for all 2
3 ,

16
t

k
 

∈ − +∞ 
 

.                                     □ 

Remark 6.3 Note that the metric ( )kg t , with 2
3 ,

16
t

k
 

∈ − +∞ 
 

, is a  
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solsoliton on ( )H k . In fact, the metric ( )kg t  with respect to the basis 
{ }1 7, ,e e  is given by  

( ) 2 2 2 2 8
1 1 1 1 1 4 4

1 1

1 1diag , , , , , , ,kg t f f f f f
f f

 
=  

 
 

where ( )1 1f f t=  is the function given by (31). Then, the Ricci endomorphism 
( )( )kRic g t  satifies  

( )( ) ( )2 2
7diag 0,0,0,0, 4 ,0,0 4 ,kRic g t k k I D= − = − +  

where  

( )2 2 2 2 2 2diag 4 , 4 , 4 , 4 ,0, 4 , 4 ,D k k k k k k=  

is a derivation of the Lie algebra ( )kh  of ( )H k . Moreover, ( )( )kRic g t  on 
( )H k  is non-zero and independent of the time t. So, the solution ( )k tϕ  does 

not converge to a torsion-free G2-structure as t goes to infinity. 
Furthermore, taking into account the symmetry properties of the Riemannian 

curvature ( )( )kR g t  we obtain  
2

1212 1414 2323 3434 4
1

2

1313 2424 4
1

2 2
1515 2525 3535 4545 1

,

,

,
0 otherwise,ijkl

kR R R R
f

kR R
f

R R R R k f
R

= = = =

= = −

= = = = −

=

 

where ( )( ) ( ), , ,ijkl k i j k lR R g t e e e e= . Thus, the Riemannian curvature  
( )( )kR g t  does not converge when t tends to infinity.  
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