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Abstract 
We design a cosmological model that expands at a speed less than that of free 
fall and which allows accelerations of the recession velocity. In addition, the 
underlying geometry of the model can be adjusted in such a way that attrac-
tive forces arise in the cosmos, forces whose sources are not matter. This 
could explain dark matter as a property of space and one could also address 
the question of why galactic systems are not subject to expansion. 
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1. Introduction 

Careful measurements have proven that there must be attractive forces in the ga-
laxies that cannot be explained by the action of mass of the stellar objects. It has 
been suggested that these forces emanate from matter which does not emit light 
and therefore one has called the source of these forces as dark matter. Despite 20 
years of searching, one has not found matter, and other explanations have not 
been satisfactory. 

We can imagine that the forces do not come from localizable objects, but stem 
from the geometric structure of space. This concept is in perfect harmony with 
the principles of general relativity. Gravity, tidal force, and also rotational forces 
are usually described by the properties of space. In addition, pressure and mass 
density are derived from geometrical quantities. 

Our new approach is based on mathematical methods already hidden in 
Schwarzschild’s paper on the interior solution (1916). We have worked out these 
methods in [1] and [2] [3] and have also successfully applied them to the gravita-
tional collapse [4] of the interior Schwarzschild solution. Now we want to apply 
the procedure to a cosmological model. We call our model P-model. This model 
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and the Schwarzschild model both are based on the static de Sitter metric as seed 
metric. In the first case, this metric is a metric on a pseudo-hyper sphere, in the 
second case it is a metric on a cap of a hypersphere. From both metrics repulsive 
forces are derivable, which can be interpreted in the dS case as the cause of an 
expansion. We describe a process that switches these forces from repulsive to at-
tractive. Although the elaboration of the P-model requires a considerable amount 
of mathematics, the underlying physical principles of the Schwarzschild world 
are well-known, but little respected in the literature. 

We note that carrying out this procedure is only possible within the frame-
work of the tetrad calculus. Coordinate systems play a minor role, they are only 
used for basic mathematical operations. In Sec. 2 we briefly outline the static de 
Sitter model, we explain the use of 4-bein systems, the Ricci-rotation coefficients, 
and the graded derivative. We discuss the representation of the Einstein field eq-
uations in tetrad form and point out that this is useful for many cosmological 
models and advisable for their clarity. In Sec. 3, we first discuss a static P-model 
in order to clarify the basic structure of such models. In Sec. 4 and Sec. 5 we de-
velop the expanding P-model and discuss it in Sec. 6. 

2. Preliminary Remarks 

The dS model in its static version is based on a pseudo-hyper sphere with the ra-
dius .const=R , the polar coordinates { }, ,r ϑ ϕ , and the coordinate time t. The 
metric of the dS model in the canonical form is 

( )2 2 2 2 2 2 2 2 2 2
2 2

2 2 2 2

1d d d sin d 1 d
1

, 1 1 , 1R R R R R

s r r r r t
r

rv a v r a

ϑ ϑ ϕ

α

= + + − −
−

= = − = − =

R
R

R
R

.     (2.1) 

We identify the quantities Rv  and Rα  as the recession velocity of the galax-
ies and the assigned Lorentz factor. From the metric (2.1) we read the 4-bein 
system 

 

2 31 4

1 2 3 4

1 2 3 4

1 2 3 4

, , sin , ,
1 1, , ,

sin

R R

R R

e e r e r e a

e a e e e
r r

α ϑ

α
ϑ

= = = =

= = = =
.            (2.2) 

We use it to calculate the Ricci-rotation coefficients 

[ | ] [ | ] [ | ]

t tss j s r j s r j
mn j nt j mt jn m m r n r

A e e g g e e g g e e= + + ,           (2.3) 

which we decompose into the radial and the two lateral parts 
ˆs s s s

mn mn mn mnA U B C= + + .                   (2.4) 

By means of the unit vectors 

{ } { } { } { }1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0,1m m m mm b c u= = = =    (2.5) 

we continue to decompose into vector quantities  
ˆ ˆ ˆ , ,s s s s s s s s s

mn m n m n mn m n m n mn m n m nU u U u u u U B b B b b b B C c C c c c C= − = − = − . (2.6) 
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Finally, we get from (2.3) the geometric quantities  

{ }

{ } ( )

|

| |

1 1ˆ 1,0,0,0

1 1 11,0,0,0 , sin , cot ,0,0
sin

m R m R R
R

R R
m m m m

U a v
a

a aB r C r
r r r r r

α

ϑ ϑ
ϑ

 = = − 
 

 = = = =  
 

R

  

(2.7) 

At the same time, we have executed the operation 
i

m im
e∂ = ∂ , 

with m as a tetrad index and i as a coordinate index ( 4x it= ). The lateral field 
quantities B and C describe the curvatures of the greater circles and the latitu-
dinal circles of the hyper sphere. The quantity Û  points away from any point 
on the pseudo-hyper sphere. 

The relations 

( )

1

2 2

3 3

|| 2

|| ||2 2

|| ||2 2

1ˆ ˆ ˆ

1 2,

1 3,

s s
s s

s s
m n m n mn s s

s s
m n m n mn m n s s

U U U

B B B h B B B

C C C h b b C C C

+ = −

+ = − + = −

+ = − + + = −

R

R R

R R        

(2.8) 

are the subequations of Einstein’s field equations. The first relation in (2.8) is the 
Friedman equation. ( )1,0,0,1mnh diag=  is a submatrix of the tetrad metric 

( )1,1,1,1mng diag= . The use of the graded derivatives [4] 

1 2 3
|| | || | || |

ˆ ˆ ˆ ˆ, ,s s s
n m n m n m n m mn s n m n m mn s mn sU U B B U B C C U C B C= = − = − −

  
(2.9) 

proves to be very advantageous for the representation of field equations. For the 
Ricci one has 

1 2 2

3 3

1 2 3

|| || ||

|| ||

|| || ||

ˆ ˆ ˆ

1 ˆ ˆ ˆ
2

s s s s
mn s s m n n m n m n m s s

s s
n m n m n m s s

s s s s s s
s s s s s s

R U U U h B B B b b B B B

C C C c c C C C

R U U U B B B C C C

     = − + − + − +          
   − + − +      

    − = + + + + +         

.   (2.10) 

The structures (2.8) and (2.10) can be used for spherically symmetric systems, 
static, expanding, or collapsing systems. If we reinterpret the cosmological con-
stant in the field equations of the dS model, the stress-energy-momentum tensor 
has the form  

2 2

0

3 3, ,mn o

p
p

T p
p

κ κµ

µ

− 
 − = = − =
 −
 
 

R R

       

(2.11) 

by using (2.6)-(2.9). p is the pressure and 0µ  the matter density of the cosmic 
fluid. Consequently, is the equation of state of the dS cosmos 
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0 0p µ+ = .                       (2.12) 

In one of our papers [5] we have critically examined the dS cosmos concerning 
its interpretation. Our P-model is based on the dS model. The above structures 
are the source for further considerations. 

3. The Static P-Model 

As a first step towards a generalized model which admits attractive forces, we 
examine a static cosmological model by introducing the projector technology 
borrowed from the interior Schwarzschild solution. We do not attribute physical 
significance to the model. It aims to explain the use of the projectors which we 
introduce in order to transform repulsive forces into attractive forces. It is the 
starting point for a more sophisticated model. 

We start from the previously described dS model. But now we put 

4 4
41 41 1 1 1

1ˆ ˆ, R RA U U U U vα= = = = −P
R              

(3.1) 

with reference to (2.7). P  is a space-dependent function which we investigate as 
follows. We call it as a projector. 

First, we recalculate the subequations of Einstein’s field equations. For the lat-
eral subequations it is sufficient to calculate their timelike components. With 

4 0B =  and 4 0C =  we get 

2

1 1
4|| 4 4 4 4|4 44 1 4 4 44 1

1 1 2

1ˆ R
R R

B B B B U B B B U B

aU B v
r

α

+ = − + = −

 = = − = − 
 R

P
P P

R

 

and a similar equation for the quantity C. Finally one has 

( )

( )

2 2

3 3

|| ||2 2

|| ||2 2

1

0

0

1

1

0

1 1, 1

1 1, 2

s s
m n m n s s

s s
m n m n s s

B B B B B B

C C C C C C

 
 
 + = − + = − +
 
 
 
 
 
 + = − + = − +
 
 
 

P

P

P
R R

P
R R

.   (3.2) 

The radial field quantities (3.1) are treated according to 

1|1 1 1 1|1 1 |1 1 1

1|1 1 1 1 |1 1 1 1 1

1 |1 1 12

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 ˆ ˆ

U U U U U U U

U U U U U U U U

U U U

+ = + +

 = + + + − 

 = − + + − 

P P

P P P P

P P P P
R

. 

Therein the first line of (2.8) was used. To get a typical Friedman equation, we 
put zero the last brackets in the above expression and we get the important rela-
tion 
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( )|1 11 U= −P P                        (3.3) 

and thus 

| 2

1s s
s sU U U+ = −P

R
,                    (3.4) 

and finally a relation whose structure is familiar to us from (2.8). We realize that 
we get the equations (2.8) of the dS metric for 1=P . 

With (3.2) and (3.4) the Ricci tensor 

( )

( ) ( )

( )

11 2 2 2

22 2 2 2

33 2

44 2 2 2

2 12

1 1 11 2

12

2 3

R

R

R

R

= + = +

= + + = +

= +

= + =

P
P

R R R

P P
R R R

P
R

P P P
R R R

 

can be calculated and also the Ricci scalar 

( ) ( ) ( )2 2 2 2

1 1 6 1 33 2 3 1 , 1
2

R R= + + = + − = − +P P P P
R R R R

 

and finally the Einstein tensor 

( ) ( ) ( )

( )

11 2 2 2

44 2 2 2

1 3 12 1 1 2

3 33 1

G

G

= + − + = − +

= − + = −
R

P P P
R R R

P
P

R R

. 

Therefore the Einstein field equations result in 

( ) 02 2

1 31 2 ,pκ κµ= − + =P
R R

.                (3.5) 

For 1=P  one again has the pressure and the mass density (2.11) of the dS 
model. For later use we note 

( ) ( )0 2

21pκ µ+ = − P
R

                    (3.6) 

and we finally get the equation of state 

( ) 0
1 1 2
3

p µ= − + P ,                     (3.7) 

which reduces for 1=P  to the equation of state (2.12) of the dS model. 
The conservation laws 

1 1 1 1 4 4 4 4
|| | || |0, 0n n rn n n n rn n
n n nr n n n nr nT T A T A T T T A T A T= + + = = + + =  

for this static model are 

( )|1 0 1 0, 0p p Uµ µ= − + = ,                  (3.8) 

and it has to be examined whether the pressure gradient leads to a contradiction. 
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If we differentiate (3.5) 

( )|1 |1 12 2

2 2 1p Uκ = − = − −P P
R R

 

we see immediately with (3.7) that (3.8) is satisfied. Thus, the introduction of the 
function P  has proved to be useful and opens the way to cosmological models 
in which the pressure is position-dependent. 

4. The Expanding P-Model 

In this section we want to show that the static P-model can be extended to an 
expanding one. We address the problem without reference to conventional cos-
mology. We avoid using an expanding metric and the scale factor. Nor do we re-
fer to a comoving coordinate system, but we use orthogonal local reference sys-
tems. We start from the static de Sitter model. Its metric is the seed metric for 
our expanding model. In this case, the radius of curvature of the universe will be 
time-dependent. Then at any moment the expanding cosmos is a snapshot of the 
dS-cosmos. The coordinate system of the dS-cosmos is completely sufficient to 
carry out simple mathematical operations. We develop the main part of the 
theory in the tetrad calculus. This provides reference systems in which the quan-
tities of the model have physically interpretable components. We use comoving 
and non-comoving reference systems. Between them a Lorentz transformation 
mediates, which includes as a parameter the rate of expansion of the cosmos. 

In an earlier paper [5] we have extended the dS model by introducing a second 
velocity. We again apply this method, but we abandon the constraint .const=R  
which applies to the dS cosmos in order to obtain a genuine expanding model. 
The double-velocity ansatz is 

( ) ( ), , ' , ' ' '
'R E

r rv v T T= = = =R R R R
R R

.         (4.1) 

Therein sinRv η=  and sinr η= R  is connected to the polar angle η  of a 
pseudo-hyper sphere. 'T  is the proper time of an observer who participates in 
the expansion of the cosmos. The pseudo-hyper sphere with the time-dependent 
radius R  forms the skeleton of the cosmological model. r, as in previous mod-
els, is the radial coordinate of the non-comoving observer. Rv  is, like in the ‘ex-
panding’ dS cosmos, the speed of a fictitious freely falling observer. Ev  and 'R  
are to be understood in analogy to the definition of Rv , where 'R  is another 
time-dependent parameter. Thus, we can assume that in a fictive cosmos, which 
is preliminary to the physical cosmos, Ev  has a similar geometric meaning as 

Rv  has in the dS cosmos. The validity range of the quantities is 
' , 0 r≤ ≤ ∞ ≤ ≤R R R . 

With the ansatz (4.1) we have established the method of double velocities. The 
Lorentz transformation 

1' 4' 1' 4'
1 1 4 4, , ,L L i v L i v Lα α α α= = − = = ,            (4.2) 

mediates between the observer system m’ comoving with the expansion of the 
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cosmos and the non-comoving observer system m. v is the recession velocity and 
α  the associated Lorentz factor. 

The velocities in (4.1) are supposed to satisfy Einstein’s addition law 

, ,
1 1 1

R E E R
R E

R E E R

v v v v v vv v v
v v vv v v
− + −

= = =
− + −

.            (4.3) 

The composition of the speeds can be taken from the drawing Figure 1. 
 

 
Figure 1. Composition of the velocities. 

 
The system m’’ is a fictitious reference system in a cosmos that can be 

represented by a pseudo-hyper sphere with the radius R . At any given moment, 
a snapshot of the cosmos corresponds to the static dS cosmos. This enables us to 
use the coordinate system of the dS cosmos for basic mathematical operations. 
The physical system m’ is the reference system which is in the empirical space 
and follows an expansion that is less than that of the free-fall and m the 
non-comoving reference system. In order to describe all states of motion, we 
complement (4.2) with 

1'' 4'' 1'' 4''
1' 1' 4' 4'
1'' 4'' 1'' 4''
1 1 4 4

, , ,

, , ,
E E E E E E

R R R R R R

L L i v L i v L

L L i v L i v L

α α α α

α α α α

= = − = =

= = − = =
.        (4.4) 

Furthermore, the Lorentz relations 

2 2 21 1 , 1 1 , 1 1R R E Ev v vα α α= − = − = − ,         (4.5) 

( ) ( ) ( )1 , 1 , 1R E R E R E E E R Rv v vv v vα α α α αα α α α= − = + = − ,    (4.6) 

( ) ( ) ( ), ,R E R E R R E E E E R Rv v v v v v v v vα α α α αα α α α= − = + = −
   (4.7) 

apply. 
With the definitions in (4.1) one obtains for the recession velocity 

2
'

1
'

r r

v
r

−
=

−

R R

R R

.                        (4.8) 

From (4.1) it can be seen that Rv  accepts the value 1 at the equator of the 
pseudo-hyper sphere. That is the speed of light in the natural measuring system. 
In [5] we have shown that the velocity can only reach asymptotically the speed of 
light, i.e. it can come infinitely close to the value 1 only after an infinitely long 
time. Furthermore, we can see from Einstein’s addition law of velocities (4.3) that 
the recession velocity is lower than the one of free fall 

Rv v< . 
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Thus, we have envisaged a cosmological model whose rate of expansion is 
slower than the ones of the FRW models and whose rate of expansion can be 
manipulated with the parameter 'R . Since the recession velocity does not reach 
the speed of light and definitely cannot exceed it, there is no violation of the spe-
cial theory of relativity and no violation of causality nor is there any galactic island 
formation. 

For the further development of the theory some basic relations are necessary. 
We are already familiar with  

{ } { } { }| | ' | ''1,0,0,0 , ,0,0, , ,0,0,m R m R m R R R Rr a r i v a r i v aα α α α= = − = −  (4.9) 

referring to the geometry of the hyper sphere and the Lorentz transformations 
(4.2) and (4.4). 

In calculating the changes of the two velocities Rv  and Ev , and finally of the 
recession velocity v, we must proceed with care. Both quantities contain, apart 
from the radial coordinate, the variable quantities R  and 'R . Therefore we 
define the two quantities 

| ' ' " "

| ' ' " "

1 , , ,

1' ' , ' ' , ' '
'

m m
m m m m m m m m

m m
m m m m m m m m

L L

L L

= = =

= = =

R R R R R R
R

R R R R R R
R

.       (4.10) 

With this and with (4.5) and (4.9) we get 

{ } { }

{ } { }

{ } { }

| |

| ' ' | ' '

| " " | " "

1,0,0,0 , 1,0,0,0 ' ,
'

,0,0, , ,0,0, ' ,
'

,0,0, , ,0,0, ' .
'

R R
R m R m E m E m

R R
R m R m E m E m

R R
R m R R R R m E m R R R E m

a av v v v

a av i v v v i v v

a av i v v v i v v

α α α α

α α α α

= −  = −

= − −  = − −

= − −     = − −

R R
R R

R R
R R

R R
R R        

(4.11) 

From the above relations, it is obvious that the change of the two speeds has 
two causes. First, the speeds depend on the position. The recession velocity and 
thus the redshift of the light of a galaxy is higher, the farther the galaxy is dislo-
cated from the observer. Secondly, the recession velocity depends on the expan-
sion of the cosmos, i.e., on the quantities mR  and ' mR . So we can expect acce-
lerations of expansion, which is suggested by recent observations. We will take a 
closer look at this problem later. 

Now the necessity arises to develop the properties of the quantities (4.10) from 
the geometric and the kinematic structure of the model. A look at Figure 1 
shows us that for an observer with the velocity Ev  the system m’ is the rest 
frame. Therefore we demand that in analogy to the non-comoving observers of 
the dS cosmos [5] 

{ } { }

{ }

| | '

| "

1 1,0,0, , 1,0,0,0 ,
' '

1,0,0,
'

E m E E m E

E m E E E E

v

v

v i a v a

v i a

αα

α α

=    =

=

R R

R

            (4.12) 
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applies. Thus, we expect that from the view of the physical observer m’ no 
change in time of the velocity Ev  can be experienced. With this restrictive con-
dition one can calculate '' mR . This restriction simplifies the structure of the 
model considerably. From (4.12) and (4.11) and using the Lorenz relations we 
obtain 

{ }

{ }

{ }

'

"

' , 0,0, ,
'

' , 0,0, ,
'

' 0,0,0,1 .
'

m R R R

m E E E

m

i ii v

i ii v

i i

α α

α α

 = − − − 
 
 = − − − 
 

 = − − 
 

R
R R

R
R R

R
R R              

(4.13) 

For the velocity Rv , similar constraints would bring us back to the dS cosmos. 
In order to determine the quantity mR  from the structure of the model, further 
considerations are necessary. First of all, it is evident that the comoving observers 
cannot ascertain any position dependency of R . The model is homogeneous 
and its curvature is everywhere the same for ' .T const= . So we can put 1' 0=R . 

We do not derive our model by solving Einstein’s field equations under specific 
conditions, but we make assumptions about a particular geometry, we derive 
from them all necessary quantities. Then we check, whether they satisfy Eins-
tein’s field equations. Since a homogeneous world model is based on a spherical 
space, some of the required quantities are already familiar to us. Thus, we know 
the expressions for the two lateral field quantities B and C in the system at rest 

1,0,0,0 , , cot ,0,0R R
m m

a aB C
r r r

ϑ   = =   
   

. 

We do not derive the field quantities of the comoving system from an expand-
ing metric, but with a Lorentz transformation from the metric of the static seed 
system. With 

' ' ' ',m m
m m m m m mB L B C L C= =  

we obtain the quantities of the comoving system 

' '
1,0,0, , , cot ,0,R R R R

m m
a a a aB i v C i v
r r r r r

α α α ϑ α   = − = −   
   

.   (4.14) 

From these relations we realize that the spatial components of these quantities 
do not appear to be flat. This was the case for the FWR models and the simple 
subluminal model, i.e. for all models that expand in free fall. For the special case 

0Ev =  we get Rα α= , 1R Raα =  and thus 

' '
1 1 1,0,0, , , cot ,0,m m

i iB C
r r r

ϑ   = − = −   
   R R

. 

The spatial parts 'Bα  and ( )' , ' 1', 2 ',3'Cα α =  of the above equation now 
appear to be flat and correspond to the quantities of a free-falling system, as one 
can easily convince oneself. As we have repeatedly stated, this does not mean that 
the space is flat, but according to Einstein’s elevator principle [6], no forces act on 
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the free-falling observers. 
Let us take another look at the relations (2.4)-(2.7) taking into account (3.1). 

To complete the model we need to know the quantity 4''U . It is decisive for the 
development of the universe and enters into the Friedman equation. 

The quantity 4''U , which is closely related to the quantity 4'R , can however 
be deduced without further calculation, if we demand that the expansion in all 
three spatial directions is equal. Thus, after looking at (4.14) one has 

4' 4' 4'' RaU B C i v
r

α∗ ∗= = = − .                  (4.15) 

For further considerations, we turn to the conservation law. The stress-energy- 
momentum tensor of the model in the comoving system should have the form of 
the dS model, if we assume that the matter density has the usual form 

2
0 3κµ = R . For the pressure, we expect a more complicated expression, as the 

preliminary study of Sec. 3 shows. 
From the conservation law of the moving system with 4' ' '4' 0T Tα α= =  and 

4' ' 4' ' 4' ' ' 4' '
|| ' | ' ' ' '' ' 0n n r n n
n n n r nT T A T A T= + + =  

follows  
( )0|4' 0 4'3 ' 0p Uµ µ+ + =                    (4.16) 

using (4.15). On the other hand  

0|4' 0 4'2µ µ= − R  

follows from the relations 2
0 3κµ = R . By comparison with (4.16) we get 

( )0 4' 0 4'
3 '
2

p Uµ µ= +R  

and with (3.6) 
( )4' 4'1 'U= −R P .                     (4.17) 

Therein P  is the projector already used in the last section, which will be dis-
cussed in more detail below. Knowing 4''U  according to (4.15), we have derived 
the general form of 4'R  and at the same time we have allowed the model to ex-
pand according to the definition (4.10). Thus, 

( )4' 1 Rai v
r

α = − − 
 

R P                    (4.18) 

applies. 
For 1=P  we get back the dS model. Then one has 4' 0=R  and .const=R . 

For the two systems m’ and m one finally has 

{ }( ) { }( )2 2 2
' 0,0,0,1 1 , ,0,0, 1R R

m m
a ai v v i v
r r

α α α = − − = − − − 
 

R P R P .   

(4.19) 

Now we are also able to specify completely the velocity changes. If we substi-
tute the above relations into (4.11) we get 

{ } { }( ) { }2 2 2
| | '1,0,0,0 ,0,0, 1 , ,0,0,R R R

R m R m
a a av v i v v i vα α α α= + − = −P P
R R R

.(4.20) 
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The 4th components of the velocity changes do not vanish. Thus, the P-model 
allows an acceleration of the cosmos. 

So far we have developed some quantities necessary for the construction of the 
theory without much mathematical effort. We now want to put the model on a 
safe mathematical basis. To this end, we deal in detail with the transformation to 
the comoving and non-comoving observer systems and with the inhomogeneous 
transformation law of the Ricci-rotation coefficients. The field quantities are 
constituents of these Ricci-rotation coefficients, which transform from the 
non-comoving system m to the comoving system m’ according to 

' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '| '' ' , , 's s s s m n s s s s s

m n m n m n m n m n s mn m n s n mA A L A L A L L L= + = = .  (4.21) 

The last term in the above relation is called the Lorentz term. This formula 
which is fundamental in the tetrad calculus must be generalized to the 
P-cosmology so that the Ricci-rotation coefficients Â  of the auxiliary model 
can be used to generate the Ricci-rotation coefficients A of the P-model. First of 
all, we again use the comoving system and now we define most generally the 
projector '

'
n
mP . This projector contains only the diagonal components 

1' 2' 3' 4'
1' 2' 3' 4'1,= = = =P P P P P .                 (4.22) 

For the P-cosmology, we modify the inhomogeneous transformation law (4.21) 
to 

' ' ' '
' ' ' ' ' ' '

ˆ' 's r r n s s s
m n m r n s r n m nA L A L= +P .               (4.23) 

With this we have first accessed the seed metric and we have transformed it 
into a comoving system. At the same time we have with the help of the projector 
created a new geometry. 

However, it can be seen that this modified transformation law has no effect on 
the lateral field quantities B and C. They transform homogeneously and are not 
changed by the projector. They are given in the comoving system by (4.14). Thus, 
we can concentrate on the quantity U. 

If the Ricci-rotation coefficients of the seed model are designated by '
' '

ˆ s
m nA  in 

the comoving system, one first obtains 
' ' '

' ' ' ' '
ˆs r s

m n m r nA A= P .                     (4.24) 

Therein  
4' 4' 1' 1'

1' 4' 4'1' 1' 4' 1' 1'4' 4' ' '
ˆ ˆˆ ˆ ˆ ˆ, , m

m m mU A U U A U U L U= = = = =P P P  

is contained. Finally one has 

'
1,0,0,m R R R RU v i v vαα α α = − 

 

P
R R

.             (4.25) 

Since the Lorentz transformation is to be interpreted as a pseudo rotation, 
which takes place in the [1,4]-slice of the surface, the inhomogeneous term can 
be simplified with { }' ' 1,0,0,1m nh diag=  to 

{ }' ' ' ' 4 ' 1'
' ' ' ' ' ' ' ' ' 4 '1' 1'4'' ' ' , ' ' ' , 's s s s

m n m n m n n s nL h L h L L L L L= − = = .     (4.26) 
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From (4.21) only Einstein’s elevator law in cosmology 

' ' '' 'm m mU U L= +                      (4.27) 

remains. 
With a look at (4.2) we calculate with (4.26) 

2 2
1' |4' 4' |1'' , 'L i v L i vα α= = −  

and evaluate this with the relation 
2 2 2d d dR R E Ev v vα α α= − . 

With (4.20), (4.12) we get 

2 2 2
1' |4' |4' 4'

2 2
4' |1' |1'

1'

1 1'
'

R R E E R R R

R R E E R E

L i v i v v i v

L i v i v i i

α α α α α

α α αα α

= − = −

= − + = − +

R
R

R R

. 

We define three quantities 

{ } { } { } 2
' ' ' 4'

1 1,0,0, , 0,0,0,1 , 1,0,0,0
'm R m E m R RG i v i l i f i vα α α α α= = = R

R R
,    (4.28) 

where G describes the change of Rv , l the change of Ev , and f the change of R . 
Finally, one has 

' ' ' '' m m m mL G f l= − − +                    (4.29) 

and with '
''m

m m mL L L= −  

{ } { } { } 2
4'

1 10,0,0,1 , ,0,0, , ,0,0,
'm R m E m R RG i l i v i f i v i vα α α α α α α= = − = R

R R
 (4.30) 

and the Lorentz term for the inverse transformation 

m m m mL G f l= + − .                     (4.31) 

If we take (4.19) into account we can write 

{ }( ) { }( )'
1 11,0,0,0 1 , ,0,0, 1 .m R m Rf v f i v vα α α α α α= − = −P P
R R

  (4.32) 

In (4.15) we have deduced that the quantity 4''U  must have the same value as 
the quantities 4'B  and 4'C  in order to correctly represent the expansion scalar. 
Exactly this value would have to be calculated with a Lorentz transformation 
from the static auxiliary system. We therefore rely on the relation (4.27) and we 
calculate the desired quantity using 1 ' Ev r=R  together with 

( )

1
4' 4' 4' 4' 4' 1

4'

1ˆ' ' , ,

1 1 1'

R R

R R R R

U U L U L U i v v

L i i v v i v
r r

α α

αα α α α α

= + = =

= − + − = −

R

R

 

and indeed we get the expression 4'' RaU i v
r

α= −  predicted by (4.15). 

Now the 1st component of the quantity 'U  has to be calculated. It is 
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( )

1' 1' 1' 1'

1'

' ' , ,

1 1' 1

R R

R R R

U U L U v

L v v v

αα

α α α α α α

= + = −

= − − =

P
R

P
P

R R R

 

and 

( )1'' R R E EU v v vαα α= − = −
P P
R R

. 

Thus, we have completely calculated the quantity 

'
1' ,0,0,m E E RU v i va
r

α α = − − 
 

P
R

.              (4.33) 

Rather new to FRW models is the radial component in ‘U. Similar to the static 
dS cosmos a radial force occurs which can be attractive or repulsive depending 
on the sign of P . We realize that with the projector P  one can manipulate the 
structure of the geometry. We will come back to this later. 

After we have succeeded in deriving a complete set of field quantities from the 
geometry, we want to check whether these quantities satisfy the field equations 
and the conservation laws and which equation of state results for the cosmos. 

It can be seen that we will come across a term |1'P  in the progress of the cal-
culations. The analogy to (3.3) 

( )|1' 1'1 'U= −P P                       (4.34) 

will prove. After some calculation we find the Friedman equation 

1

' '
|| ' ' 2

1' ' 's s
s sU U U+ = −P

R
,                 (4.35) 

quite analogous to (3.4). Now the lateral field equations have to be calculated. 
With the definition of the graded derivatives 

1 2

3

'
'|| ' '| ' ' || ' '| ' ' ' '

' '
'|| ' '| ' ' ' ' ' ' '

' ' , ' ,

'

s
n m n m n m n m m n s

s s
n m n m m n s m n s

U U B B U B

C C U C B C

= = −

= − −
           (4.36) 

we get the remaining subequations of Einstein’s field equations 

( )

( )

2 2

3 3

' '
' || ' ' ' || ' '2 2

' '
'|| ' ' ' || ' '2 2

1

0

0

1

1

0

1 1, 1

1 1, 2

s s
m n m n s s

s s
m n m n s s

B B B B B B

C C C C C C

 
 
 + = − + = − +
 
 
 
 
 
 + = − + = − +
 
 
 

P

P

P
R R

P
R R

,   (4.37) 

which, according to the scheme (2.10), we compose to the Ricci tensor and to the 
Ricci scalar 

( ) 2

61R = + P
R

.                      (4.38) 
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The result is the stress-energy-momentum tensor 

' '

0

m n

p
p

T
p

µ

− 
 − =
 −
 
                   

(4.39) 

with 

( ) 02 2

1 31 2 ,pκ κµ= − + =P
R R

.               (4.40) 

From the conservation law results for the pressure 

( )|1' 0 1''p p Uµ= − + .                    (4.41) 

From (4.40) we get 

( ) ( ) ( )0 0 1' |1'2 2

2 21 , 'p p Uκ µ κ µ+ = − + =P P
R R

. 

It follows 

( )|1' 1'1 'U= −P P ,                     (4.42) 

thus showing that the ansatz (4.34) is correct. From the conservation law also 
follows 

( )0|4' 0 4'3 'p Uµ µ= − + .                   (4.43) 

With the value (4.40) for 0µ  we have previously inferred the relation (4.17). 
The relation (3.6) is valid for the expanding model, as well as the equation of 
state (3.7) of the cosmic fluid 

( ) 0
1 1 2
3

p µ= − + P .                    (4.44) 

So far, we have worked very successfully with the function P  without speci-
fying it. From (4.43) one recognizes that P  is closely connected with the equa-
tion of state of the cosmos. By restructuring one gets 

0

0

31
2

pµ
µ
+

= −P .                     (4.45) 

In the literature the relation 

0p wµ=                          (4.46) 

is common. With this one can write 

( ) ( )1 11 3 , 1 2
2 3

w w= − + = − +P P .              (4.47) 

It can be seen that the function P  allows a class of different cosms, depend-
ing on the choice of the equation of state. We will discuss some specific cases lat-
er on. 

In addition, we want to note that the P-geometry can also be derived from the 
freely falling system of the seed metric. One has for the inhomogeneous trans-
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formation law 
' ' " " ' " '

' ' ' ' ' " " " ' '
ˆ' "s r r n s s s

m n m r n s r n m nA L A l= +P                (4.48) 

with 

{ }' ' "
' ' " '| ' ', 0,0,0,1

'
s s s

m n s n m m E
il L L l α= =
R

.            (4.49) 

With this and the Lorentz relations one can easily obtain the already known 
quantities of the comoving system m’. However, it must be noted that a return to 
the dS auxiliary model is possible only if the conditions for this model are satis-
fied, viz .const=R , ' 0=R . 

5. The P-Model in the Non-Comoving System 

The cosmologists endeavor to find field quantities and field equations also for 
the non-comoving system. Although we believe that a representation in the 
non-comoving system does not provide any new insights, we nevertheless show 
that such a representation is possible and that the P-model proves to be extreme-
ly robust to transformations. 

First, the meaning of a non-comoving observer must be clarified. In the lite-
rature, one finds the demand .r const= , i.e. the fixing of the radial coordinate r 
of the higher-dimensional embedding space. However, it is obvious that such an 
observer does not comove with the expansion but still moves with respect to an 
adjacent observer, e.g. to an observer located on the arbitrarily chosen pole of the 
pseudo-hyper sphere. 

For the distance of the non-comoving observer from the pole one has specifically 

2 2
0

1 d arcsin , sin
1

r rl r r
r

η η= = = =
−

∫ R R R
RR

. 

In an expanding cosmos its radius R  depends on time, and its polar angle 
η  also changes if one holds the radial coordinate r tight at a fixed position. Thus, 
the condition .r const=  is quite artificial for an expanding cosmos. 

In order to complement the P-model in the sense above, field quantities and 
field equations still have to be revealed in the non-comoving system. The Lorentz 
transformation is given by (4.2). The lateral field quantities transform homoge-
neously and can be taken from (2.7). However, more attention is given to the 
radial field quantities which transform inhomogeneously according to 

'm m mU U L= + . 

The L-term 

 m m m mL G f l= + −                       (5.1) 

we have already calculated in (4.30). One now has to perform 
'

'' , ' 'm
m m m m m mU U L U L U= + = .                (5.2) 

One gets 

2 2 '
'

1ˆ ˆ, ,0,0,0 , m
m m R R m m R R m m mU U v U v Lα α = − = − = 

 
P R R R

R
    (5.3) 
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and with this after some calculation the Friedman equation in the non-comoving 
system 

1
|| 2

s s
s sU U U+ = −

P
R

.                     (5.4) 

Comparison with (4.35) shows that the U-equation is form invariant. With 
(5.3) we recognize that the radial force U of the non-comoving system does not 
reduce to that of the static auxiliary model. That would only be the case if 

4' 0=R , i.e., if .const=R . 
The lateral field equations again are formulated with the graded derivative. 

According to (5.3) these equations now contain terms with |mR  

( ) ( )

2

3

2 3

1 1 1 4

|| 2

4 1 1 1

1 1 1 4

|| 2

4 1 1 1

|| ||2 2

1

0

0

1

1

0

ˆ ˆ

01 ,
0

ˆ ˆ

ˆ ˆ

01 ,
0

ˆ ˆ

1 11 , 2 .

m n m n

m n m n

s s s s
s s s s

U U

B B B

U U

U U

C C C

U U

B B B C C C

 − − 
  
  + = − +   
      − + 
 − − 
  
  + = − +   
      − + 

+ = − + + = − +

P

P

R R

R

R R

R R

R

R R

P P
R R     

(5.5) 

From this one gains 

( ) ( )

( )

11 1 1 22 332 2

44 1 1 14 1 42

2

1 1ˆ2 2 , 2

3 ˆ ˆ2 , 2

32 1

R U R R

R U R U

R

= + + = = +

= − =

= +

P R P
R R

R R
R

P
R

. 

In the non-comoving system, the stress-energy-momentum tensor has the 
form 

( )
( ) ( )

2 2
11 0 22 33

2 2 2
41 0 44 0 0

, , ,

, .

T p v p T p T p

T i v p T v p

α µ

α µ µ α µ

= − − + = − = −

= − + = + +
          (5.6) 

Now all that one has to do is to show how the quite different expressions in 
(5.5) and (5.6) interrelate. First, we take from (4.45) 

0

0

31
2

p µ
µ
+

− =P .                      (5.7) 

Furthermore, we get with (4.19) and (5.3) 

( )( ) ( )

( ) ( )

2 2
1 1 0

2
1 1 0

1 1ˆ2 2 1

1 1ˆ2 2 1

R R R

R R R

U v i v i va v p
r

U v i va i v p
r

α α α α κ µ

α α α α κ µ

 = − − − − = + 
 

 = − − − = + 
 

R P
R

R P
R

. 
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Thus, it can be seen that the stress-energy-momentum tensor (5.6) takes the 
expected values in the non-comoving system. 

6. Discussion of the Model 

In the previous section we have set up a cosmological model with the help of a 
projector, which is formulated very generally. However, there is still the possibil-
ity of giving the model a specific appearance by specializing the projector. Now 
we assign some specific values to the projector. We recall that P  is a function 
and a specification can only be made after the model has been worked out. 

Case 1: 

0 0 02 2

3 31, 1, , , 0,w p p pκ κµ µ µ= = − = − = + = = −P
R R

. 

According to (4.19) one obtains 0m =R , .const=R , i.e. a model which is 
geometrically represented by a pseudo-hyper sphere of constant radius. In addi-
tion, if is 0Ev =  one obtains the dS cosmos, i.e. the static model from which 
our considerations started. 

For a comoving observer in the dS cosmos the polar angle η  changes on the 
pseudo-hyper sphere. There is a change in position of these observers by a geo-
metrically induced drifting. 

However, if one has 0Ev ≠ , one obtains the extended dS cosmos, which we 
have discussed in detail in [5]. This model is also static, i.e. has constant radius 
R  of the pseudo-hypersphere. However, observer crowds drift apart at a speed 
less than that of free fall. 

The motion of the galaxies in this model is accelerated. The Hubble law de-
viates from its linear form. This can affect the calculated redshift values. If we 
take the acceleration into account it may be possible to better adapt the calcu-
lated values to the measured ones. 

Both models, with or without Ev , have the same equation of state. As a result, 
no matter flow or energy transport can be detected in the comoving system. Both 
models have the speed of light as the highest recession velocity, which, however, 
can only be reached asymptotically. After an infinitely long time, the recession 
velocity approaches infinitely close the speed of light. The location that can only 
be reached by the galaxies asymptotically, i.e. after an infinite time, is the cosmic 
horizon. This is the equatorial surface of the hyper sphere, related to the pole of 
which the observer of the galaxies is located. Any observer can define himself as 
a pole on the hyper sphere and has his own individual cosmic horizon. 

Both models have repulsive forces responsible for the galaxy drift. These forces 
are directly derived from the dS ansatz. 

Case 2: 

0 0 02 2

1 1 3 10, , , , 3 0,
3 3

w p p pκ κµ µ µ= = − = − = + = = −P
P P

. 

With 0Ev =  one obtains the expanding subluminal cosmos [7]. Repulsive 
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forces act in the system in rest of this model, the comoving system is free of 
forces. The subluminal cosmos expands in free fall; the Einstein elevator prin-
ciple applies [6]. In the non-comoving system the metric has a form from which 
can be read the curvature parameter 1k = . This means that the space is posi-
tively curved and finite. After a transformation into the comoving system, the 
metric has the form 0k = . This does not mean that the space is flat now. It ra-
ther means that the free-falling observers do not experience forces, they recog-
nize the space to be locally flat, in the same way as the free-falling observers do 
in the Schwarzschild field. 

In this model, the polar angle η  on the pseudo-hyper sphere does not 
change in time for the comoving observer. With sin , d d 'r r r Tη= =R  one 
finds 

sin cosr η ηη= +  R R . 

According to [7] is in this case 1=R  and one finally has for the recession 
velocity 

sin , 0v r η η= = =  . 

The subluminal model is closely related to the hR ct=  model by Melia. Me-
lia’s calculated redshift values fit the observed values much better than those of 
FRW models. Therefore, our subluminal model is very close to Nature. 

With 0Ev ≠  results an extended subluminal model which does not prove to be 
particularly useful. 

Case 3: 

0 0 02 2

1 1 3 11, , , , 3 0,
3 3

w p p pκ κµ µ µ= − = = = − = =P
R R

. 

The pressure in this model is positive. By some authors the equation of state is 
attributed to an ultra-relativistic gas. What is interesting about this model is that 
in the comoving system, the system in which we live, an attractive force 

1' 1' 1'
1' , ' 'E EE v E Uα= − = −
R

 

occurs. It corresponds to the repulsive force 1'
1' E EE vα=
R

 of the extended dS 

model. The corresponding 4th components '' mE  of the field quantities are iden-
tical in both models.  

This new force depends on the quantity Ev . If one puts this quantity zero, this 
force vanishes. Then the cosmos expands in free fall. The new attractive force is 
based on two geometric features of the model: the implementation of a second 
speed that reduces the recession velocity, and the operation of the projector. The 
latter changes the sign in (4.33). The attractive force stems from geometry and 
may explain the dark matter without our having to assume new types of matter 
as the source of this force. Thus, dark matter would be a property of space. 

In the general P-model the polar angle η  changes on the pseudo-hyper 
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sphere for the comoving observer. If one recalls the relation sinr η= R  and 

Rv r= R  one now obtains with cos 1R Raη α= =  the relations 

2

1 1 1, R R
r rr v vη α α  = − = − 

 



   R R
R R R RR

. 

The change of the polar angle has two causes: the geometric structure of the 
model with the forces that occur, and the expansion of the cosmos. With (4.18) 
the above expression is reduced to 

1vη α= P
R

. 

Depending on the choice of P  the cases discussed above are included in this 
relation. For 1=P  the change of η  has as the cause the geometric structure 
on the pseudo-hyper sphere and for 0=P  no temporal change of η  takes 
place. 

Let us return to the problem of the recession velocity. Combining (4.11) with 
(4.19) one has 

{ } { }( )| ' , 0,0, 0,0,0,1 1R R
R m

a av i v i vα α α = − + −  
 

P
R R

. 

From this it is clear that only for 0=P , i.e. for the subluminal model, 

|4' 0Rv =  results. Since, by definition, |4'Ev  is zero, the recession velocity is also 
temporally constant. For other values for P  acceleration occurs. It turns out 
that both the generalized dS model and the P-model are exact solutions to Eins-
tein’s field equations that allow accelerations of the recession velocity. Further-
more, one gets for 1= −P  and from ( ) 26 1R = + P R  the relation 0R =  and 
thus also 0T =  in accordance with the equation of state 0 3 0pµ − = . 

By recent measurements of the redshift of galaxies one has found that the ex-
pansion of the universe is likely to be accelerated. We therefore want to work out 
how the acceleration for individual models in different frames of reference is ob-
tainable. In the textbooks it is mentioned that the acceleration is not covariant, 
i.e. it does not transform like vectors between differently moving frames of ref-
erence. The problem is rarely discussed in more detail. But we can say that we 
have already outlined the problem, although it has not been explicitly stated. Ac-
celerations are identical to forces on the unit mass. We have already discussed in 
detail how the forces behave in the various frames of reference. The forces are the 
field quantities and are components of the Ricci-rotation coefficients. The acce-
lerations thus transform according to the inhomogeneous transformation law of 
the Ricci-rotation coefficients. 

With 
{ } { }' , 0,0, , ' ,0,0,n nm i v u i vα α α α= = −  

we go into the equations of motion for the comoving observer 'u , represented 
in the frame of reference m 

( ) 4'
|| 4'1' 1' 1' 1'|4'

1' ' ' ' 'n s
n sm u u i v A L U Uα

α
= − − = − − = −  
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and thus we get the inhomogeneous transformation law of the Ricci-rotation 
coefficients. In a more conventional way the above relation is written as 

1' 1'
1 1 d '

' d '
D v v U U
DT T

α α
α α

= + = . 

The total acceleration of a galaxy relative to the non-comoving system is 
composed of a kinematic component resulting from the motion of the reference 
systems relative to each other 

1'
1 d'

d '
vL

T
α

α
=  

and a geometric component originating from the basic structure of the model. 
The latter can be positive, negative, or zero, depending on the value assigned to 
the projector. ‘L is the Lorentz term of the inhomogeneous transformation law of 
the Ricci-rotation coefficients, which we have got to know in (4.29). 

In addition, if one multiplies the last but one equation with the rest mass 0m  
of the galactic matter, one finally has 

0 1' 0 1'
1 1 d '

' d '
Dmv mv m U m U
DT Tα α

= + = . 

The kinematic expression contained therein corresponds to the definition of 
the Lorentz force in the theory of electrodynamics. Finally, one has  

'
'

Dmv m U
DT

=




 

in referring to classical mechanics. The geometric term and the kinematic term 
have, according to Sec. 4, the form 

1' 1', 'R R RU v L vαα α α= − =
P P
R R

. 

The total force ' 'U U L= +  is repulsive for 1=P , i.e. for the extended dS 
model, but the kinematic term has the opposite sign and decreases the repulsive 
effect. For the simple dS model with ,R Rv v α α= = , the two terms cancel each 
other. The comoving observers are in free fall. For 0=P , for the subluminal 
model, is ' 0U = . Thus, no forces act on the comoving observers. For 1= −P  
both forces have an attractive effect and add up to 

1' 1'
1

E EE U vα= − = −
R

 

and suggest an effect that can be attributed to dark matter. 
From the 4th component of the equation of motion one obtains with the inter-

mediate result 

|4' 1''i v Lα α= −  

the relation 

4
1'

' '
'

D u v U
DT

α=  
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and after multiplication with the proper mass 0m  

( )'
'

D m m v U
DT

=


  

one has calculated the work that must be done in transporting the galaxies in the 
time interval d 'T . 

7. Conclusions 

A strict geometric treatment of cosmology allows for the ability to modify the 
underlying geometry to reveal certain physical properties of the cosmos. Thus, 
the calculated recession velocity of the galaxies can be reduced, enforcing an ac-
celeration of these and implementing attractive forces that can be attributed to 
dark matter. Such forces can also be responsible for ensuring that the internal 
structures of the galaxies are stable and not subject to the expansion of the un-
iverse. 

Although the model proposed here is not very close to Nature, it contains ma-
thematical methods that prove to be useful in the construction of cosmological 
models. 

Because of the homogeneity of the universe, the new attractive forces are ac-
tive throughout the universe and are not limited to galaxies, although this would 
be desirable. Here one could pursue an idea that was initiated by Einstein and 
Strauss [8] and was taken up by some other authors: The insertion of matter 
condensates into the homogeneous cosmic fluid. 

In additions, the approach with 1= −P  seems to be too simple. A look at the 
interior Schwarzschild solution, from which we have borrowed the projector 
technology, shows that only a more complicated function for P  leads to a func-
tioning model. Nevertheless, it is encouraging that three known cosmological 
models can be obtained from the P-model, i.e. the dS model, the extended dS 
model, and the subluminal model. The P-model leaves open the possibility of de-
signing the projector so that the model takes up new structures that may possibly 
explain the properties of our world. 
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