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Abstract 
This study focuses on the mechanical response of silicon on porous silicon 
bilayer cantilevers ended with a seismic mass. The porous silicon is intended 
to provide an alternative to decrease the cantilever stiffness for low-frequency 
MEMS applications. The first eigenfrequency of the cantilever is obtained 
using static deflection obtained under classical Euler-Bernoulli assumptions 
and Rayleigh method. In order to estimate the errors due to small-strain ap-
proximation and Euler-Bernoulli theory, the analytical results were validated 
through 3D finite element simulations for different cantilever geometries and 
porosities. Both bulk silicon and silicon on porous silicon bilayer cantilevers 
ended with a seismic mass were fabricated and we measured the first eigen-
frequency (f0) and quality factor (Q) by using a laser Doppler vibrometer. In 
agreement with the theoretical predictions we found that, when compared to 
bulk silicon cantilevers, the first eigenfrequency of a bilayer cantilever con-
taining 6% porous silicon (at 50% porosity) on 94% bulk silicon is lowered by 
5%, from (5447 ± 120) Hz to ≈ 5198 Hz. This decrease is also accompanied by 
a reduction of the quality factor by two. 
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1. Introduction 

The concept of energy harvesting gained new relevance since the recent devel-
opment of ultra low-power embedded electronic devices. Energy harvesting 
from ambient vibrations enables new exciting opportunities for low power nano- 
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and microsystems (MEMS) and line-powered motor-driven machines are excel-
lent vibration sources to harvest from, with a frequency component of line 
power frequency at 60 (or 50 in non-U.S. countries) and twice-line-frequency at 
120 (and 100 in non-U.S. countries). A variety of vibration sources are present in 
the environment and their typical frequency range of interest is 60 - 200 [1]. 
Thus, a first challenge is the design of miniaturized resonators able to reach such 
low frequencies, and this is particularly difficult since eigenfrequencies tend to 
increase with shrinking dimensions and mass. Moreover, in order to use elec-
tro-active materials in thin films, a second challenge in device miniaturization is 
to preserve the good intrinsic coupling between these materials. The maximum 
power one can expect to retrieve depends on this coupling and on the quality 
factor of the harvesting device. 

The classical inertial generator consists of a thin cantilever ended by a seismic 
mass (also called proof mass) and is designed to convert, via a transduction 
mechanism, a part of the kinetic energy present in the ambient vibrations into 
electrical energy. Transmitted through the frame of the device to the suspended 
mass, ambient vibrations represent external excitations and the elastic strains in 
the cantilever can be converted to generate electricity by means of a classical 
piezoelectric material [2]. 

This study focuses on the silicon cantilever and, in particular, on the use of 
porous silicon (PS) as an alternative to decrease the cantilever stiffness [3]. Since 
making a resonator with a low eigenfrequency can be a challenge even using a 
large seismic mass, we shall examine here only the simplest situation of a canti-
lever without both the electrode and the electro-active material. A versatile ma-
terial, porous silicon, can display different morphologies by varying the forma-
tion parameters and doping level of the substrate [4]. Its high reactivity and high 
specific surface make it a good candidate for sensors based on electrical or elec-
tromechanical devices. Previous tentatives of integration of PS on silicon canti-
levers were already reported in the literature for the development of chemical 
sensors. The formation of a thin, 100 thick surface layer of PS on silicon mi-
cro-cantilevers by vapor phase strain etching was presented by S. Stolyarova et 
al. [5]. For present purposes anodization of silicon [6] seems more appropriate 
since it works well up to very thick layers (up to substrate thickness). With such 
process, Garel et al. [7] reported Si/n-type porous-Si (6/5) bilayer cantilevers 
with eigenfrequency 0 385.71 kHzf =  and quality factor 760Q = . 

The paper is organized as follows: the second section gives a brief overview of 
the mechanical properties of PS with a particular accent on the interplay be-
tween the stiffness of PS and the first eigenfrequency of the cantilever. The third 
section presents the design of the cantilever and, for completeness, the analytical 
formulas for eigenfrequencies in the classical framework of multilayered beams 
under Euler-Bernoulli assumptions. We also provide a comparison between the 
analytical formulae and finite elements computation results in the fully three- 
dimensional framework in finite strains. These results comfort the analytical 

 

DOI: 10.4236/wjm.2018.811031 432 World Journal of Mechanics 
 

https://doi.org/10.4236/wjm.2018.811031


C. Malhaire et al. 
 

predictions and confirm that the intrinsic geometric nonlinearities of the fully 
three-dimensional problem including the seismic mass can be neglected. The 
fourth section explains the samples preparation and the method used to measure 
eigenfrequencies. The mechanical response measured on a series of samples 
shows that, as expected, the first eigenfrequency follow closely the predicted ef-
fect and the use of PS allows to decrease the cantilever stiffness. 

2. Preliminaries  
2.1. Elasticity of Porous Silicon  

Young’s moduli for different values of porosity for porous silicon layers were 
investigated by X-ray diffraction, acoustic techniques, nanoindentation and 
Brillouin scattering. The obtained values are summarized and discussed in [8]. A 
good approximation for the Young’s modulus in a p+-type PS material containing 
three-dimensional arrangement of open pores is given by  

( )22 1 ,p b r bE CE CE pρ= = −                      (1) 

where Ep and Eb stand for the Young’s moduli of porous and bulk silicon, re-
spectively, C is a constant including all the geometric scaling factors, rρ  is the 
relative density and p the porosity. This approximation is consistent with the lit-
erature [9] [10] and was confirmed in [11] in the particular case of nano-porous 
silicon containing pores with cubic symmetry. Obtained from a discrete model 
including near-neighbors (NN) and next-to-near-neighbors (NNN) interactions 
the model proposed in [11] fits particularly well previous mentioned experi-
mental results. Moreover, the model is able to predict the more complex anisot-
ropic behavior in situations where, due to directional anodization, the resulting 
macroscopic PS is strongly anisotropic. Back to the cubic case, it has been shown 
in [11] that the shear modulus and the Poisson ratio obey  

( ) ( )41 , 1 .p b p bG G p pν ν= − = −                   (2) 

2.2. Porous Silicon for a Low Frequency Resonator  

Let us consider a simple cantilever clamped at one end without any seismic 
mass. Denoting by L the cantilever length, by w and t the width and the thick-
ness of its cross section respectively, by bρ  the mass density and Eb the Young’s 
modulus of the bulk silicon, the first eigenfrequency is given by  

2

2 ,
34π

b
b

b

Etf
L

α
ρ

=                          (3) 

where 1.875α   is the first positive solution of the (characteristic) equation 
cos 1 coshα α= − . For a PS cantilever with the same geometry, as the Young’s 
modulus follows the rule given in (1) but ( )1p b pρ ρ= −  we obtain  

1 .p bf f p= −                           (4) 
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It follows that using porous silicon, one can decrease the eigenfrequencies of 
the cantilever and this remark was the starting point of our study. For techno-
logical reasons (fabrication limitations) the cantilevers we studied were merely 
two-layer materials: Si/PS at various thicknesses. For that case the derivation of 
eigenfrequencies and comparison with numerical values provided by finite ele-
ment method computations under more general assumptions (finite strains in 
the fully three-dimensional framework) will be presented in the next section. 

2.3. Geometry of the Bilayer Cantilever  

In a fully functional energy-harvesting device, a bottom electrode, a piezoelectric 
material and a top electrode will cover the upper side of the cantilever. In order 
to investigate the mechanical behavior of the harvesting device we shall focus in 
the following only on a Si/PS cantilever and a generic geometry of the structure 
is illustrated in Figure 1. 

3. Analytical Results and Comparison with Finite  
Element Results  

3.1. Neutral Axis and Flexural Stiffness of a Bilayer Cantilever  

In a bilayer beam, the position of the neutral axis, denoted 0z  and measured 
from the bottom face of the cantilever, is given by  

( ) ( )
( )

2 2

0

2 2 2
,

2
b b p b p p p p b b b p

b b p p b b p p

E t t t E t E t E t t t
z

E t E t E t E t

+ + + +
= =

+ +
         (5) 

where tp and tb are the thicknesses of porous (bottom) layer and bulk (upper) 
layer, respectively. Using 3 12b bI wt=  and 3 12p pI wt=  for the quadratic 
moment of inertia with respect to their centroid axis for the bulk and porous 
layers respectively, the flexural stiffness of the bilayer, further denoted EI can be 
computed as  

( )( ) ( )( )
( ) ( )

2 2
0 0

22 2 2 2

2 2

4
.

12

b b b p b p p p p

b b p p b p b p b b p p

b b p p

EI E I wt t t z E I wt z t

E t E t E E t t t t t tw
E t E t

= + + − + + −

+ + + +
=

+

     (6) 

 

 
Figure 1. Design of the two-layer Si/Porous Si cantilever with 
seismic mass (half structure). 
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As expected, the last relation, symmetric with respect to interchange of sub-
scripts p and b, reduces to ( )3

12b pEI Ew t t= +  in the case of equal elastic 
moduli. 

3.2. Static Deformation  

For completeness, we shall present in this subsection analytical results for the 
deflection of a generic bilayer cantilever in two cases (a) a first one when when 
the cantilever is loaded by a point load at its end and the mass of the cantilever is 
neglected (b) a second case that generalizes the first one by including the effect 
of its own weight and that of the seismic mass. 

Denoting by F the load due to the seismic mass and assuming that: 1) this load 
acts at 2SMx L L= +  and 2) the cantilever is rigid for x L> , the classical 
Euler-Bernoulli theory gives the static vertical deflection of the massless cantile-
ver as  

( )
( ) ( )

2 3 2 3 0

12 6 2 3
SM

SM SM SM

x L L x x LFd
EI L L L x L L L L x L L

 + − ≤ ≤  = 
 + − + ≤ ≤ +  

      (7) 

If the mass of the bilayer cantilever cannot be neglected (this is the case of a 
thick beam) assuming an uniform load ( )b b p pq g t t wρ ρ= − +  the vertical de-
flection obtained is given by  

( ) ( )( )
( ) ( )

2 2 2

2 2

4 6 2 01
24 4 12 ( ) 2 (2 3 )

SM

SM SM SM

qx qL F x qL F L L x x L
d

EI L qL F L L x L qL F L L L x L L

  − + + + + ≤ ≤ = 
 + + − + + ≤ ≤ +  

  

(8) 

In both cases, for SML x L L< < + , the seismic mass is assumed to be rigid so 
that the deflection for x L>  is completely determined by the values of ( )d L  
and ( )d L′  obtained for x L≤ . 

In order to estimate the effect of the cantilever bending on a thin piezo-layer 
one can compute the axial strain at the upper surface. The longitudinal deforma-
tion along the beam, at a distance h from the neutral axis, is obtained as 

xx hε κ= − , where the (linearized) curvature of the cantilever is given by 
2 2d xκ = ∂ ∂ . At the upper free-surface of the cantilever, we obtain  

( )
2

0 2 .xx b p
dt t z

x
∂

= − + −
∂

                       (9) 

3.3. Estimate for the First Eigenfrequency  

The fundamental frequency of the massless cantilever beam with a concentrated 
mass at 2SMx L L= +  (see notations in Figure 1) is given by [12]  

( )

1 2

0 33

1 3 ,
2π 1 2SM

EIf
M L η

 
 =
 + 

                 (10) 

where η  represents the non-dimensional number: SML Lη = . The result 
overestimates the first eigenfrequency of the cantilever since in contrast to our 
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previous assumptions, in (10) one does not assume that the part of the beam lo-
cated between L and 2SML L+  is rigid. 

An alternative approach consists in using the solution for the cantilever static 
deflection in order to provide a better estimate (more exactly, an overestimate of 
it [13]) of the first eigenfrequency by using the Rayleigh principle. A similar ap-
proach was successfully used to calculate the eigenfrequency of a silicon accel-
erometer [14]. Using (7), neglecting the rigidity of the cantilever for x L>  and 
assuming that the seismic mass is much larger than the cantilever mass, the first 
eigenfrequency of the system including the seismic mass located at 

2SMx L L= +  is given by  

( )
( )

1 22

0 3 2 3 4

12 4 6 31 .
2π 16 48 63 42 12SM

EIf
M L

η η

η η η η

 + +
 =
 + + + + 

        (11) 

As an example, if 18 mbt = µ , 2 mpt = µ  (i.e., only 10% of the total cantile-
ver thickness is a PS layer) at 50% porosity, if the bilayer dimensions are 

2 mmL = , 500 mw = µ  and seismic mass dimensions are 1 mmSM SML w= =  
and 450 mSMt = µ , Equation (11) leads to 0 454 Hzf =  for the bilayer cantile-
ver. Same dimensions for a bulk silicon cantilever ( 20 mbt = µ , 0 mpt = µ ) 
provide 0 507 Hzf = , so that porosification of 10% of the cantilever thickness 
decreases the first eigenfrequency of about 10%. We conclude that even a rela-
tively thin PS layer could lead to a measurable change in the first eigenfrequency 
of the structure. 

Before fabrication and discussion of the experimental results, one must ensure 
of the reliability of the given analytical models in the case of some common ge-
ometries found in MEMS devices, under actual simplifying assumptions (one 
dimensional model for bending under Euler-Bernoulli hypothesis, neglecting the 
rigidity of the cantilever for x L>  and accounting only for the seismic mass) 
can be confirmed in a more general framework (finite strains, three-dimensional 
elasticity). For this reasons the next subsection compares the analytical results 
for the deflection, surface strain and first eigenfrequency for different bilayer 
cantilevers to finite element simulations of fully three-dimensional structures in 
finite strains. 

3.4. FEM Results and Comparison with Analytical Estimates  

Finite element simulations were performed using Ansys 14 and the 
three-dimensional model of the cantilever was built using 3D, 20-nodes, struc-
tural solid (SOLID186) elements. These elements have three degrees of freedom 
per node (translations in the nodal x, y and z directions) and they support stress 
stiffening, large deflection and large strain capabilities. The structure was 
meshed with quadrilateral-shaped elements and clamped at one end. For modal 
analysis, the default Block Lanczos mode-extraction method was used. Model’s 
mechanical parameters are summarized in Table 1, assuming 1C =  in (1). 
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Table 1. Mechanical parameters used for FEM simulations. 

Properties ANSYS parameters Values for Si Values for Porous Si 

Young’s modulus (GPa) EX, EY 169 ( )2169 1 p× −  

 EZ 130 ( )2130 1 p× −  

Poisson ratio NUXY 0.0625 ( )0.0625 1 p× −  

 NUYZ, NUXZ 0.2785 ( )0.2785 1 p× −  

Shear modulus (GPa) GXY 50.85 ( )450.85 1 p× −  

 GYZ, GXZ 79.51 ( )479.51 1 p× −  

Mass density (kg·m−3) DENS 2320 ( )2320 1 p× −  

 
The comparison between analytical models and FEM results for different PS 

porosities is shown for three cantilever geometries that differ only by the beam 
thickness: 10 mb pt t= = µ , 25 μm or 50 μm. Other common dimensions are: 

2 mmL =  and 500 mw = µ  for the cantilever and 1 mmSM SML w= =  and 
450 mSMt = µ  for the seismic mass. The evolution of the first eigenfrequency as 

a function of the porosity is plotted on Figure 2. Both models, (11) and (10), 
slightly overestimate the first eigenfrequency, but the Rayleigh’s model gives 
values which are closest to those obtained by FEM. Eigenfrequency values calcu-
lated by (11) are between 1.24% (for the thinnest beam) up to 2% (the thickest 
beam) agreement with those obtained by FEM. These relative errors are, at least, 
about 1.5 times more important, when compared with the Timoshenko’s 
model (the difference in both models is obvious only for the thickest cantilever 
in Figure 2). 

For the thinnest cantilever which consists of 10 Si on top of 10 PS, the simu-
lated and calculated static deflections are plotted in Figure 3. The difference 
between the results obtained for cantilevers without mass (7) and cantilevers 
with mass (8) is undistinguishable (less than 2%). Thus, the massless analytical 
model is in agreement within 2% with FEM simulations. 

The simulated and calculated (9) longitudinal deformations L  on the sur-
face of the cantilever are shown in Figure 4. For SML x L L≤ ≤ + , the deforma-
tion is null: the hypothesis of a rigid seismic mass is confirmed by FEM. 

4. Experiments  
4.1. Sample Preparation  

A series of devices were fabricated from a p-type (boron doped), 4 inches, dou-
ble-side polished, (100)-oriented silicon wafer with a resistivity of 0.1 - 10 Ω∙m. 
The process steps are summarized in Figure 5. On the frontside, a 300 nm alu-
minum layer was deposited by evaporation then patterned to define the geome-
try of the cantilevers (S1813 photoresist and Al etchant). This was followed by a 
standard annealing for 30 minutes at 450˚C in nitrogen ambient in order to 
form an Ohmic contact [15]. Cavities with a mesa were achieved on the backside 
of the wafer by Deep Reactive Ion Etching (DRIE) using a thick (20 μm) 
AZ40XT photoresist mask. The nano-porous (pore width smaller than 2 nm) 
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Figure 2. Evolution of the first eigenfrequency for three different 
Si/Porous Silicon cantilevers as a function of porosity. Common di-
mensions: 2 mmL = , 500 mw = µ . For the seismic mass: 

1 mmSM SML w= =  and 450 mSMt = µ . 
 

 
Figure 3. Static deflection of cantilevers for different Porous Silicon 
porosities (10 μm Si/10 μm Porous Si). Dimensions of cantilever and 
of the seismic mass are the same as in Figure 2. 

 
silicon layer was formed on the backside of the obtained membranes by electro-
chemical etching (anodization) of silicon in a mixture of hydrofluoridric acid 
(HF) and ethanol (9 mL HF 48% + 1 mL ethanol) for 20 minutes at a constant 
current density of 43 mA/cm2. The aluminum pattern on the frontside of the 
wafer acted as a positive electrode for the anodization process of silicon. A 
platinum wire, in contact with the HF solution, was used as a negative electrode. 
Each membrane was processed individually. A picture of the silicon wafer dur-
ing the anodisation process is shown in Figure 6. Several tentatives were made 
in order to define the right current density such that to obtain the PS formation 
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Figure 4. Longitudinal deformation on the cantilever surface. Dimen-
sions: 2 mm 500 m 20 m× µ × µ  (10 μm Si/10 μm PS). Seismic mass: 
1 mm 1 mm 450 m× × µ . 

 

 
Figure 5. Process steps for the realization of Si and Si/Porous Si 
cantilevers. 

 

 
Figure 6. Backside of the micro-machined wafer with some po-
rosified membranes—dark zones in the picture. 
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regime and avoid the electropolishing regime. Finally, the Al patterns were used 
as a mask for a second Si DRIE step in order to release the cantilevers from the 
substrate. The bulk density of PS (density of the material including pores and 
interparticle voids [16]) was estimated to be about 50%. 

4.2. Results  

After dicing, each sample was mounted on a vibrating pot and analyzed by Laser 
Doppler Vibrometry (Polytec MSA-500 micro-system analyzer). The measurement 
system and a close view of a sample are shown in Figure 7. The measured fun-
damental frequencies and quality factors for different Si cantilevers and one 
composite Si/PS cantilever are reported in Table 2. We obtained an average of 
the first eigenfrequency for the six silicon cantilevers: ( )5447 120 Hz± , and the 
quality factor Q was measured to ( )2870 400± . For the Si/PS bilayer cantilever 
(sample #1) the first measured eigenfrequency was 0 5198 Hzf ≈  with a quality 
factor 1529Q = . The thickness of all cantilevers was measured at ( )106 3 m± µ . 
By observing the side of the beam using a microscope for the Si/PS cantilever the  
 

 
Figure 7. Characterization of a sample by laser Doppler vi-
brometry (Polytec MSA500). 

 
Table 2. Experimental results on Si and Si/Porous Si cantilevers. 

Sample # Beam type 
with Al after Al removal 

f0 (Hz) Q f0 (Hz) Q 

1 Si/Porous Si 5198.4 1529   

2 Si 5471.6 2880 5464.1 3214 

3 Si 5567.2 2930   

4 Si 5501.6 3236   

5 Si 5334.6 2540   

6 Si 5366.4 3157   

7 Si 5442.3 2474 5434.4 2860 

Mean value Si ≈5447 ≈2870   
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PS thickness was measured as ( )6.0 0.5 m± µ . The cantilever geometry was 
1.3 mmL =  and 400 mw = µ , respectively while the seismic mass was esti-

mated at ( )1.7 0.1 mg± . With that geometry, (11) leads to 0 5818 Hzf =  for a 
Si cantilever and 0 5462 Hzf =  for a Si/PS cantilever, which is about 5% 
agreement with measurements. The difference may be explained by geometrical 
uncertainties, particularly on the seismic mass. 

We can conclude that, in agreement with the theoretical estimate, the first ei-
genfrequency of the Si/PS cantilever decreases by about 250 Hz compared to that 
of Si cantilevers (same cantilever thickness) while the quality factor was divided 
by almost a factor two. Measurements were also made on samples #2 and #7 af-
ter aluminum removal: the change in f0 was limited to less than 0.2% whereas Q 
increased by about 15%. This shows that any non-uniformity of the aluminum 
thickness cannot explain the observed difference between the Si/PS sample and 
other Si samples, which is clearly the result of the stiffness decrease in the Si/PS 
sample with respect to bulk Si. 

5. Conclusions  

The starting point of this work was the observation that the use of porous silicon 
in a bilayer cantilever may decrease the first eigenfrequency of the structure 
{cantilever + seismic mass}. The analytical estimate of this qualitative feature 
was firstly computed under classical Euler-Bernoulli one-dimensional bending 
model, neglecting the stiffness of the seismic mass and the mass contribution of 
the cantilever. Before comparison to measured data, the analytical results were 
confirmed by numerical results obtained by FEM under much general assump-
tions including three-dimensional elasticity and finite strains. Fabrication of a 
series of bulk Si and Si/PS cantilevers was performed and the measured eigen-
frequencies show a good agreement with the predicted results. We notice also a 
decrease of the quality factor in that Si/PS bilayer, when compared to bulk Si. 

Among the open perspectives beyond this work we mention here first, the use 
of thick porous silicon layer which is expected to significantly decrease the ei-
genfrequencies of the system. The main drawback along path may be the me-
chanical resistance of the porous silicon. Second, the systematic study of the op-
timal geometries (mechanical and inertial properties of the seismic mass and 
cantilever) in order to improve quality factors at resonant frequencies may be of 
interest not only for energy harvesting application but also as a generic result. 
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