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Abstract 
Because magnetic moment is spatial in classical magnetostatics, we progress 
beyond the axiomatic concept of the point particle electron in physics. Orbital 
magnetic moment is well grounded in spherical harmonics in a central field. 
There, quantum numbers are integral. The half-integral spinor moment ap-
pears to be due to cylindrical motion in an external applied magnetic field; 
when this is zero ( 0ext

zB = ), the spin states are degenerate. Consider lifting 
the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely 
derived electronic magnetic radius shares the identical value to the Compton 
wavelength. 
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1. Introduction 

There are many types of science. In mathematical quantum theory, the electron 
is a point particle with intrinsic spin given axiomatically. This representation is 
unphysical because magnetostatics provides for magnetic moment m described 
spatially via Ampere’s law so that m = Ias, where I is the current flowing around 
a loop with surface area as. Though mathematical conclusions are occasionally so 
unexpected that physical hypotheses are not credible without them; in the logic 
of physics, a hypothesis is meaningless if it is not falsifiable [1] [2]. This restric-
tion includes axioms1 since they are always “logically true” in mathematics. Here 

 

 

1The hypothesis and axiom are both ideal, but the former is tested physically, while the latter is a 
(sometimes enabling; sometimes misleading) mathematical short-cut or deliberate abstraction. The 
experiment is real. 
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we develop a spatial representation for intrinsic spin. It will be described on the 
basis of dispersion dynamics [3], summarized below. The spin was first observed 
in the Stern-Gerlach experiment as a quantized phenomenon. A single beam of 
Ag atoms (each having its outer electron shell with azimuthal quantum number l 
= 0; and therefore orbital magnetic quantum number ml = 0) divided into two 
beams under a magnetic field gradient. The result demonstrated, not a conti-
nuous distribution of magnetic moment, but quantized intrinsic spin with ms = 
±1/2. 

The orbital spin that is described in spherical wave mechanics by means of the 
magnetic quantum number ml, is relatively unproblematic. It is described in the 
harmonic bases used with the Schrödinger equation. The bases describe atomic 
currents and associated magnetic moments that couple to magnetic intensity in-
side ferromagnetic and paramagnetic materials. Orbital moment is therefore a 
foil for exploring the less obvious intrinsic moment. Indeed, the two moments 
couple intimately in atomic structure, and they precess together in externally 
applied magnetic fields [4]. Moreover, in atoms with multiple electrons in open 
shells, diverse coupling schemes describe the interactions of orbital moments 
with intrinsic spin. The schemes are accurately represented in atomic spectros-
copy. They are also significant in spin resonance and in resonance imaging. 

Perhaps the greatest significance for spin lies in the Pauli exclusion principle, 
because spin doubles the number of states allowed for indistinguishable Fer-
mions having states of the same orbital quantum numbers. The spinor states are 
sometimes represented by Pauli spin matrices [5]. 

Dispersion dynamics [3] [6] [7] [8] [9] is based on the formula in special rela-
tivity which contains the functional relationship between energy E, momentum 
p and rest mass mo of a free body, f(E, p, mo) = 0. In wave mechanics, this trans-
lates to f(ω, k, mo, V) = 0, by substitution with angular frequency in Planck’s law; 
with wave vector in the de Broglie hypothesis; and with potential V < 0 for a 
bound particle. An immediate consequence is that the product of the group ve-
locity and phase velocity in a free particle is equal to the square of the speed of 
light c2. From the simple case of the free particle, second derivatives lead to a re-
presentation of Newton’s 2nd law of motion and of forces in electromagnetic 
fields. 

Meanwhile in special relativity, priority goes to the direction of propagation x; 
and this is represented in the stable wave packet by the two-dimensional 
space-time variable X(x, t) that will be described below. To these dimensions are 
added mass, and also electronic charge when electromagnetic interaction is in-
volved. The transverse plane is minimally relativistic, in two further dimensions, 
Y(y, t) and Z(z, t). Probability functions in these coordinates are taken subject to 
the normal quantization constraints commonly understood in the Bohr model of 
the atom [3], and in the spherical harmonics of the time independent Schrödin-
ger equation. The constraints are subject to ubiquitous motion due to uncer-
tainty. 
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When we study spin, we need to progress beyond Newton’s second law of 
motion. One consequence of this law is that angular acceleration of a body dL/dt 
in a circulating frame is proportional to the torque τ applied, which is normal to 
the force F in the second law. Though in an ideal couple (of forces), the net force 
is zero; continued application of the torque causes a body to precess about an 
axis of circulation. This occurs in gravitational fields, as in the gyroscope, and 
also in electromagnetic fields, as in spin2. From comparisons between orbital 
spin and intrinsic spin in the context of the stable wave packet, it will be possible 
to derive a physical model that is consistent in all three phenomena: orbital spin, 
intrinsic spin and precessing torques [10]. 

2. Dispersion Dynamics in Summary 
2.1. Wave-Particle Duality 

The most fundamental feature of modern physics is wave-particle duality3. It is 
best expressed by the stable wave packet: self-evidently stable as the travelling 
wave group for a free particle or photon: 

( )
2

2exp , with
2
XA X X i kx tφ ω
σ

 
= ⋅ + = − 

 
            (1) 

as illustrated in Figure 1. The mean wave vector k  variable and mean angular 
frequency ω  are stable, not only because they are mean values of a symmetric 
wave function; but they are guaranteed stable by respective conservation of 
energy and momentum; and triple guaranteed by symmetry in space-time. In the 
direction of propagation, X is an imaginary variable that causes φ to oscillate in  

 

 
Figure 1. Stable wave packet (Equation (1)) containing envelope with group velocity vg 
(violet arrow) and real (orange) and imaginary (green) parts of the carrier wave with 
phase velocity vp (orange arrow). 

 

 

2By converse, the Lorentz force is a torque on a charged particle moving across a magnetic field. 
The torque axis τ is proportional to the acceleration of particle angular momentum dL/dt and is 
normal to both the velocity and magnetic field intensity, which in combination, are proportional 
causes for the torque [3]. 
3The information in this section has been written in greater detail elsewhere; but here the emphasis 
is directed, with cursory references to other specific applications of the theory. 
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the complex exponential function exp(X). This describes the first part of the 
wave-particle duality. The other argument in the exponential function, exp(X2/2σ2), 
is real and describes the particle. Here, the denominator σ is particular because it 
depends on initial conditions, but it is stable during propagation in free space as 
a consequence of Newton’s first law of motion. The normalizing amplitude A 
depends on the coherence σ and, in free space, is therefore equally stable. The 
envelope depends on the square of X which is a function of four variables. Two 
are already considered, so we are left with the variables x and t that describe the 
profile. Since the other variables are all stable, this profile is also stable. Follow-
ing Dirac’s opinion [11], it has been supposed that the wave packet is unstable; 
but Equation (1) enables new perspectives, including the dispersion dynamics 
exemplified in the following analysis. 

2.2. Solutions for the Particle Function f(ω,k,m0,V) = 0 

From equation (1) are also derived Planck’s law, E = ħω, the de Broglie hypothe-
sis p = ħk, and several conservation rules. Solve f(ω, k, m0, V) = 0, first for the 
free particle with rest mass mo in potential V = 0. The relativistic Klein-Gordon 
equation, ( ) ( )2 2

0 0m xφ− = , operating on Equation (1) yields, for free par-
ticles, an algebraic equation in second order: 

2 2 2 2 2 2 4
0k c m cω = +                        (2) 

ħ being the reduced Planck constant and c the speed of light. This is the same 
equation as is obtained from Einstein’s relativistic formula, 2 2 2 2 4

0E p c m c= + , 
by substituting for energy using Planck’s law and for momentum using the de 
Broglie hypothesis. The equation can be simplified with appropriate units c = 1 
= ħ. Differentiation then gives a new result in relativity, for the product of group 
velocity dω/dk [3], and (more obviously) phase velocity ω/k: 

d 1
d g pv v
k k
ω ω
⋅ = ⋅ =  (=c2 in generalized units)          (3) 

The result is plotted in the positive quadrant of Figure 2 for the case rest mass 
mo = 1. The group velocity is well behaved: it tends to zero at low k and to c at 
large k exactly as in the special theory of relativity4. The phase velocity is faster 
than the speed of light c and is singular when k → 0: within this rest frame, time 
is Newtonian within the coherence σ. This has significance in the reduction of 
the wave packet during a quantum transition [3], most notably to support su-
perconductivity in the absence of electric field. Notice that particle-like proper-
ties (including speed) are represented by the absolute value of the wave group, 
while wave interference and superposition are represented by the complex phase 
of the carrier wave. 

Progressing to second derivatives, we can represent Newton’s second law of 
motion in terms of dispersion dynamics. An important application is the Hall 
effect which shows negative coefficients in Cu, n-type semiconductors, and high  

 

 

4Those that calculate the speed of the electron should know which velocity they mean to calculate cf. 
[11]. 
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Figure 2. Functions for a free particle in Dispersion Dynamics, where f(ω, k, m0) = 0, 
plotted against abscissae wave vector k. Ordinates are a mathematical set, being the ratios 
of the various physical quantities/unit values, including the energy of a relativistic free 

particle where ( )1 22 2 2
0m c k mω ′= = +  in case m0 = 1 (using units c = 1 = ħ); phase ve-

locity vp; = ω/k; group velocity dω/dk; dispersive curvature d2ω/dk2; and effective mass 
meff = (dvg/dk)−1. Negative mass [12] in antiparticles is the necessary solution for the un-
physical singularity when, alternately, ħk = −m0c [8]. The antiparticles are plotted with 
negative k, being the alternative representation for the Feynman-Stückelberg switching 
principle [13] [14], now: “an antiparticle traveling forward in time has negative momen-
tum.” 

 
temperature superconductors; but positive coefficients in Al, p-type semicon-
ductors and low temperature superconductors, all consistent with dispersion 
dynamics [3]. Differentiating again Equation (3): 

2 2

2 3

d dd 1 1
d dd

g g

eff

v v k a
k p m m Fk m

ω  
= = = − = = ′ ′ 

             (4) 

where m' is the relativistic mass ( )1 22 21o gm v c− ; effective mass meff is as de-

fined in the brackets; a is acceleration in Newton’s second law of motion corres-
ponding to applied force F, such as the Lorentz force in magnetism. Notice that 
a negative second derivative, or curvature, causes negative effective mass and 
negative acceleration due to an applied Lorentz force. This is why the Hall coef-
ficient is positive in p-type semiconductors, Al metal and high temperature su-
perconductors, where the charge carriers in these cases can only be electrons [3]. 

2.3. Quantization by Harmonics 

Then Quantum physics becomes a consequence of wave motion, combined with 
spatio-temporal, self-interference constraints on bound states: as in spectral 
emissions and absorptions between quantized atomic terms. For example, with-
out the quantization provided in the Bohr atomic model and by the Schrödinger 
equation, wave functions would destructively self-interfere. The energy is quan-
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tized in the harmonic basis vectors. 
Two important facts are: the expected energy or relativistic mass, integrated in 

time over the packet in Equation (1), is equal to ω ; while the expected mo-
mentum, integrated over space, is equal to k . This description is a physical, 
non-axiomatic description of quantization. These conditions are set by initial 
and final states. We will see how the model applies to intrinsic spin. Notice that 
in the calculation of spectral lines, such as the Lyman α for the hydrogen atom, 
rest mass energy cancels between the ground and excited terms. 

As another physical description, the Uncertainty Principle can be derived 
from Equation (1) by Fourier transforms [3]. The derivation accounts for nega-
tive “uncertainties”, as occurs in Fresnel diffraction in the near field. 

2.4. Velocity 

Dirac’s calculation for the speed of the electron found it equal to c [11]. We un-
derstand that calculation to fail by relativity which implies infinite mass-energy 
at that speed, as also does his “jitter”. By contrast, the phase velocity, ω/k, brings 
clarity. It breaks the light barrier. Can it be measured? Yes, as the inverse of the 
group velocity, or as the ratio of energy to momentum. But is it real? No: for 
spatio-temporal reasons the energy in the packet is ω , but the wave function 
is complex so that energy is carried by the absolute group, dφ φ τ∗∫ ; not by the 

phase. What has to be understood is how peaks in the complex carrier 
wave—whether real or imaginary—appear, grow, pass through the group, and 
disappear, as if elastic. Their importance lies in superposition and interference. 

2.5. Highly Relativistic and Non-Relativistic Approximations 

Two extreme regimes are commonly identified: relativistic when op m c , and 
non-relativistic when op m c . 

Relativistically, at high ok m , (simplified units) both the group velocity 
and phase velocity tend to the speed of light: vg, vp → c, as in the massless photon 
travelling in free space. Then d dk kω ω ν λ′= = , the product of oscillational 
frequency ν' with wavelength. Conductance depends on the group velocity. 

At low ok m , non-relativistic values approximate: 

( )( )1 22 2 2 21 2o o o oE m p c m m p m= + ≈ +               (5a) 

In classical mechanics, the mass energy is ignored as constant in mechanical or 
chemical changes, as it is in Schrödinger’s equation which is likewise non-relativistic. 
Moving on from the free particle, when the potential V < 0 is included, the 
Schrödinger eigenvalue ε corresponds with the result of the virial theorem, so that 
the expectation value for 2

02 2V p m≈ −  (Figure 3) and: 
2 2  2 ok mε ≈                          (5b) 

using the simplified units previously described. The kinetic energy for the free 
particle is positive; while the eigenvalue in a potential V < 0 is similar, but negative.  
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Figure 3. Following the Virial theorem, the expectation value for the potential energy is 
double the expectation for the negative of the kinetic energy on, for example, an electron 
bound by a Coulomb potential. The difference is the eigenvalue ε. In Dispersion Dynam-
ics, the non-relativistic group velocity is approximately half the ratio of the ener-
gy/momentum, vg → ε/2p, as in classical mechanics. However, when k  mo, then vg → 
k/ω ≈ c. 

 
Whether free or bound, the group velocity is given by: 

2 2
o o

g
E m m

v
p k

ω− −
= =                       (6) 

or ε/2p in the system of Schrödinger. This is the velocity that is proportional to 
the Lorentz force of magnetism for a charged particle moving in a magnetic 
field, as in Hall effect measurements mentioned earlier. 

3. Intrinsic Spin 
Dimensions 

Intrinsic spin is a physical quantity. Our new starting point is the stable wave 
packet of Equation (1) which is 2-dimensional in time and space. To these are 
added relativistic mass and electromagnetic charge. It is well known that the 
transverse plane is weakly relativistic, for example after application of a trans-
verse force, the transverse component of the energy: 

2

2
y

y
x

p
E

p
=                           (7) 

where momentum in the propagation direction replaces rest mass in the classical 
expression for kinetic energy. This fact shows that the transverse wave motion is 
dependent on the propagation. We assume therefore that the transverse compo-
nents and propagation components of the 4-dimensional wave must be related 
in phase. The force transforms the propagation direction: 
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ˆ ˆ
x x yp p p′ → +i j                         (8) 

as indicated by the Cartesian unit vectors. Components of angular momentum 
are illustrated in Figure 4. Since the momentum change is normal to an angular 
momentum, the change is accompanied by a torque [10] operating on the trans-
verse plane. This is due to a law of conservation in angular momentum and re-
sults in spin precession. In the absence of applied external magnetic intensity in 
the vertical direction 0ext

zB = , presume ωz = 0, i.e. for a plane wave in free 
space. The spin states are degenerate. When 0ext

zB > , presume that ωz increases 
by induction, as in normal diamagnetism and in the Meissner-Ochsenfeld effect 
in superconductors. The degeneracy is then lifted and spin up states split from 
spin down. (The spin current does not decay; it is resistanceless. Under the di-
amagnetic hypothesis, spin in a Fermion is superconductive at room tempera-
ture, lacking a critical temperature.) 

In the case of the Ag atoms observed in the Stern-Gerlach experiment, the 
origin for the magnetic quantization is due, not to the central atomic potential, 
but to diamagnetic Bohr orbits conceived, not at the atomic scale, but in an elec-
tron scale in the diamagnetic response to Bz. Without quantization the orbits 
would self-interfere and self-distruct, so the fact that ms = ±1/2 implies that the 
diamagnetic Bohr orbit diameters are restricted. 

In principle, a free beta ray is restricted in the same way. An experimental ob-
servation of splitting would indicate localization within the wave group because 
the splitting might not be uniquely quantized if it depends on the vagary in the  

 

 
Figure 4. Wave packet showing components of angular momentum: ωx in the horizontal 
propagation direction; and in the transverse plane ωy and ωz. In this particular packet, the 
transverse plane coincides with a circle through the vertical, viewed obliquely. Absolute 
values of the real (dark blue) and imaginary parts (brown) are projected vertically (green 
line) and in the horizontal plane (light blue and orange). 

https://doi.org/10.4236/jmp.2018.913145


A. J. Bourdillon 
 

 

DOI: 10.4236/jmp.2018.913145 2303 Journal of Modern Physics 
 

volume of the wave packet extended by its coherence σ. Notice however that, 
whereas a beta ray is less restricted than the atomic orbit in Ag, Stokes’ theorem 
applies in an evaluation of the moment in a travelling wave group, and that its 
electronic charge is normalized through the amplitude A in Equation (1). We 
will return to this after finding the magnetic radius. 

More generally, there are further features that delineate the nature of intrinsic 
spin. Firstly, the spin and is independent of wavevector k, but depends on mass 
(ω in simplified units) when in the non-relativistic regime. Secondly, the in-
duced currents in atomic beams imply a magnetic moment μ with electron 
magnetic radius rm: 

2
s mIa I rµ = = π                          (9) 

Meanwhile in the transverse plane, suppose that any angular frequencies are 
in phase with the frequency in the direction of propagation x, so that ω = ωx = ωy 
= ωz. These angular frequencies are coherent because of intersecting overlaps on 
the two-dimensional planes that are normal to them. (The frequencies are inde-
pendent of mass components (Equation (7)) in angular momentum.) 

These frequencies determine the current, so that: 

2

2
π

π m B s j
e gr mµ µω

= =                      (10) 

where e is the electron charge; μB = eħ/2me is the Bohr magneton with electron 
mass me ~ mo; and gs ≈ 2 is the gyromagnetic ratio which makes the moment of 
the spinor approximately integral in μB when the spinor is half integral. The 
magnetic electron radius is defined when: 

2
2 21

2
π

π m
B

e
ec

rµ ω ω
µ

⋅ ⋅= =                     (11) 

by substituting ħω = mec2, while I = eω/2π. Then the magnetic electron radius, 

( ) 133.86159323 35 10mr c ω −= = ×                 (12) 

A value that is identical to the electron Compton wavelength λe [15], and 
therefore α times the Bohr radius ao where α is the fine structure constant. The 
value is also α−1 times the classical electron radius re that is calculated by sup-
posing the mass of the electron is all electrostatic energy. The magnetic radius 
provides a limiting size for magnetic moment due to intrinsic spin that owes to a 
cylindrical applied field intensity. 

The derivation applies to excited states of Ag where the angular momentum 
l > 0, as it does to atoms having multiple electrons in Russell-Saunders, L-S, 
spin-orbit coupling,; or in J-J coupling etc. Returning to Equation (12), the 
magnetic radius is a limiting value when the current is given by eω/2π. A smaller 
current that is spread over a larger radius might yield the same moment consis-
tent with Stokes’ theorem. However, such variation in radius would break the 
requirement for quantization in both wave phenomena and in magnetization: 
the wave function, where it repeats, must not self-destruct; and concomitantly, 
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the magnetization is itself quantized as demonstrated by Stern and Gerlach. It 
therefore appears that the magnetic radius is fixed by quantization and describes 
the quantized size of the electron, i.e. less than two orders of magnitude shorter 
than the Bohr radius for the atom, λe = αao. Atomic spin-orbit coupling then be-
comes the interaction of a localized electron with an atomic wave function. The 
explanation represents logically-pure, quantum physics. 

An extension of the method (Equations (10)-(12)) shows, within an order of 
magnitude, that: 

0

~ p m

B g

v r
v a

µ
µ

                         (13) 

the numerator being due to phase harmonics in the cylindrical symmetry of B 
about the localized electron; the denominator to real charge current about the 
spherical atomic field (Equation (9)). The former is on particle scales; the latter 
on atomic scales. These scales physicalize the mathematical short-cut implicit in 
its idea of a point particle. 

Notice that, in terms of wave-particle duality, ω is a wave property dependent 
on energy and equal to relativistic mass (using simplified units); k is a particle 
property dependent on momentum, tending to zero in the rest frame where it is 
opposed by vibrational uncertainty. Quantized energy depends on k in the cir-
cumference for Bohr model for the atom, or in the time independent Schrödin-
ger equation; Equation (1) describes a probability amplitude for finding an elec-
tron with finite size and magnetic radius c/w. 

The derivation described here for intrinsic spin takes evidence from dominant 
data obtained from atomic and chemical physics, but it extends to isospin in 
atomic nuclei and magnetic moments in elementary particles. The same transverse 
motion exists there with similar outcomes on different scales. Likewise, uncharged 
mesons and hadrons contain charged quarks and have magnetic moments [15]. 
Less is known about the neutrino [16]. Furthermore, any theory for intrinsic spin 
should provide a physical explanation for Pauli exclusion: here it is represented by 
indegeneracy of Fermionic states, consequential on residual ambient magnetism. If 
otherwise, uncertainties in angular momentum of degenerate states would cause 
those states having identical orbital and spin quantum numbers to interfere de-
structively. Bosons, by contrast, are not so constrained because their wave func-
tions are real—notably in the photon—so that phases can lock coherently onto ex-
ternal influence. Interference is then constructive. Superconducting Cooper pairs, 
containing both chiralities in phase (ek + e−k), do the same. 

4. Conclusion 

Intrinsic spin is often described by a supposedly physical axiom in a mathemati-
cal construct of possible worlds. Orbital magnetic moment from wave functions 
in a central field is comparatively unproblematic. By contrast, intrinsic spin 
states are degenerate in zero field, so that lifting of degeneracy by a cylindrical 
magnetic field implies diamagnetism with a magnetic electronic radius. We use 
the stable wave packet and dispersion dynamics to derive, independently, a value 
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that turns out identical to the Compton wavelength. 
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Glossary of Symbols in Order of Appearance 
ext
zB  z-component of magnetic field 

m   magnetic moment 
I   current flowing around a loop 
as   surface area vector normal 
l   azimuthal quantum number 
ml   orbital magnetic quantum number 
ms  spin magnetic quantum number 
E  energy 
p  momentum 
mo  rest mass 
ω  angular frequency, ω  mean 
k  wave vector, k  mean 
V  potential 
c  speed of light 
X  space-time variable (propagation direction) 
x  coordinate in direction of propagation 
t   time coordinate 
Y,y,Z,z  corresponding transverse coordinates 
dL/dt angular acceleration 
τ   torque 
F   force 
φ  wave function 
σ  coherence 
ħ  reduced Planck constant 
        d’Alembertian operator 
vg  group velocity = dω/dk 
vp  phase velocity = ω/k 
meff  effective mass 
a  acceleration 
m’  relativistic mass 
v’  oscillational frequency = ω/2π 
ε  eigenvalue 
px,py,px  components of momentum 
ωx,ω,ωz, components of angular frequency 
rm   electron magnetic radius 
μ  magnetic moment 
e  electronic charge 
μB  Bohr magneton 
gs  gyromagnetic ratio 
λe  Compton wavelength 
ao  Bohr radius 
α  fine structure constant 
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L  total orbital quantum number 
S  total spin quantum number 
J  total magnetic quantum number 
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