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Abstract 

This paper is the third part of the complex combat dynamics series, called 
tensor-centric warfare (for the first two parts, see [1] [2]). In the present pa-
per, we extend the tensor combat model from [1] and [2] to model the dy-
namics of delta-strikes/missiles, which are temporally confined strong kinetic 
effects. The scenarios analyzed here include both deterministic and random 
delta-strikes which mimic single, multiple and continuous-time missile at-
tacks. We also look at the bidirectional random strike as well as the general 
Hamilton-Langevin dynamics framework and provide an interpretation of 
the results obtained through simulation. 
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1. Introduction 

Various aspects of warfare modelling have a long and successful history in 
Defence Science & Technology Group, Australia. To get a glimpse of the combat 
modelling in the previous decade, see [3] [4] [5] [6] [7], and in this decade, see 
[8]-[15]. 

In the first two papers of the tensor-centric warfare (TCW) series [1] [2], we 
have developed combat tensor dynamics (generalized from the Lanchester-type 
equations) with included commutators (for analysis of warfare symmetry) and 
entropic Lie-dragging (for modeling warfare uncertainty), given by the following 
tensor equations: 
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where the Red and Blue forces are defined as vector-fields, ( ),a aR R t= x  and 
( ),a aB B t= x , and the terms on the right-hand side respectively represent linear 

Lanchester-type terms, quadratic Lanchester-type terms, commutators and 
entropic Lie-dragging terms (for detailed explanation see description of Equation 
(7) in [2]). 

In the present paper, we extend this smooth tensor combat dynamics, with 
various combinations of temporally confined strong kinetic effects, which we call 
delta-strikes/missiles, developed in a perturbative fashion (adding more-and-more 
complex terms at each step). To allow for analysis and comparison of the 
methodology we have adopted a similar scenario framework to the first 
TCW-paper [1], with added various combinations of delta-strikes/missiles. We 
formulate this combat strike dynamics around the high-dimensional Dirac 
delta-function ( )tδ 1 (see Figure 1). Since the response of any (complex) system 
to the delta-function input is called the impulse response, in the simulations 
below we will look at various impulse responses of the Red and Blue forces to the 
delta-strikes from the opposite side. 

The initial scenario consists of nine Red and nine Blue aircraft which can be 
potential targets and could also act as a missile strike force. This will allow us to 
analyze the combat dynamics of our delta-strikes. We will initially look at a 
single strike which will involve a missile attached by a Red entity targeting and 
striking a single Blue target and after a short delay Blue is responding in the 
same way. 

Then we introduce a multi-strike scenario which will model multiple missile 
attacks by Red on a Blue target and Blue responding in the same way. The 
multi-strike scenario is further extended by continuous (rapid) fire by Red on 
specific Blue targets and Blue responding in the same way. This discrete + 
continuous delta-strike spectrum is then naturally extended with a bidirectional 
random strike scenario, modeled and simulated to depict a missile exchange 
between the two adversaries. 

 

 

1Recall that the Dirac delta-function, ( )tδ , in mathematics called delta-distribution and in control 
engineering called impulse function, represents the limit of the sequence of zero-mean Gaussian dis-
tributions: 

( )
2

0

1lim exp .
πd

tt
dd

δ
→

  = −  
   

                             (2) 

Its main properties are: 

( ) ( ) ( ) ( ) ( ) ( )( ), 0
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Figure 1. Narrow Gaussian approximation for the shifted Dirac delta-function: 

( ) ( )210exp 100t tδ τ τ − = − −  , corresponding to the values of 0τ =  (center) and 2τ =  

(right). 

 
Next, we introduce stochastic forces of arbitrary (non-delta) nature into our 

model by utilizing a simple Langevin representation of the discrete, continuous 
and bidirectional delta-strike spectrum between the Red and Blue aircraft. In the 
final instance we give the formal Hamiltonian formulation of this stochastic 
Langevin model. This will allow for a probabilistic interpretation of the 
battlefield and hence allow for a problem solving capability which is much closer 
to the reality of warfare. 

Thus our aim is to develop sophisticated mathematical tools to aid problem 
formulation and solution rather than facilitate immediate predictive capability 
with unrealistically simplistic models (see [3] [4] [5] [6] [7], and [8]-[15]). 

2. Combat Dynamics with Delta-Strikes 

In this section we will perturbatively extend tensor Lie-Lanchester Equations 
(1) so to develop general combat tensor dynamics with both deterministic 
and random delta-strikes. We formulate this combat δ-strike dynamics in 
the following seven steps (using Einstein’s summation convention over 
repeated indices), corresponding to the physical background steps given in 
the Appendix. 

Single strike. We start with the pure deterministic framework, with the basic 
nD Red— aR  against Blue— aB  combat dynamics in n  with a single strike 
(rocket) on each side: 

( )
( )

Red : ,

Blue : ,

a a a b a
b R

a a a b a
b B

R R t

B B t

γ α δ τ

χ β δ τ

= − + −

= − + −








               (3) 
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where a
bγ  and a

bχ  are the Red and Blue “damping” coefficients, respectively, 
and Rτ  and Bτ  are the Red and Blue strike times; the terms with δ-functions 
represent single strikes/missiles. 

Multi-strike. Now we generalize δ-functions in Equations (3) to include N 
multi-strikes for the Red forces (happening at times R

jτ ) and M multi-strikes 
for the Blue forces (happening at times B

jτ ), representing one-at-a-time (or, 
discrete time) multi-missile launchers: 

( )

( )
1

1

Red : ,

Blue : .

N
a a a b a R

b j j
j
M

a a a b a B
b j j

j

R R t

B B t

γ α δ τ

χ β δ τ

=

=

= − + −

= − + −

∑

∑








               (4) 

Discrete and continuous striking spectra. Now we extend Equations (4) by 
adding continuous striking spectrum, representing many-at-a-time (or, 
continuous time) rocket launchers on both sides: 

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

1

1
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∑ ∫
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     (5) 

where δ-terms with sums correspond to discrete-time launchers (one rocket at a 
time) and δ-terms with integrals correspond to continuous-time launchers 
(many rockets at a time). 

Bidirectional random strikes. Now we extend Equations (5) by including 
bidirectional (±) random strikes (i.e., random bidirectional striking at each 
other), with Red- and Blue-related random numbers: ( ) [ ], 0,1R Bρ ρ ∈ : 

( ) ( ) ( )

( )( )

( ) ( ) ( )
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      (6) 

Simple Langevin equations. Now we move to the simple stochastic Langevin 
dynamics framework (see [16] [17] [18] [19]) and extend Equations (6) with 
random (non-delta) forces Red- ( )rnd

af t  and Blue- ( )rnd
ag t : 

( ) ( ) ( )
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Hamilton-Langevin dynamics. Finally, we formulate the general Langevin 
dynamics in the Hamiltonian (symplectic geometric) framework to be able to extend 
the simple random forces Red- ( )rnd

af t  and Blue- ( )rnd
ag t  in Equations (6) with the 

general Langevin forces derived from the hypothetical global Red-Blue combat 
Hamiltonian energy function, ( ),a aH R B , defined in an Ising-Hamiltonian 
fashion as: 

( )0ln , ,a b a a
abH J R B p R B = − = −    

where abJ  is the Red-Blue interaction tensor, defined as the combined 
Red-Blue Combat tensor (see [1]): a b

ab b a abJ A C ρ= , where ab abρ ρδ=  is the 
random identity matrix (or, random Kronecker delta), and ( )0 ,a ap R B  is the 
equilibrium probability distribution of the coupled ( ),a aR B -system. Besides, 
instead of the separate Poisson brackets ,a b

Bk T R R    for the Red forces and 
,a b

Bk T B B    for the Blue forces (with the Boltzmann and temperature 
constants), we will replace them with the coupled Red-Blue Poisson bracket 

,a aR B   , which is the Lie bracket commutator (from Equations (1)): 
[ ], Red,Bluea a a a

R BR B B R  = = = −  L L , where RL  and BL  denote the Lie 
derivatives in the direction of the Red and Blue vector-fields, respectively. In this 
way, we come to our final Red-Blue combat model in the form of tensor 
Hamilton-Langevin equations: 
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∑

∑ ∫
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.

 (8) 

This is our final tensor Lie-Lanchester combat model with δ-strikes/missiles. 
For completeness purpose, we finish this section with two probabilistic 

interpretations (compare with [16] [17] [18] [19]) of the random parts of the 
Hamilton-Langevin Equations (7): 
 Fokker-Planck equations: 

( ) ( )

( ) ( )

,
Red : , , ,

,
Blue : , , ,

a a b ab
a b b

a a b ab
a b b

P R t H HR B R P R t
t R B B

P B t H HB R B P B t
t B R R

γ

χ

∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂ 

 

with the Red and Blue stationary solutions given by the equilibrium distributions: 
( ), e H

RP R t c −=  and ( ), e H
BP B t c −=  with constants ( ),R Bc c ; and 

 Feynman path integrals: 

( ) ( )Red : d d , d d exp , ,R RP R R N R R L R R =  ∫ ∫     with 

( ), d , ;a b a b a a b ab
ab ab b b

H HL R R t R R R R R B R
B B

γ δ γ
 ∂ ∂   = − − +    ∂ ∂  

∫    

https://doi.org/10.4236/ica.2018.94009


V. Ivancevic et al. 
 

 

DOI: 10.4236/ica.2018.94009 112 Intelligent Control and Automation 
 

( ) ( )Blue : d d , d d exp , ,B BP B B M B B L B B =  ∫ ∫     with 

( ), d , ,a b a b a a b ab
ab ab b b

H HL B B t B B B B B R B
R R

γ δ χ
 ∂ ∂   = − − +    ∂ ∂  

∫    

where ( ),a aR B   represent the (Red, Blue) auxiliary-response variables and 
( ),N M  are their respective normalization constants. 

3. Simulations and Discussion 

Simulations of the combat strike-dynamics are performed in Mathematica@ as 
follows. For the calibration/comparing purpose, we firstly show the simulation 
of the tensor Lie-Lanchester Equations (1) given in Figure 2. Also, for better 
simulation results, we have approximated the Dirac δ-function by the narrow 
Gaussian (see Figure 1) implemented in Mathematica as:  

[ ] ( )2delta _, _ : 10Exp 100t tτ τ = − −  . We perform the complex 
impulse-response simulations as follows: 

1) We start with the single strike combat simulation (see Figure 3), given by 
Equations (3), with the following parameters: 10.4R tτ = , 10.6B tτ = , 10.5α ρ= , 

20.5β ρ= , 30.5a
bγ γ ρ= = , 40.5a

bχ χ ρ= = , where 1t tFin=  is the final 
simulation time (= 10 units), ( )1 2 3 4, , ,ρ ρ ρ ρ  are real pseudo-random numbers 
generated from the [0,1]-interval. 

2) Next, we simulate the multi-strike combat (see Figure 4), given by 
Equations (4), with the following new parameters: 15NN = ; 13MM = ; 

3) Then, we simulate both discrete and continuous strike-spectra (see Figure 
5), given by Equations (5). 

4) Then, we simulate bidirectional random strikes (see Figure 6), given by 
Equations (6). 

5) As a final simulation (see Figure 7), we have implemented the 
Hamilton-Langevin Equations (8), where we have simplified γ  and χ  tensors 
and both skipped the computation-heavy Lie bracket terms (used in [2] for 
determining the warfare symmetry) and additional random forces, since all 
implemented components already include random numbers. 

 

 
Figure 2. Sample simulation of the combat tensor Lie-Lanchester Equations (1)—for the comparison/calibration purpose: Red 
amplitude (left) is losing, Blue amplitude (center) is winning and Red-Blue phase plot (right) shows nine points of conflict; the 
amplitudes range from −50 to 50. 
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Figure 3. Sample Red-Blue combat simulation for 10 time units of the single strike Equations (3) with the parameters given in the 
text. We can see that the Red (attacker) strike comes first (left) and the Blue (defender) responds later (center). The amplitudes 
range up to 150. The Red-Blue phase-plot (right) already shows complex combat dynamics. 

 

 
Figure 4. Sample Red-Blue combat simulation for 10 time units of the multi-strike Equations (4) with the parameters given in the 
text. Here the amplitudes are several times higher than in the single strike, for the Red (left) the amplitude is all positive and for 
the Blue (center) it starts negative and then grows positive. The Red-Blue phase-plot (right) is even more complex. 

 

 
Figure 5. Sample Red-Blue combat simulation for 5 time units with both discrete and continuous strike-spectra given by 
Equations. (5) with the parameters given in the text. The amplitudes are similar as before, with the roles reversed: the Blue (center) 
the amplitude is all positive and for the Red (left) it starts negative and then grows positive. The Red-Blue phase-plot (right) is 
somewhat less complex, showing the filtering capacity of the integral in the continuous spectrum. 
 

 
Figure 6. Sample Red-Blue combat simulation for 3.3 time units with added bidirectional random strikes given by Eqs. (6) with 
the parameters given in the text. Since complexity increases, we had to shorten simulation time. A characteristic signature is 
shown in the Red-Blue phase plane. 
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Figure 7. Sample Red-Blue combat simulation for 3.3 time units with added Hamilton-Langevin strikes given by Equations (8) 
with the parameters given in the text. Here we have even higher complexity with a new signature in the Red-Blue phase plane. 
 

Now, we discuss various simulated scenarios with delta-strikes as follows: 
Single strike. The initial scenario consisted of nine Red and nine Blue aircraft 

which were both potential targets and missile strike forces. We have started with 
a single strike from each side, ( )a

Rtα δ τ−  on the Red side, and ( )a
Btβ δ τ−  

the Blue side, which involved a missile attached by a Red entity targeting and 
striking a single Blue target and after a short delay Blue was responding in the 
same way. We can see from Figure 3 that since the Red (attacker) strike comes 
first and the Blue (defender) responds later, the Red-Blue phase-plot already 
shows quite different and more complex dynamics than the smooth dynamics on 
the initial Figure 2. From control-theoretic perspective, in the time plots of the 
Red and Blue forces we can see the expected effect of the impulse control input 
followed by the transients. The effect of the single impulse on each side is the 
convergence of the trajectories in the phase plane, forming the first “combat 
signature” for this specific type of attack. 

Multi-strike. Next, we have introduced a discrete-time multi-missile attacks 
by Red, ( )1

N a R
j jj tα δ τ

=
−∑ , on a Blue target and Blue, ( )1

M a B
j jj tβ δ τ

=
−∑ , 

responding in the same way. We can see from Figure 4 that the amplitudes are 
now several times higher than in the single strike, for the Red the amplitude is all 
positive and for the Blue it starts negative and then grows positive. In contrast to 
the previous Figure, we can see now that the sequence of impulses leads to 
general irregularity, determined by the rate of the sequence of strikes, which 
cumulatively results in the increased complexity of the combat signature in the 
Red-Blue phase-plot. 

Discrete and continuous striking spectra. The above multi-strike scenario has 
been further extended by continuous-time fire by Red, ( ) ( )1

0
d

t a
Rt

t t tα δ τ−∫ , on 
specific Blue targets and Blue, ( ) ( )1

0
d

t a
Bt

t t tβ δ τ−∫ , responding in the same way. 
We can see from Figure 5 that the continuous spectrum defined by the integral 
of the high-dimensional impulse function has the “low-pass filtering” effect, 
which drastically reduces the overall complexity. This is related to the global 
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resonance of the Red-Blue combat system. In other words, tuning the time 
intervals between the strikes produces the resonance effect (like in the radio 
tuning to a station), giving the significant increase in the amplitudes for both 
forces—in a half time (five units) the amplitudes are about six times bigger. 
However, this reduction of the overall complexity has the highly-potent 
psychological effect, as was well-known as “Katyusha-effect’’ in the WW2: the 
continuous sound and vibration reduces morale and effects the combat readiness 
of the soldiers and commanders. 

Bidirectional random strikes. The above discrete + continuous delta-strike 
spectrum has been naturally extended with a bidirectional random strike scenario, 

( )( )1
Na R R

jj j
tα δ τ ρ

=
− ±∑  by the Red forces and ( )( )1

Ma B B
jj j

tβ δ τ ρ
=

− ±∑  by the 
Blue forces, simulated to depict a missile exchange between the two adversaries. 
We can see from Figure 6 that the overall combat complexity again increases 
but with obvious filtering effect from the continuous fire (many at a time). The 
combat signature in the Red-Blue phase-plot reappears, but is much smoother 
(low-pass filtering effect is still present). 

Hamilton-Langevin dynamics. In the final instance we have given the formal 
Hamilton-Langevin stochastic generalization of the previous models. This 
stochastic formulation allows for a probabilistic interpretation of the battlefield 
and hence allows for a problem solving capability which is much closer to the 
reality of warfare. We can see from Figure 7 that adding the Hamilton-Langevin 
stochastic (non-delta) forces to the combat scenario from the previous Figure 
again adds the complexity to the combat signature in the Red-Blue phase-plane. 
Basically, the more noise is added to dynamics, the dynamics becomes more 
complex. Introduction of random fluctuations into a complex dynamical/control 
system like our Red-Blue combat system, where the parts of the overall system 
are interacting (Red and Blue are engaging each other), results in the significant 
increase of the overall complexity/nonlinearity. However, we can see from the 
combat signature that the overall Red-Blue combat system is still performing 
within the edge of chaos (but not over the edge), where it is supposed to perform 
at its best (in the AI commutinty, it is generally assumed that neural networks have 
their highest performance at the edge of chaos, see [20] and the references therein). 

Complete TCW equation. (with transparent terms) read: 


( )
war.symmetry delta.strikesquad.Lanchaster Lie.dragginglin.LanchasterRed.vecfield

, H-L ,aa a b ab c d b a a a
b b cd R bR kA B k F R B R N R B Rδ = + + + + 





  

   



( )
war.symmetry delta.strikesquad.Lanchaster Lie.dragginglin.LanchasterBlue.vecfield

, H-L ,aa a b ab c d b a a a
b b cd B bB C R G R B B M B R Bκ κ δ = + + + + 




  

   

where Hamilton-Langevin delta strikes, ( )H-L aRδ  and ( )H-L aBδ , read: 

( ) ( ) ( ) ( ) ( )( )



1

0

disc.spectrum bidirect.rndcont.spectrum

1 1

oppon.dissipatRedHam.vecfield
self.dissipat

H-L d

,

N Nta a R a a R R
j j R jt jj j

a a a b a
b bb b

R t t t t t

H HR B R
B B

δ α δ τ α δ τ α δ τ ρ

γ γ

= =

= − + − + − ±

∂ ∂ + − −  ∂ ∂

∑ ∑∫
 



 

( )
rnd.force

rnd ,af t+
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( ) ( ) ( ) ( ) ( )( )



1

0

disc.spectrum bidirect.rndcont.spectrum

1 1

oppon.dissipatBlueHam.vecfield
self.dissipat

H-L d

,

M Mta a B a a B B
j j B jt jj j

a a a b a
b bb b

B t t t t t

H HB R B
R R

δ β δ τ β δ τ β δ τ ρ

χ χ

= =

= − + − + − ±

∂ ∂ + − −  ∂ ∂

∑ ∑∫
 





( )
rnd.force

rnd .ag t+





 

4. Conclusions and Future Work 

The purpose of this paper, the third part of the tensor-centric warfare (TCW) 
series, was to introduce a new framework for modeling complex warfighting 
(MCW), by combining continuous tensor quantities with temporally confined 
strong kinetic effects, which we call delta-strikes/missiles. The verification 
and/or validation of the proposed framework against the real military examples 
will be the subject of the future study. 

We have presented various combat Red-Blue dynamics of delta-strikes, both 
deterministic and random—together with the corresponding impulse responses 
on the opposite side. We have shown that the TCW methodology presented in 
our previous papers [1] and [2] can be applied to analyzing the dynamic 
behavior of both deterministic and random delta-strike which mimic single, 
multiple and continuous-time missile attacks. 

Also, Mathematica simulation of the Red-Blue pair of Fokker-Planck equations 
and the corresponding Red-Blue pair of Feynman path integrals is planned for 
the future study. Also, we foresee further development of the TCW framework 
to include tensors for learning and adaptations using deep learning. This will 
also involve developing the “Entropy Battle” software environment as an 
experimental testbed for future TCW development. The Entropy Battle will form 
the backbone of a future Battle Simulation Environment which is hoped to be 
utilized within the context of military planning. 
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Appendix: Deterministic and Random Strikes 

In this section we develop the necessary physical background of both 
deterministic (Newtonian) and random (Langevin) strikes, in the following 
seven steps (compare with [21]): 

Single strike. To start with, consider a one-dimensional (1D) damped motion 
of a ball of unit mass, moving with velocity v, within a viscous fluid with 
damping coefficient γ . The ball is pushed by an external striking force, defined 
in terms of the Dirac delta-function ( )tδ , with intensity/amplitude α , 
occurring at time t τ= , as: 

( ) ( )sng .f t tαδ τ= −                       (9) 

From the second Newton’s law we obtain the single-strike equation of motion: 

( ) ( ) ,v v t tγ αδ τ= − + −                    (10) 

where overdot represents the time derivative. The general solution of this 
ordinary differential equation (ODE) is given in terms of the Green function: 

( ) ( ) ( ) ( )

0 for
, where

e fort

t
v t G t G t

tγ τ

τ
α τ τ

τ− −

<= − − = 
≥

     (11) 

Multi-strike. Instead of a single strike given by the delta-force (9) we will now 
hit the ball by a series of N strikes with intensities jα , occurring at a sequence 
of times { }jτ , so that the total striking force becomes: 

( ) ( )dis
1

.
N

j j
j

f t tα δ τ
=

= −∑  

If we replace this multi-strike force into the ODE (10), we obtain the 
multi-strike equation of motion: 

( ) ( )
1

.
N

j j
j

v v t tγ α δ τ
=

= − + −∑                    (12) 

The general solution of the ODE (12) is: 

( ) ( ) ( ) ( )
1

0 for
, where

e forj

N j

j j j t
j j

t
v t G t G t

tγ τ

τ
α τ τ

τ− −
=

<= − − = 
≥

∑      (13) 

Discrete and continuous striking spectra. Now, we can imagine that, within 
a certain time interval, the strikes are continuously exerted on the ball, in a 
rapid-fire fashion, so that the total striking force ( )totf t  includes both the 
discrete spectrum ( )disf t  and a continuous spectrum ( )conf t : 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

tot dis con

1

con
1

d

d .

N t
j j t

j

N t
j j t

j

f t f t f t

t t

t f t t t

α δ τ α τ δ τ τ

α δ τ δ τ

=

=

= +

= − + −

≡ − + −

∑ ∫

∑ ∫

 

In this way we obtain the more general multi--strike equation of motion:  

https://doi.org/10.4236/ica.2018.94009


V. Ivancevic et al. 
 

 

DOI: 10.4236/ica.2018.94009 120 Intelligent Control and Automation 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

1

0

dis con

1

con
1

( ) d

d .

N t
j j t

j

N t
j j t

j

v v t f t f t

v t t t t t

v t t f t t t

γ

γ α δ τ α δ τ

γ α δ τ δ τ

=

=

= − + +

= − + − + −

≡ − + − + −

∑ ∫

∑ ∫



           (14) 

The general solution of Equation (14) is: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

con
1

con
1

d

e d ,

N t
j j t

j

N t t
j j t

j

v t G t f t G t t

G t f t tγ τ

α τ τ

α τ

=

− −

=

= − + −

= − +

∑ ∫

∑ ∫
            (15) 

where 

( ) ( )

0 for

e forj

j

j t
j

t
G t

tγ τ

τ
τ

τ− −

<− = 
≥

 

Bidirectional random strikes. Now, we introduce random strikes, by 
denoting the times at which strikes occur by jτ  and indicate their 1D direction 
by ( )1 j± , where the choice of the plus or minus sign is random. Assuming (for 
simplicity) the same intensity α  for all random strikes, the random striking 
force (with random numbers: [ ]0,1ρ ∈ ) can be defined as: 

( ) ( )( )rnd
1

.
N

j j
j

f t tα δ τ ρ
=

= − ±∑                  (16) 

Inclusion of the random striking force (16) into Equation (14) gives the 
randomized equation of motion: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )1

0

dis con rnd

1 1
( ) d .

N Nt
j j j jt

j j

v v t f t f t f t

v t t t t

γ

γ α δ τ α τ δ τ τ α δ τ ρ
= =

= − + + +

= − + − + − + − ±∑ ∑∫



   (17) 

The general solution of Equation (17) is: 

( ) ( ) ( ) ( ) ( )( )1

01 1
e d

N Nt t
j j j jt

j j
v t G t f G tγ τα τ τ τ α τ ρ− −

= =

= − + + − ±∑ ∑∫  

where 

( ) ( )

0 for

e forj

j

j t
j

t
G t

tγ τ

τ
τ

τ− −

<− = 
≥

 

Average random strikes. If we now observe many similar scenarios, we can 
perform an average ...  over all of them, to obtain the average random striking 
force: 

( ) ( )( )rnd
1

.
N

j j
j

f t tα δ τ ρ
=

= − ±∑                 (18) 

Assuming that the times jτ  at which the strikes happen are independent of 
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the direction ( )1 j±  of the strikes, we can split (18) into the product: 

( ) ( ) ( )rnd
1

.
N

j j
j

f t tα δ τ ρ
=

= − ±∑  

Next, if the strikes happen in both directions with equal frequency, they 
simply cancell each other: 

( ) ( )rnd1 0 0.j f t± = ⇒ =  

In order to characterize the strength of the force (16), consider a quadratic 
expression in f by calculating the correlation function for two times ,t t′  (see 
[22]): 

( ) ( ) ( )( ) ( )( )2
rnd rnd ,j kj k

j k
f t f t t t tα δ τ ρ δ ρ′ ′= − ± − ±∑ ∑  

which simplifies into a single sum as: 

( ) ( ) ( ) ( )2
rnd rnd ,j k

j
f t f t t t tα δ τ δ′ ′= − −∑          (19) 

since the ones for j k=  become 1 and for j k≠  cancel each other. This 
correlation function is usually evaluated by assuming the Poisson process for the 
times of the strikes. 

Simple Langevin equation. Now, if we assume: 1) that the average random 
striking force (18) vanishes, and 2) that the correlation function (19) can be 
further simplified as: 

( ) ( ) ( )rnd rnd 0 ,f t f t q t tδ′ = −                  (20) 

where 0t  denotes the mean time between any two strikes and 2
0q tα=  

represents the random fluctuation, the equation of motion driven solely by the 
random striking force ( )rndf t  becomes the simple Langevin equation: 

( ) ( )rnd .v v t f tγ= − +                       (21) 

Since both directions are equally possible, they cancel each other, and the 
average velocity vanishes. Therefore, from the integral solution (15) of Equation 
(14) we obtain 

( ) ( ) ( ) ( ) ( ) ( )
0 0

rnd rndd e e d .
t t t t

t t
v t v t f f γ τ γ ττ τ τ τ

′ ′ ′− − − −′ ′ ′= ∫ ∫        (22) 

In the steady--state, Equation (22) reduces to: 

( ) ( ) ( )e ,
2

tqv t v t γ τ

γ
− −′ =  

which, for equal times t and τ , simplifies into: 

( )2 .
2
qv t
γ

=  

Hamilton-Langevin equation. The simple 1D Langevin Equation (21) can be 
generalized in the framework of Hamiltonian dynamics (see [23]) to the 
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following nD form: 

( )rnd

1 1
, ,

n n

i B i j ij i
j jj j

H Hv k T v v f t
v v

γ
= =

∂ ∂ = − +  ∂ ∂∑ ∑             (23) 

where Bk  and T denote the Boltzmann constant and the temperature, ,i jv v    
represents the Poisson bracket and H is the Hamiltonian of the system given as 

( )0lnH p= − , where ( )0 ip v  is the equilibrium probability distribution of iv . 
The Gaussian-distributed random forces ( )rnd

if t  have the correlation function: 

( ) ( ) ( )rnd rnd 2 ,i j ijf t f t t tγ δ′ ′= −  

which implies the Onsager reciprocity relations for the damping coefficients 

ij jiγ γ= . 
Probabilistic interpretations. The Hamilton-Langevin Equation (23) has two 

probabilistic interpretations (see [24] [25]): 
 Fokker-Planck equation: 

( ) ( )
,

,
, , ,B i j ij

i j i j j

P v t H Hk T v v P v t
t v v v

γ
 ∂ ∂ ∂ ∂ = − +   ∂ ∂ ∂ ∂ 

∑  

with a stationary solution given by the equilibrium distribution: 
( ) ( )0, e H

iP v t p v c −= = , with some constant c; 
and 
 Feynman path integral: 

( ) ( )d d , d d exp , ,v vP v v N v v L v v=   ∫ ∫     with 

( )
,

, d , ,i ij j i ij j B i j ij
i j j j

H HL v v t v v v v k T v v
v v

γ δ γ
  ∂ ∂ = − − +    ∂ ∂   

∑∫      

where iv  represent the auxiliary-response variables and N is the normalization 
constant. 
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