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Abstract 
Several researches have been done to provide better alternative to the existing 
replacement models, but the research works did not adequately address the 
replacement problem for items that fail suddenly. Hence, a modified re-
placement model for items that fail suddenly has been proposed using the 
knowledge of probability distribution of failure times as well as that of varia-
ble replacement cost. The modified cost functions for implementing both in-
dividual and group replacements were derived. The modified cost functions 
were minimized using the principle of classical optimization in order to find 
the age at which replacement of items would be appropriate. Conditions un-
der which the individual and group replacement policies should be adopted 
were derived. Two real data sets on failure time of LED bulbs and their re-
placement costs were used to validate the theoretical claims of this work. In 
essence, goodness-of-fit test was used to select appropriate probability distri-
bution of failure times as well as that of replacement costs for data sets I and 
II respectively. The goodness-of-fit results showed that failure times of LED 
bulbs follow the Smallest Extreme Value and Laplace distributions for data 
sets I and II respectively. Similarly, it was observed that individual replace-
ment cost followed the two-parameter Gamma and Largest Extreme Value 
distributions for data sets I and II respectively. Further, the group replace-
ment cost was found to follow the log-normal and two-parameter Weibull 
distributions for data sets I and II respectively. Based on the empirical study, 
we observed that individual replacement policy is better than group replace-
ment policy in terms of cost minimization for both existing model and the 
proposed model. In view of the results, the proposed replacement policy was 
recommended over the existing one because it yielded lower replacement 
costs than the existing replacement model. 
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1. Introduction 

In many organizations, several job performing units like men, machines, equip-
ment, parts etc. are used for carrying out day-to-day activities. When any job 
performing unit is new, it works with full operating efficiency and due to usage 
or of time, it may become old and some of its components wear out and the op-
erating efficiency of the job performing unit falls down. In order to regain the ef-
ficiency, maintenance is carried out. The act of maintenance consists of replac-
ing the worn out part, or oiling or overhauling, or repair etc. Once maintenance 
is attended, the efficiency may not be regained to the previous level but a bit less 
than that of the previous level. For example, if the operating efficiency is 95 per 
cent and due to deterioration, the efficiency reduces to the level of 90 per cent, 
after maintenance, it may regain to the level of 93 percent. Once again due to 
usage, the efficiency falls down and the maintenance is to be attended. After 
some time, the efficiency reduces to such a level that the maintenance cost will 
become very high and due to low efficiency, the unit production cost will be very 
high and at this time, the management has to think of replacing the job per-
forming unit. According to [1], the replacement problem arises because of three 
factors: 1) the existing unit may have outlived its effective life and it may not be 
economical to allow it to continue in the organization, 2) the existing unit may 
have been destroyed through accident or otherwise and, 3) the present unit 
might have become obsolete because of new discoveries and better design of the 
equipment.  

The appropriate age at which replacement should be implemented with mi-
nimal cost constitutes a large class of problem in organizations. However, several 
works have been carried out in this direction. To this effect, two replacement 
models exist in literature, namely: replacement models for items that fail gradu-
ally with the passage of time and that for items which fail suddenly. Considera-
ble efforts have been made in addressing the problem of replacement of items 
that fail gradually with the passage of time [2], [3], [4], [5], [6]. Similarly, when 
items fail suddenly, two replacement models usually employed by analysts are 
individual and group replacement models. Several works have been done in this 
regard but these works assume that the cost of replacement remains fixed over 
time [7]. Practically, it is not possible for replacement cost to remain fixed over 
time due to the changing economic situations in the world. It is against this 
backdrop that this study was initiated with a view to developing a replacement 
model for items that fail suddenly based on the assumption that replacement 
cost is a random variable which can be governed by some probability laws. 
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The ultimate objective of this paper is to propose an improved model for op-
timal replacement of items that fail suddenly by putting forward a replacement 
model that will modify [7] replacement model based on the assumption that the 
cost of replacement is a random variable which must be governed by some 
probability laws. Thus, we will propose a cost function that accommodates re-
placement cost as a random variable and then utilize goodness-of-fit test to de-
termine the probability distribution for replacement cost as well as for failure 
times. 

2. Review of Replacement Model for Items That Fail  
Suddenly Where Cost Is Assumed Fixed 

2.1. The Existing Cost Function for Individual Replacements 

The average cost of individual replacement, ( )
i
nA  is given in [7] as: 

( ) ( )
i

in
NA C

E X
=                          (1) 

where iC  is the cost per item for individual replacement, ( )E X  is the ex-
pected life of the item, and N is the total number of items in the system. 

The expression for computing E(X) of Equation (1) is given as: 

( )
1

K

j
j

E X jP
=

= ∑                          (2) 

where jP  is the probability of items that fail at the end of jth period and k is the 
end of the period of each replacement. Works by [1], [7], [8], [9] used mortality 
tables to derive the probability distribution of failures of the items in the system. 
According to them, the probability that any item will fail in the interval (t − 1, t) 
is given as: 

( ) ( )1t t
x

M M
P

N
− −

= , ( ) ( )1t tM M− >                   (3) 

where ( )1tM −  is the number of survivors at any time, t − 1, ( )tM  is the number 

of survivors at time, t and N is the initial number of items in the system. The in-
dividual replacement policy is concerned with replacing an item as at when it 
fails and Equation (1) is the average individual replacement cost per period. 

2.2. The Existing Cost Function for Group Replacements 

The average cost of group replacement per period ( )
g
nA  is given in [7] as: 

( )
( )

( )
1

1

n

g i
ng X

n

NC C N XC
A

n n

−

=

+
= =

∑
                 (4) 

where ( )nC  is the total cost of group replacement, ( )N X  is the number of 
failures (or replacements) at the end of the jth period, iC  is the cost per item 
for individual replacement, gC  is the cost of replacing an item when all the 
items in that group are replaced simultaneously, and n is the age of replacement 
of items that fail suddenly.  
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The expression for computing ( )N X  of Equation (4) is as given below 

( )
1

, 1, 2, ,
X

X j j
j

N X N P X n−
=

= =∑                    (5) 

3. The Proposed Replacement Model for Items That Fail  
Suddenly Where Cost Is Assumed to Be a Random  
Variable 

3.1. The Proposed Cost Function for Individual Replacement of  
Items That Fail Suddenly 

In Equation (1) and Equation (4) respectively, [7] assumed that Ci and Cg are 
fixed (or constant) over time. However, in reality, rarely do costs of replacement 
of items appear to be fixed over time due to the dynamic nature of the world’s 
economy. Since the values of Ci and Cg cannot be predicted with certainty, it suf-
fices to view Ci and Cg as random variables that can be governed by some proba-
bility laws. Based on the probability distributions of Ci and Cg respectively, we 
now obtain the expected values E(Ci) and E(Cg) [10]. Thus, the cost function due 
to [7] would be modified to include replacement costs that are random in na-
ture. Thus, the cost of replacing an individual item on its failure is proposed to 
be: 

m i
i VC C=                           (6) 

where m
iC  is the modified cost of replacing an individual item on failure i

VC  
is the variable cost of replacing an individual item on its failure. 

Substituting Equation (6) into Equation (1), we obtain the modified cost func-
tion for individual replacement of items that fail suddenly as: 

( ) ( )
i i

m Vn
NA C

E X
=                       (7) 

where ( )
i

m nA  is the modified average cost of individual replacement per period. 
Since variable cost component, i

VC  has been incorporated into the replace-
ment function in Equation (1), it is worthwhile to determine a probability dis-
tribution for i

VC  so that the expected value of i
VC  is ( )i

VE C . If we take the 
expectation of both sides of Equation (7), we obtain 

( ) ( ) ( )i i
m Vn

NE A E C
E X

  =                   (8) 

3.2. The Proposed Cost Function for Group Replacement of Items  
That Fail Suddenly 

Let ( )
m
nC  be the modified cost of replacing items as a group, i

VC  is the variable 
cost of replacing an individual item on its failure and g

VC  is the variable cost 
per item when all items are replaced as a group. Then substituting i

VC  for and 
g

VC  into Equation (4), we obtain the modified cost function for group replace-
ment as shown in Equation (9).  
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( )
( )

( )
1

1

n
g i

m V V
ng X

m n

NC C N XC
A

n n

−

=

+
= =

∑
                  (9) 

Taking expectation of both sides of Equation (9), we obtain; 

( )
( )

( ) ( ) ( )
1

1

n
g im V Vng X

m n

NE C E C N XE C
E A

n n

−

=

+ 
   = = 

∑
          (10) 

We shall obtain the value of n that minimizes Equation (10) using classical 
optimization.  

3.3. Determination of Optimal Replacement Policy for Items That  
Fail Suddenly 

Recall from the numerator of Equation (4.9) that,  

( ) ( ) ( ) ( )
1

1

n
m g i

V Vn
X

E C NE C E C N X
−

=

  = +  ∑                 (11) 

If we replace n by n + 1 in Equation (4.10), we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1

1

1

1
1

1

1
1

1 2 1

n
m g i

V Vn
X

m g i
V Vn

n
m g i

V Vn
X

n
m g i i

V V Vn
X

E C NE C E C N X

E C NE C E C N N N n N n

E C NE C E C N X N n

E C NE C E C N X E C N n

+
=

+

−

+
=

−

+
=

  = + 

  = + + + + − +   
   = + +    

  = + + 

∑

∑

∑



 

( ) ( ) ( ) ( )1
m m i

Vn nE C E C E C N n+
   = +                    (12) 

If we replace n by n − 1 in Equation (11), we obtain; 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

1
1

1 1 2 2

n
m g i

V Vn
X

m g i
V Vn

E C NE C E C N X

E C NE C E C N N N n

−

−
=

−

  = + 

  = + + + + −   

∑



 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 2 2

1 1

m g i
V VnE C NE C E C N N N n

N n N n

−
  = + + + + − 

+ − − − 



 

( ) ( ) ( ) ( ) ( )
1

1
1

1
n

m g i
V Vn

X
E C NE C E C N X N n

−

−
=

   = + − −    
∑  

( ) ( ) ( ) ( ) ( ) ( )
1

1
1

1
n

m g i i
V V Vn

X
E C NE C E C N X E C N n

−

−
=

  = + − −  ∑  

( ) ( ) ( ) ( )1 1m m i
Vn nE C E C E C N n−

   = − −                  (13) 

( ) ( ) ( ) ( )1 1m m i
Vn nE C E C E C N n−

   ⇒ = + −                 (14) 

From Equation (10), we define  

( )
( )1

1 1

m
ng

m n

E C
E A

n
+

+

 
   =  +

                    (15) 
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Substituting Equation (14) into Equation (15), we obtain 

( )
( ) ( ) ( )

1 1

m i
Vng

m n

E C E C N n
E A

n+

  +   =  +
              (16) 

From Equation (10), we define  

( )
( )1

1 1

m
ng

m n

E C
E A

n
−

−

 
   =  −

                     (17) 

Substituting Equation (13) into Equation (17), we obtain 

( )
( ) ( ) ( )

1

1

1

m i
Vng

m n

E C E C N n
E A

n−

  − −   =  −
             (18) 

and from definition, we know that 

( ) ( ) ( )1
g g g

m m mn n nE A E A E A+
     ∆ = −                    (19) 

Substituting Equation (10) and Equation (16) into Equation (19), we obtain  

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )

( ) ( ) ( )

1
1

1

1

1

m i m
Vn ng

m n

m i m
Vn ng

m n

m i m m
Vn n ng

m n

i m
V ng

m n

m
ni

V

g
m n

E C E C N n E C
E A

n n
nE C nE C N n n E C

E A
n n

nE C nE C N n nE C E C
E A

n n

nE C N n E C
E A

n n

E C
n E C N n

n
E A

   +    ∆ = −  +
   + − +    ∆ =  +

     + − −      ∆ =  +

 −   ∆ =  +

    − 
 ∆ =  ( )1n n




+

 

( )

( ) ( ) ( )

( )1

m
ni

V
g

m n

E C
E C N n

nE A
n

 
 −

 ∆ =  +
              (20) 

From definition, we know that 

( ) ( ) ( )1 1
g g g

m m mn n nE A E A E A− −
     ∆ = −                    (21) 

Substituting Equation (10) and Equation (17) into Equation (21), we obtain  

( )
( ) ( ) ( ) ( ){ }

( )

( ) ( ) ( ) ( ) ( ){ }
( )

( )
( ) ( ) ( ) ( ) ( )

( )

1

1

1

1

1

1 1

1

1

1

m im
Vnng

m n

m m i
Vn ng

m n

m m m i
Vn n ng

m n

E C E C N nE C
E A

n n

n E C n E C E C N n
E A

n n

nE C E C nE C n E C N n
E A

n n

−

−

−

     − −    ∆ = −  −
     − − − −     ∆ =  −

       − − + −       ∆ =  −
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( )
( ) ( ) ( )

( )1

1

1

i m
V ng

m n

n E C N n E C
E A

n n−

   − −    ∆ =  −
              (22) 

Substituting Equation (14) into Equation (22), we obtain  

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

( )

1
1

1
1

1
1

1

1

1 1

1

1 1

1

1 1

1

1 1
1

1

i m i
V Vng

m n

i i m
V V ng

m n

i m
V ng

m n

m
ni

V

g
m n

nE C N n E C E C N n
E A

n n

nE C N n E C N n E C
E A

n n

n E C N n E C
E A

n n

E C
n E C N n

n
E A

n n

−

−

−

−

−

−

−

−

 − − + −  ∆ =  −

 − − − −   ∆ =  −

 − − −   ∆ =  −

    − − − −   ∆ =  −

 

( )

( ) ( ) ( )1

1

1
1

m
ni

V
g

m n

E C
E C N n

nE A
n

−

−

 
 − −
− ∆ =                (23) 

Thus, according to [11], ( )nE A 
   is minimum if and only if: 

( ) ( )1 0n nE A E A−
   ∆ < < ∆                          (24) 

The condition stated in Equation (24) stem from the fact that the function, 

( )nE A 
   is said to be achieve its minimum value at a point, n, if  

( )1 0nE A −
 ∆ <   or ( ) 0nE A ∆ >   

where ( ) ( ) ( )1 1n n nE A E A E A− −
     ∆ = −       and ( ) ( ) ( )1n n nE A E A E A+

     ∆ = −      . 

From Equation (24), the condition ( )1 0g
m nE A −
 ∆ <   gives 

( ) ( ) ( )

( ) ( ) ( )

1

1

1
1 0

1 0
1

m
ni

V

m
ni

V

E C
E C N n

n
n

E C
E C N n

n

−

−

 
   − −  − <

 
   − − <  −

 

( ) ( ) ( )1
1

1

m
ni

V

E C
E C N n

n
−

 
   − <  −

                  (25) 

Equation (25) states that group replacement should not be made at the end of 
nth period if the expectation of average cost of individual replacement at the end 
of (n − 1)th period is not less than the overall expectation of average cost per 
unit period by the end of (n − 1) periods.  

Similarly, from Equation (24) the condition ( )0 g
m nE A < ∆    gives  
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( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

0
1

0

m
ni

V

m
ni

V

m
n i

V

E C
E C N n

n
n

E C
E C N n

n
E C

E C N n
n

 
 −

<
+

 
 < −

 
  <

 

( ) ( ) ( )
m
ni

V

E C
E C N n

n

 
 ⇒ >                    (26) 

Equation (26) states that group replacement should be made at the end of nth 
period if the expectation of average cost of individual replacement for the nth 
period is greater than the overall expectation of average cost per unit time period 
through the end of n periods. 

4. Numerical Illustrations 

In this section we shall make use of real-life data collected from two different 
hotels to validate the theoretical results of this work and the results are presented 
in Table 1. Prior to computing the necessary estimates of the replacement mod-
els, we shall first fit the probability distributions of failure times and those of re-
placement costs. 

4.1. Fitting Probability Distribution of Failure Times 

In order to apply Equation (5), we need to estimate the probability of failure 
times, Pj. In this regard, we cannot just employ any kind of probability distribu-
tion by mere guesses. According to [12], a number of probability distribution 
may be used to model the life time of items. Thus, to determine the appropriate 
probability distribution for sudden failure times, the first step is to obtain the 
histogram of the failure time data and then visually inspect the pattern of the 
graph. On the basis of the pattern of the histogram, we can suggest theoretical 
distribution(s) for the failure time data under consideration. The next challenge 
now lies on determining whether or not the distributions that have been sug-
gested actually fit the failure time data. To achieve this purpose, we shall utilize 
the goodness-of-fit test. 

The goodness of fit tests measures the compatibility of data with a theoretical 
probability distribution function. In other words, these tests show how well the 
distribution we selected fits the research data. For this purpose Kolmogo-
rov-Smirnov (K-S), Anderson-Darling (AD) and Chi-Squared tests may be uti-
lized. In chi-square test, data is grouped and intervals need to be determined to 
evaluate the goodness-of-fit. This is an important limitation of chi-square test 
since there are no clear guidelines for selection of the intervals and test results 
may change depending on the selection of intervals. The Kolmogorov-Smirnov 
(K-S) and Anderson-Darling (AD) tests on the other hand, do not require  
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Table 1. Results of the empirical analysis based on existing and proposed replacement models. 

Results Existing Method [7] Proposed Method 

Data Sets Data Set I Data Set II Data Set I Data Set II 

Fitted Probability  
Distribution for failure times 

… … 

Smallest Extreme Value  
(or Gumbel) with: 

34.25888
34.11878

µ
σ
=
=

 

Laplace with: 
5183.0120
94.2625

θ
φ
=
=

 

Fitted Distribution for 
|Individual Replacement Cost 

… … 
Gamma with: 

13.68094
42.42969

α
β
=
=

 

Largest Extreme Value with: 
501.57496
55.02559

µ
σ
=
=

 

Fitted Distribution for  
Group Replacement Cost 

… … 
Lognormal with: 

5.76867
0.16455

µ
σ
=
=

 

Weibull with: 
159.14436
1.68840

α
β
=
=

 

Expected Cost  
of Replacement 

iC  = N 700.00 

gC  = N 400.00 
iC  = N 700.00 

gC  = N 400.00 

( )i
VE C  = N 580.38 

( )g
VE C  = N 324.47 

( ) 533.34i
VE C =  

( ) 354.76g
VE C =  

Average Cost of Individual  
Repl. Policy per period ( )

i
nA  = N55,300.00 ( )

i
nA  = N 54,600.00 

( )
i
nE A    = N 46,427.20 ( )

i
nE A    = N 41,600.52 

Average Cost of Group  
Repl. Policy per period ( )

g
nA  = N 57,000.00 ( )

g
nA  = N 54,450.00 

( )
g
nE A    = N 49,4538.00 ( )

g
nE A    = N 50,441.00 

Appropriate time to  
replace failed LED bulbs 

After every 8th period 
(i.e., after every  

39,420 burning hours) 

After every 6th period  
(i.e., after every  

30,660 burning hours) 

After every 7th period  
(i.e., after every  

35,040 burning hours) 

After every 6th period  
(i.e., after every  

30,660 burning hours) 

Expected Life  
of an LED bulb 

9.1109 hours 7.5307 hours 9.03971 hours 7.53074 hours 

Average No. of  
replaced bulbs 

79 bulbs 78 bulbs 80 bulbs 78 bulbs 

Average cost of individual  
replacement per hour 

N 12.63 N 12.47 N 10.60 N 9.50 

 
grouping of the data or determination of intervals. One of the major limitations 
of Kolmogorov-Smirnov (K-S) test is that it does not detect the discrepancies at 
tails very well; however the Anderson-Darling (AD) test is mainly designed to 
detect the discrepancies in tails [13], [14], [15]. In the same vein, [12] recom-
mend the use of Anderson-Darling (AD) test because it is less likely to reject the 
good fit, and can be successfully used to compare the goodness of fit of several 
fitted distributions. 

4.2. Anderson-Darling Test 

The Anderson-Darling procedure is a general test to compare the fit of an ob-
served cumulative distribution function to an expected cumulative distribution 
function. This test gives more weight to the tails than the Kolmogorov-Smirnov 
test. Anderson-Darling statistic measures how well the data follow a particular 
distribution. The better the distribution fits the data, the smaller this statistic will 
be. Further, the Anderson-Darling statistic is used to compare the fit of several 
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distributions to see which one is best or to test whether a sample of data comes 
from a population with a specified distribution. The hypotheses for the Ander-
son-Darling test are: 

H0: The data follow a specified distribution; 
H1: The data do not follow a specified distribution.                   (27) 
The Anderson-Darling statistic (A2) is defined as  

( ) ( ) ( )( )2
1

1

1 2 1 ln 1
n

i n i
i

A n i F X F X
n + −

=

 = − − − + − ∑           (28) 

where ( )iF X  is the cumulative distribution function of the specified distribu-
tion and iX  are the ordered data. 

If the p-value for the Anderson-Darling (AD) test is lower than the chosen 
significance level α , we reject the null hypothesis, Ho and conclude that the da-
ta do not follow the specified distribution. Alternatively, the hypothesis regard-
ing the distributional form is rejected at the chosen significance level α , if the 
test statistic, A2, is greater than the critical value obtained from a table. In gener-
al, critical values of the Anderson-Darling test statistic depend on the specific 
distribution being tested.  

In goodness-of-fit test, several probability distribution(s) may appear to fit the 
data well and there would be need to choose the best probability distribution for 
modeling the failure times. To select the best probability distribution from 
amongst the fitted distributions, we shall select a distribution with the largest 
p-value. Among extremely close p-values, we shall select a distribution that has 
been used previously for a similar data set [16]. If it is found by goodness-of-fit 
tests that none of the theoretical distribution of failure times fit the research da-
ta, effort would be made to use a generalized probability distribution. The histo-
grams for the data on failure times are as shown in Figure 1 and Figure 2 re-
spectively. 
 

 
Figure 1. Histogram of LED bulb failure times for data set 1. 
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Figure 2. Histogram of LED bulb failure times for data set II. 
 

From Figure 1, we can observe that few of the data points fall on the lower tail 
of the graph whereas majority of the data points fall on the upper tail of the 
graph. This is an indication that the failure times for data set I is skewed to the 
left. In Statistical theory, left skewed data can be modeled by smallest extreme 
value distribution or by Gumbel distribution, Lognormal, Weibull, Gamma and 
other kinds of skewed distributions. Having suggested some probability distri-
butions for failure data set 1, it is imperative to carry out a goodness-of-fit test to 
determine whether or not the suggested distribution (s) fit the data well. As 
stated earlier, the Anderson-Darling (AD) test can be utilized for the good-
ness-of-fit test. Hence, applying Equation (28) on the failure times for data set I 
with the aid of MINITAB software, we observe that the Smallest Extreme Value 
distribution best fit the data set 1 failure times for data set I.  

Similarly from Figure 2, we can observe that the failure times for data set II 
appear to be symmetric. Theoretically, it is known that both the normal and 
Laplace distributions can be used to analyze symmetric data [17]. Furthermore, 
it is well known that the normal distribution is used to analyze symmetric data 
with short tails, whereas the Laplace distribution is used for symmetric data with 
long tails. Although, these two distributions may provide similar data fit for 
moderate sample sizes, however, it is still desirable to choose the correct or more 
nearly correct model, since the inferences often involve tail probabilities, and 
thus the probability density function assumption is very important [18]. To de-
termine whether or not the suggested distribution(s) fit the data well, the An-
derson-Darling (AD) test was utilized for the goodness-of-fit test again. Hence, 
applying Equation (28) on the failure times for data set II with the aid of 
MINITAB software, we observe that the Laplace distribution best fits the failure 
times for data set II. 

4.3. Fitting Probability Distribution to Variable Replacement Cost 

A replacement cost is the cost of replacing an item of an organization at the 
same value. The replacement cost can change, depending on changes in the 
market value of the item and any other costs required for preparing the item for 
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use. 
Our argument in this study stems from the fact that a careful examination of 

the cost function due to [7] as given by Equation (1) and Equation (4) shows 
that individual and group replacement costs are assumed to remain the same 
(fixed) over time. This assumption is difficult to hold in practice because fixed 
costs are not permanently fixed. In other words, they will change over time but 
are fixed in relation to the quantity of items replaced during a particular period. 
For instance, an organization may have unexpected and unpredictable expenses 
unrelated to the replacement of items. In view of this, there are no fixed costs in 
the long run, because the long run is a sufficient period of time for all short-run 
fixed costs to become variable. 

Consequently, since individual replacement cost, Ci and group replacement 
cost, Cg may not remain fixed over time, it is worthwhile to view them as ran-
dom variables and then determine their respective probability distributions. 
Again, it is essential to choose the correct probability distribution for the cost 
data. [19] compared ten probability distributions viz: normal, triangular, log-
normal, uniform, exponential, weibull, Beta, Rayleigh, logistic and extreme val-
ue. His study revealed that beta distribution best fit the project cost data.  

In line with the process taken by [19] to fit appropriate probability distribu-
tion to project cost data, we shall employ the goodness-of-fit test described ear-
lier in order to choose a distribution that best fit the replacement cost data prior 
to conducting the main numerical illustration. Once a suitable probability dis-
tribution has been selected for the replacement cost data, the next task is to es-
timate the expectation of individual replacement cost, E(Ci) and the expectation 
of group replacement cost, E(Cg). With these expected costs, we then modify [7] 
replacement cost functions accordingly. As stated in Sections 6 and 7, the histo-
gram of the research data can guide us in the selection of appropriate probability 
distribution. Hence, the histograms for the replacement cost data are shown in 
Figures 3-5. 

As Figure 3 shows, the individual replacement cost is skewed to the right. 
Theoretically, some of the distributions capable of characterizing right-skewed  
 

 
Figure 3. Histogram for individual replacement cost using data set 1. 
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Figure 4. Histogram for group replacement cost using data set 1. 

 

 
Figure 5. Histogram for individual replacement cost using data set II. 

 
data are lognormal, Gamma, Weibull, Largest Extreme Value and many others. 
To determine among the aforementioned distributions, the one that best fit the 
data on individual replacement cost, we conducted the goodness-of-fit test and 
the results show that the Gamma distribution best fits the individual replace-
ment cost for data set 1. 

As shown in Figure 4, the group replacement cost is skewed to the right and 
the goodness-of-fit test is again conducted and the results show that the lognor-
mal distribution provides the best fit to group replacement cost for data set 1.  

As Figure 5 shows, the individual replacement cost is skewed to the right and 
the goodness-of-fit test shows that the Largest Extreme Value distribution fits 
the individual replacement cost for data set II. 

Finally, as shown in Figure 6, the group replacement cost is skewed to the 
right and goodness-of-fit test is again conducted and the results show that the 
Weibull distribution approximates the group replacement cost for data set II.  

5. Discussion of Results 

From Table 1, the individual replacement cost for data set I was found to follow 
the gamma distribution with location parameter α = 13.68094 and scale parameter,  
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Figure 6. Histogram for group replacement cost using data set II. 
 
β = 42.42969. Also, results in Table 1, revealed that group replacement cost for 
data set I follow the lognormal distribution with location parameter, μ = 5.76867 
and scale parameter, σ = 0.16455. Consequently, the average values of the indi-
vidual and group replacement costs for data set I were respectively found to be N 
580.34 and N 324.4 unlike that of [7] which stood at N 700 and N 400 respec-
tively. This goes to show that, it is unrealistic to believe that replacement cost is 
fixed over time as claimed by [7]. Therefore, the proposed replacement policy 
has shown improvement over the existing one(s) in this regard. 

Similarly, from Table 1, the individual replacement cost for data set II was 
found to follow the largest extreme value distribution with location parameter, μ 
= 501.5749 and scale parameter, σ = 55.02559. The largest extreme value distri-
bution is skewed to the right. It is used to model the maximum value from a dis-
tribution of random observations. Based on this distribution, it was observed 
that the average of the individual replacement cost is N 533.34, which is at va-
riant with that of [7] that stood at N 700. Furthermore, Table 1 revealed that the 
group replacement cost for data set II follow a Weibull distribution with shape 
and scale respectively as β = 1.68840 and α = 159.14436. Consequently, the av-
erage of the group replacement cost was found to be N 354.76.  

As shown in Table 1, when the replacement model by [7] was used on data set 
I, it was observed that the expected life of a bulb stood at about 9.11 hours, 
meaning that on the average each of the bulbs lived for about 9.11 hours. Fur-
thermore, the number of bulb failures is expected to stand at about 79 per hour. 
With this number of failures, the cost of replacing any bulb as at when it fails 
would on the average amount to N 55,300.00 per period of replacement or N 
12.63 per hour. However, when the proposed replacement model was utilized on 
data set I, it was observed from Table 1 that, a bulb is expected to burn for about 
9.04 hours and on the average about 80 bulbs are expected to fail per hour, re-
sulting to an average replacement cost of about N 46,427.20 per period of re-
placement or N 10.60 per hour. This is an indication that when individual re-
placement policy is to be utilized, the proposed replacement model yields a re-
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duced replacement cost than the existing one(s).  
Also, from Table 1, when [7] replacement model was used on data set I, it was 

observed that individual replacement of failed bulbs is required from the first 
period (i.e., between 4381 and 8760 hours) through the 8th period (i.e., between 
35,041 - 39,420 hours) but immediately after the 8th period (i.e., after every 
39,420 burning hours), a group replacement is required and the average cost of 
group replacement would stand at about N 57,000.00. In a similar fashion, Table 
1 shows that for data set I, individual replacement of failed bulbs is required 
from period 1 (i.e., between 4381 and 8760 hours) through period 7 (i.e., be-
tween 30,661 and 35,040 hours) and immediately after the 7th period (i.e., after 
every 35,040 burning hours), a group replacement is required with an average 
group replacement cost of N 49,458.00. Here, the period of replacement ob-
tained using the replacement model by [7] is at variant with that obtained using 
the proposed replacement model by one (1) period difference and it is evident 
that the proposed replacement model yields a lower group replacement cost than 
the existing replacement model. In comparison, it is clear that individual re-
placement costs using the replacement model by [7] and the proposed replace-
ment model on data set I, appears to be least compared to the group replacement 
costs. This indicates that individual replacement cost should be adopted by Bil-
ton Continental Hotels, from where data set I were collected. 

From Table 1, when the replacement model by [8] was used on data set II, it 
was observed that, on the average a bulb would burn for about 7.53 hours. This 
implies that about 78 bulbs would fail per hour, resulting to average replacement 
cost of about N 54,600.00 per period of replacement or N 12.47 per hour. More 
so, the results in Table 1 revealed that when the proposed replacement model 
was used on data set II, then a bulb is expected to burn for about 7.53 hours, in 
which case about 78 bulbs would on the average die per hour. Thus, the death of 
these bulbs would result to about N 41,600.52 per period of replacement or N 
9.50 per hour. Consequently, it is worthwhile to state that the proposed model 
has again showed improvement over the existing model in the area of cost re-
duction. 

Finally, as shown in Table 1, when the replacement model by [7] was used on 
data set II, the individual replacement is required from period 1 (i.e., between 
4381 and 8760 hours) through period 6 (i.e., between 26,281 and 30,660 hours), 
and after period 6 (i.e., between 26,281 and 30,660 hours), the group replace-
ment is implemented with a replacement cost of about N 54,450.00. On the con-
trary, when the proposed replacement model was used on data set II, though the 
replacement policy is same with that of [7], there was a great reduction in cost. 
This is true since the proposed replacement model attracted a group replace-
ment cost of about N 50,441.00 against N 54,450.00 obtained using the replace-
ment model by [7]. The comparisons show that the individual replacement pol-
icy is more economical than group replacement policy for the replacement mod-
el by [7] and the proposed replacement model. 
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6. Conclusions 

This work discusses the construction of replacement model for items that fail 
suddenly. The ultimate objective is to propose a replacement model which may 
be used to improve the existing replacement models. In this paper, a modified 
replacement model for items that fail suddenly was proposed following [7]. In 
the proposed replacement model, individual and group replacement costs re-
spectively were assumed to be some variable cost which may be governed by 
some probability laws and were fitted to some probability distributions. The ex-
isting replacement model and the proposed replacement model were used for 
empirical analysis. The result of the empirical analysis shows that the individual 
replacement policy is more economical than the group replacement policy for 
both the existing and proposed replacement models. 

In conclusion, the proposed replacement model provides a better model for 
replacement of items that fail suddenly than the replacement model by [7] be-
cause the results obtained using the proposed replacement model yielded lower 
replacement costs and it could be relied upon unlike the existing models, which 
assumes unrealistic fixed replacement costs and subjective probability of failure 
times. 

7. Recommendations 

Based on the results of this work, the following recommendations have been 
made: 

The proposed replacement model should be used in the optimal replacement 
of items that fail suddenly until further studies prove otherwise. 

Hotels, transport companies, filling stations, electrical companies, government 
agencies and other policy and decision makers are encouraged to make use of 
the proposed replacement policies for proper planning, policy formulations and 
implementation, as this will give a more reliable policy in the replacement of 
various items whose failure is sudden.  

Finally, we recommend that researchers should address this kind of replace-
ment problem from a simulation study angle so as to generalize further in this area.  
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