
Journal of Software Engineering and Applications, 2018, 11, 467-485
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.1110028 Oct. 26, 2018 467 Journal of Software Engineering and Applications

A Surfing Concurrence Transaction Model for
Key-Value NoSQL Databases

Changqing Li, Jianhua Gu

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China

Abstract

As more and more application systems related to big data were developed,
NoSQL (Not Only SQL) database systems are becoming more and more pop-
ular. In order to add transaction features for some NoSQL database systems,
many scholars have tried different techniques. Unfortunately, there is a lack
of research on Redis’s transaction in the existing literatures. This paper pro-
poses a transaction model for key-value NoSQL databases including Redis to
make possible allowing users to access data in the ACID (Atomicity, Consis-
tency, Isolation and Durability) way, and this model is vividly called the surf-
ing concurrence transaction model. The architecture, important features and
implementation principle are described in detail. The key algorithms also
were given in the form of pseudo program code, and the performance also
was evaluated. With the proposed model, the transactions of Key-Value
NoSQL databases can be performed in a lock free and MVCC (Multi-Version
Concurrency Control) free manner. This is the result of further research on
the related topic, which fills the gap ignored by relevant scholars in this field
to make a little contribution to the further development of NoSQL technolo-
gy.

Keywords

NoSQL, Big Data, Surfing Concurrence Transaction Model, Key-Value
NoSQL Databases, Redis

1. Introduction

1.1. Background

In the field of database management technology, a huge change is taking place.
Relational database technology has become very mature after decades of devel-
opment. However, as more and more application systems related to big data

How to cite this paper: Li, C.Q. and Gu,
J.H. (2018) A Surfing Concurrence Trans-
action Model for Key-Value NoSQL Data-
bases. Journal of Software Engineering and
Applications, 11, 467-485.
https://doi.org/10.4236/jsea.2018.1110028

Received: September 24, 2018
Accepted: October 23, 2018
Published: October 26, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.1110028
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.1110028
http://creativecommons.org/licenses/by/4.0/

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 468 Journal of Software Engineering and Applications

were developed, NoSQL (Not Only SQL) database systems, such as Redis [1],
MongoDB [2], HBase [3], Neo4J [4], etc., are becoming more and more popular.

Typical applications of NoSQL databases involve many important areas, such
as the Internet [5], mobile computation [6], tele-communications [7], bioinfor-
matics [8], education [9], energy [10], and so on. Related researches on NoSQL
databases have academic significances and practical values because NoSQL sys-
tems have been developed to support applications not well served by relational
systems, often involving big data processing [11].

Major NoSQL databases can be classified generally into four categories [12]
[13] [14], including key-value store, column-oriented store, document-oriented
store and graph store. Representative NoSQL database products include Redis,
Hbase, MongoDB, Neo4j and so on, respectively, which belong to one of the four
types.

At present, although the NoSQL database systems are not perfect, but its ad-
vantages are very obvious. NoSQL databases have some inadequacies, such as
not supporting SQL which is industry standard, lacking of reports and other ad-
ditional features [12]. Meanwhile, the NoSQL systems generally do not provide
ACID (Atomicity, Consistency, Isolation and Durability) transactional proper-
ties. By giving up ACID constraints, much higher performance and scalability
can be achieved [13]. Main advantages of NoSQL are the following aspects:
reading and writing data quickly, supporting mass storage, being easy to expand
and low cost [12].

1.2. Motivation

Because the NoSQL database systems have weak supports for ACID features,
software developers have to solve this problem at application level in scenarios
where database transactions are required. This reduces portability and requires
system-specific code [11]. At the same time, this increases difficulties of applica-
tion developments, also reduces the efficiency of software developments.

In order to add transaction feature for some NoSQL database systems, many
scholars have tried different techniques. The usual practices of these researchers
were using lock technology or MVCC (Multi-Version Concurrency Control)
technology.

Unfortunately, as far as the authors know, there is a lack of research on Re-
dis’s transaction in the existing literatures. Since Redis itself does not provide
mechanisms of multi-version management and locking for data, more efforts
must be made in order to add transaction processing mechanism to Redis.

1.3. Our Contributions

This paper proposes a transaction model for key-value NoSQL databases in-
cluding Redis, and this model is vividly called the surfing concurrence transac-
tion model. The architecture, important features and implementation principle
are described in detail. The key algorithms are given in the form of pseudo pro-

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 469 Journal of Software Engineering and Applications

gram code, and the performance also was evaluated. This is the result of further
research on the related topic, which fills the gap ignored by relevant scholars in
this field to make a little contribution to the further development of NoSQL
technology.

Our contributions are summarized as follows:
1) This paper presents a transaction model for key-value NoSQL databases in-

cluding Redis to make possible allowing users to access data in the ACID way,
and this model is vividly called the surfing concurrence transaction model.

2) With the proposed model, the architecture, important features, implemen-
tation principle and the key algorithms are provided.

3) With the proposed model, the transactions of NoSQL databases can be
performed in a lock-free and MVCC-free manner.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the related works. Section 3 describes the transaction model’s architecture,
important features and implementation principle, and the key algorithms also
are given in the form of pseudo program code. Section 4 is the performance
evaluation. Section 5 concludes this paper.

2. Related Works

In general, relational database management systems provide transaction sup-
port, while NoSQL database management systems can achieve higher perfor-
mance and scalability by abandoning the limitations of ACID transaction fea-
tures. Therefore, many scholars used different techniques in order to add trans-
action function to specific NoSQL database system.

Snapshot isolation technology aims to improve concurrency and consistency
by maintaining different versions of data. When snapshot isolation is used in a
transaction, the database server can return a committed version of the data in
response to any read request. It does not acquire read lock when doing this op-
eration, so it will not cause interference to users who are writing data. Mul-
ti-version data is a necessary condition for transaction control through snapshot
isolation and can be supported by time stamps. Many scholars used this tech-
nique to implement transaction control for specific NoSQL database system. In
literature [15], the author used a centralized method to implement snapshot iso-
lation, and implemented a transaction support function of multi-row data for
HBase. This method uses a lock-free commit algorithm to avoid the negative ef-
fects of distributed lock. In addition, it synchronizes partial transaction me-
ta-data to the client, so that many queries can be performed on the client side,
thus reducing the network overhead. In literatures [16] [17] [18], the authors
also implemented a transaction support function of multi-row records for HBase
using the method of snapshot isolation. In literature [19], the author imple-
mented a multi-row data transaction support function for Cassandra and
Hyperdex by using snapshot isolation and multi-version distributed cache tech-
nology. In literature [20], the transaction support function for MongoDB based

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 470 Journal of Software Engineering and Applications

on snapshot isolation was built by the authors.
Some scholars used lock technology to implement transaction support for

Some NoSQL databases. For instance, in literature [21], the author used Perco-
lator to provide multi-row transactional support for BigTable. This method im-
plements a two phase commitment protocol by designing a lightweight lock.

Of course, implementing transaction support in the database store itself also is
an option. Entity group is a concept put forward in Megastore [22] which based
on BigTable. An entity group is formed by multiple rows of data logically be-
longing to the same object data entity. The transaction operations of Megastore
are entity group granularity. That is, the operation of multiple rows of data in
the entity group can guarantee the ACID property. In literature [23], the author
used the Paxos protocol to implement Spinnaker database which is extensible,
consistent and highly available. But only the transaction function of single-row
data was implemented.

At the same time, some researchers used specific transaction management
protocol scheduled on client-side to achieve transaction control. In literature
[24], the author implemented transaction guarantee function of multi-row data
using a transaction management protocol on client-side. However, this method
depends on the precision of the client clock. In literature [25] [26], the authors
implemented a transaction support function of multi-row data for HBase using
two-phase commit protocol. In literature [27], the author implemented a middle
layer of transaction support for MongoDB database using four-phase commit
protocol.

To sum up, at present, the research interests of scholars mainly focus on the
transaction control of specific NoSQL databases, such as HBase, MongoDB,
Cassandra, BigTable, Spinnaker, Hyperdex, and so on. At the same time, it is not
difficult to find that the transaction support topics related to the NoSQL data-
base systems of Key-Value type, such as the famous Redis and Memcached, are
hardly covered in the literatures. Therefore, the results of this paper try to fill the
gap in this field.

3. Surfing Concurrence Transaction Model

3.1. Model’s Architecture

As shown in Figure 1, the surfing concurrence transaction model proposed in
this paper mainly consists of six functional components, six queues and transac-
tion objects. The six functional components include transaction client, transac-
tion manager, transaction sorter, transaction dispatcher, transaction executor
and actors. Six queues include waiting queue, waiting read queue, waiting write
queue, waiting execution queue, executing queue and finished execution queue.

3.1.1. Transaction Object
The transaction object is the basic entity in this transaction model, and it con-
sists of the following properties:

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 471 Journal of Software Engineering and Applications

Figure 1. Model’s architecture.

1) The unique identity of a transaction.
2) The list of original data operations.
3) The start time of a transaction.
4) The timeout of a transaction.
5) The list of parsed data operations.
6) Transaction type.
7) The union of keys involved in all data operations (used only when dealing

with write transaction type).
8) The list of the execution results of data operations.
9) The execution result of a transaction.
When a transaction client generates a transaction object, only some properties

are set, including the unique identity of a transaction, the list of original data
operations, the start time of a transaction, and the timeout of a transaction. In
other steps of a transaction processing, the other properties of a transaction ob-
ject will be set by other functional components.

3.1.2. Transaction Client
The main functions of a transaction client are as follows:

1) Encapsulating all data operations involved in a transaction into a transac-
tion object.

2) Sending the transaction object to the transaction manager by a network
system.

3) Receiving a processed transaction object from the transaction manager.

3.1.3. Transaction Manager
The transaction manager is located on the server side of this transaction model,

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 472 Journal of Software Engineering and Applications

and its main functions are as follows:
1) Receiving transaction objects sent from each transaction client.
2) Parsing the data operations in the current transaction object, including the

command of the operation and its parameters, and saving these parsed results
into the corresponding properties.

3) Storing a preprocessed transaction object into the waiting queue.
4) Monitoring the finished execution queue and returns the completed trans-

action object to the corresponding transaction client.

3.1.4. Transaction Sorter
The main functions of the transaction sorter is classifying the transaction ob-
jects, and moving them from the waiting queue into the waiting read queue or
the waiting write queue.

1) The transaction type is determined by scanning the data operations of cur-
rent transaction object, that is, if all data operations in the transaction object are
read operations, then the transaction type is read transaction, otherwise, it is a
write transaction.

2) For write transaction, it is necessary to calculate the union of keys involved
in all data operations of a transaction object, so as to prepare for the detection
on writing conflict performed by the transaction dispatcher.

3.1.5. Transaction Dispatcher
The transaction dispatcher alternately accesses the waiting read queue and the
waiting write queue. When accessing the waiting write queue, some transaction
objects are fetched and conflict detection is performed. Finally, the
non-conflicting transaction objects are put into the waiting execution queue, and
the transaction executor are notified to take away the transaction objects. The
transaction dispatcher handles the waiting read queue in a similar way, but
without conflict detection step. In scheduling, if there is no element in current
queue, the elements in the other queue will be processed.

The following parameters are used to control the numbers of transaction ob-
jects in a batch:

1) Nmr: it is the maximum numbers of transaction objects that can be fetched
from the waiting read queue in a batch.

2) Nmw: it is the maximum numbers of transaction objects that can be
fetched from the waiting write queue in a batch.

By changing these two parameters, the numbers of transaction objects fetched
in a batch can be adjusted. Therefore, they can be used to optimize the perfor-
mance of transaction model. For example, for a scenario which has more read
transaction objects, they can be set to make Nmr bigger than Nmw.

3.1.6. Transaction Executor
The main functions of the transaction executor are as follows:

1) When received notification from the transaction dispatcher, transaction
executor can move all transaction objects from the waiting execution queue to

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 473 Journal of Software Engineering and Applications

the executing queue.
2) Notifying the transaction dispatcher to prepare the transaction objects for

the next batch.
3) The transaction objects are fetched from the executing queue, and they are

executed concurrently by the actor threads.
4) Monitoring the execution progresses of all actor threads. When all actors

finished their works, transaction executor will start the next round of work.

3.1.7. Actor
The actor is responsible for the processing of a specific transaction object, the
main functions of which are as follows:

1) Performing all data operations in the transaction object. When performing
a data operation, it must prewrite the log of data operation. In addition, if an
exception occurs, all data operations involved in the transaction object will be
rolled back.

2) After a transaction is completed, set the results of transaction execution in
the transaction object and place the transaction object in the finished execution
queue.

3) Notifying the transaction executor that the transaction object has been
completed.

3.2. Model’s Features

1) Read transaction objects and write transaction objects are not processed in
the same batch, avoiding conflicts between them.

The scheduling policy of the transaction dispatcher makes each batch of
transaction objects to be the same type, that is, in the same batch, either all are
read transaction objects or all are write transaction objects. Therefore, the read
transaction objects and the write transaction objects are not processed at the
same time.

2) Pre-detecting conflicts between write transaction objects so that there are
no conflicts between write transaction objects executed in the same batch.

The transaction dispatcher must pre-detect the write conflicts during the
scheduling of write transaction objects, so there are no conflicts between write
transaction objects in the same batch.

3) Transaction objects in the same batch are executed concurrently.
Because there are no conflicts between transaction objects in the same batch,

they can be executed concurrently.
4) The maximum numbers of transaction objects which are processed in a

batch can be adjusted by parameters.
Because the ratio between read transaction objects and write transaction ob-

jects can be different in many application systems, the maximum numbers of
read transaction objects per batch and the maximum numbers of write transac-
tion objects in a batch can be adjusted by the specific parameters of the model.

5) All components of this transaction model are run in a pipe-lined manner.

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 474 Journal of Software Engineering and Applications

At a specific time point, transaction objects of the previous batch are being
executed in the transaction executor, while the transaction dispatcher is also
preparing the transaction objects for next batch. At the same time, the transac-
tion sorter and the transaction manager also are busy with their tasks. Therefore,
these components work in a pipe-lined manner.

3.3. Transaction Sorter Algorithm

The key idea of the transaction sorter algorithm is to discriminate between read
transaction objects and write transaction objects in waiting queue, and to move
the classified transaction objects into waiting read queue or waiting write queue
respectively. The implementation algorithm of the transaction sorter is as shown
in Algorithm 1, and the detailed logic descriptions are as follows:

Line 2: fetching a transaction object from the waiting queue.
Line 3: completing the determination of the transaction type:
1) If all data operations in a transaction object are read operations, then the

transaction type of current transaction object is read transaction.
2) If at least one operation of writing data is included in all data operations of

a transaction object, then the transaction type of current transaction object is a
write transaction.

Algorithm-1: Transaction Sorter

Input: WQ: Waiting Queue.
Output: WRQ: Waiting Read Queue, WWQ: Waiting Write Queue.
1: WHILE (thread is not stoped)
2: currentTO ← WQ.take();
3: T ← calTransType(currentTO);
4: IF (T='R') THEN
5: WRQ.put(currentTO);
6: ELSE
7: currentTO.AllKeys ← calAllKeys();
8: WWQ.put(currentTO);
9: END IF
10: END WHILE

Lines 4 - 5: the transaction sorter will put it into the waiting read queue if a

transaction object is read transaction type.
Lines 6 - 8: the write transaction object is processed, where line 7: computing

the union of keys involved in all data operations in current transaction object;
Line 8: moving the processed transaction object into the waiting write queue.

The time complexity of the transaction sorter algorithm is analyzed as follows:
Line 3: in determining the type of a transaction object, it is necessary to tra-

verse the various data operations in the transaction object. The time complexity
is O(N), where N represents the numbers of data operations included by a
transaction object.

Line 7: when calculating the union of keys involved in all data operations in
the current transaction object, it is also necessary to traverse each data operation
in the transaction object. The time complexity is O(N), in which N represents

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 475 Journal of Software Engineering and Applications

the numbers of data operations included by a transaction object.
Therefore, for a read transaction object, the time complexity is O(N), and for

a write transaction object, the time complexity is O(2N).

3.4. Transaction Dispatcher Algorithm

The key idea of the transaction dispatcher algorithm is to take a batch of trans-
action objects from the waiting read queue or the waiting write queue in turn,
and put it into the waiting execution queue after conflict detection. Finally, it
will notify the transaction executor to take these transaction objects away. The
implementation algorithm of the transaction dispatcher is as shown in Algo-
rithm 2, and the details are explained as follows:

Lines 2 - 4: if the transaction executor has moved away all the transaction ob-
jects prepared by the transaction dispatcher from the waiting execution queue, it
will notify the transaction dispatcher immediately to prepare the next batch of
transaction objects. Therefore, the transaction dispatcher will need to wait when
the notification of the transaction executor is not received; otherwise, the two
batches next to each other will collide. This is to resolve the thread synchroniza-
tion problem between them.

Algorithm-2: Transaction Dispatcher

Input: WRQ: Waiting Read Queue, WWQ: Waiting Write Queue, TC: Thread Code, RT: Read
Turn, Nmr: Numbers of Maximum Read, Nmw: Numbers of Maximum Write.
Output: WEQ: Waiting Execution Queue.
1: WHILE (thread is not stoped)
2: WHILE (TC is not self)
3: await();
4: END WHILE
5: IF (RT is read turn) THEN
6: IF (WRQ is not empty) THEN
7: r ←calBatchSizeOfRead(Nmr);
8: FOR (i=0;i<r;i++) THEN
9: WEQ.put(WRQ.take());
10: END FOR
11: END IF
12: RT ← false;
13: ELSE
14: IF (WWQ is not empty) THEN
15: w ← calBatchSizeOfWrite(Nmw);
16: FOR (j=0;j<w;j++) THEN
17: IF (WWQ[j] is not conflict) THEN
18: WEQ.put(WWQ.take());
19: ELSE
20: break;
21: END IF
22: END FOR
23: END IF
24: RT ← true;
25: END IF
26: IF (WEQ is not Empty) THEN
27: notifyTransExecutor();
28: END IF
29: END WHILE

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 476 Journal of Software Engineering and Applications

Lines 5 - 12: the transaction dispatcher handles the read transaction objects. If
there is no transaction object in the current waiting read queue, the transaction
dispatcher will change the processing mode directly (line 12) to process the write
transaction objects. Line 7, calculating the numbers of read transaction objects
that current batch can actually fetch: if the numbers of transaction objects in the
current waiting read queue is larger than the parameter Nmr, then the numbers
of transaction objects that can schedule in current batch equals the parameter
Nmr; otherwise, All read transaction objects need to be processed in current
batch. Lines 8 - 10, the transaction dispatcher transfers this batch of transaction
objects from the waiting read queue into the waiting execution queue.

Lines 13 - 25: the transaction dispatcher handles the write transaction objects.
If there is no transaction object in the current waiting write queue, the transac-
tion dispatcher will change the processing mode directly (line 24) to process the
read transaction objects. In line 15, calculating the numbers of write transaction
objects that can actually fetch in current batch: if the numbers of transaction ob-
jects in the current waiting write queue is larger than the parameter Nmw, the
numbers of transaction objects that can schedule in current batch equals the pa-
rameter Nmw, otherwise, All write transaction objects may need to be processed
in current batch. In lines 16 - 22, the transaction dispatcher traverses these
transaction objects to detect conflicts (line 17). If there is no conflict, the trans-
action object will be transferred into the waiting execution queue (line 18), oth-
erwise, the traversal operation is stopped (line 20). The basis of conflict detection
is whether the keys of data operations of these transaction objects are over-
lapped, and this can achieved by intersection of them. It needs to be noted that
the union of all keys involved in each transaction object has been calculated in
the transaction sorter algorithm.

Lines 26 - 28: after this round of scheduling, if there are transaction objects in
the waiting execution queue, the transaction dispatcher will notify the transac-
tion executor to fetch them in time.

The time complexity of the transaction dispatcher algorithm is analyzed as
follows:

Lines 5 - 12: when the transaction dispatcher processes the read transaction
objects, it needs to traverse the waiting read queue, and the time complexity is
O(N), where N represents the numbers of read transaction objects for a batch.

Lines 13 - 25: when the transaction dispatcher processes the write transaction
objects, it needs to traverse the waiting write queue, and the time complexity is
O(N), where N represents the numbers of write transaction objects in a batch.

Since only one transaction type (read transaction or write transaction) is
processed in a round of transaction scheduling, the total time complexity is
O(N), where N represents the numbers of transaction objects in a batch.

3.5. Transaction Executor Algorithm

The key idea of the transaction executor algorithm, as shown in Algorithm 3, is

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 477 Journal of Software Engineering and Applications

to fetch all transaction objects from the waiting execution queue prepared by the
transaction dispatcher and execute them concurrently. Finally, the processed
transaction objects are stored into the finished execution queue. The details are
explained as follows:

Lines 2 - 4: when the transaction dispatcher prepared a batch of transaction
objects, it will notify the transaction executor to retrieve the transaction objects
from the waiting execution queue. Therefore, the transaction executor must wait
when no notification is received from the transaction dispatcher. This is to re-
solve the thread synchronization problem between them.

Lines 5 - 8: after receiving a notification from the transaction dispatcher, the
transaction executor will transfer the transaction objects from the waiting execu-
tion queue to the executing queue, and notifies the transaction dispatcher to
prepare the next batch of transaction objects. In this way, the transaction objects
of the next batch can be prepared by the transaction dispatcher in parallel while
the transaction objects of the current batch are being processed by the transac-
tion executor.

Algorithm-3: Transaction Executor

Input: WEQ: Waiting Execution Queue, TC: Thread Code, EQ: Excecuting Queue.
Output: FEQ: Finished Execution Queue.
1: WHILE (thread is not stoped)
2: WHILE (TC is not self)
3: await();
4: END WHILE
5: FOR (i=0;i<WEQ.size;i++)
6: EQ.put(WEQ.take());
7: END FOR
8: notifyTransDispatcher();
9: CDL ← new CountDownLatch(EQ.size);
10: FOR (j=0;j<EQ.size;j++)
11: A ← new Actor(EQ.take(),FEQ,CDL);
12: ThreadPool.submit(A);
13: END FOR
14: CDL .await();
15: END WHILE

Lines 9 - 14: the transaction executor executes transaction objects concurrent-

ly. In line 9, it requests a counter object firstly whose maximum numbers equals
the numbers of transaction objects in this batch; in lines 10 - 13, it then fetches
transaction objects from the executing queue, then these objects are given to the
instantiated actors; finally, the thread pool is responsible for executing these ac-
tors, and these actors will put the finished transaction objects into the finished
execution queue and subtract the counter by 1. In line 14, the transaction execu-
tor can monitor these execution progresses of individual actor thread. After this
batch is completed, the execution logic will go back to lines 2 - 4 to prepare for
the next batch.

The time complexity of the transaction executor algorithm is analyzed as fol-
lows:

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 478 Journal of Software Engineering and Applications

Lines 5 - 8: the transaction executor needs to traverse the waiting execution
queue and the time complexity is O(N), where N is the numbers of transaction
objects.

Lines 9 - 14: the transaction executor needs to traverse the executing queue,
and the time complexity is O(N), where N is the numbers of transaction objects.

Therefore, the time complexity of the whole logic is O(2N), where N is the
numbers of transaction objects.

3.6. Exception Handling Method

3.6.1. Transaction Rollback Method
During data manipulations in a transaction object, if an exception occurs, then a
transaction rollback is required, that is, to undo any changes that have been
made.

The transaction rollback is based on the log of the data operations, which
records the following important information:

1) Checkpoint identification.
2) The identity of a transaction, the start mark and end mark of a transaction.
3) The type of data operation, including insert, delete and update.
4) Objects of data operation.
5) Data before modification: for insert, this item is empty.
6) Modified data: for deletion, this item is empty.
When a transaction rolls back, the log file will be scanned backward, all up-

date operations of the transaction are searched, and the update operations of the
transaction are reversed finally. If the data operation is an insert command, a
delete operation will be performed when the data is rolled back. If the data oper-
ation is a delete command, an insert operation will be performed when the data
is rolled back. If the data operation is an update command, the data will be
changed into the original data when the data is rolled back.

3.6.2. Timeout Processing Method
When a transaction object fails, it may cause subsequent batches of transaction
objects to be blocked. In order to solve this problem, the mechanism of timeout
processing is introduced in the model. The processing methods are as follows:

1) On the transaction client, start time and timeout time are set for each
transaction object. The transaction client will abort the transaction object if the
result is not received when timeout happens.

2) In the transaction manager, the timeout property is detected before each
transaction object is transferred to the waiting queue: if it is timed out, it is not
placed into the waiting queue, and put it into the finished execution queue after
setting the result of transaction execution.

3) In the transaction sorter, the timeout property is detected before each
transaction object is transferred to the waiting read queue or the waiting write
queue: if it is timed out, it is not placed into the waiting read queue or the wait-
ing write queue, after setting the result of transaction execution, it will be put

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 479 Journal of Software Engineering and Applications

into the finished execution queue.
4) In the transaction dispatcher, the timeout property is detected before each

transaction object is transferred to the waiting execution queue: if it is timed out,
it is not placed into the waiting execution queue, and after setting the result of
transaction execution, it will be put into the finished execution queue.

5) In the transaction executor, firstly, the timeout property of each transaction
object is detected before it is transferred into the executing queue: if it is timed
out, it is not put into the executing queue, and after setting the result of transac-
tion execution, it will be put it into the finished execution queue. Secondly, in
the process of executing a transaction by an actor, if the transaction is timed out,
the transaction will be aborted and rolled back. After setting the result of trans-
action execution, it will be placed into the finished execution queue.

3.6.3. Faults Detection Method
When restarted, faults detection is performed as follows:

1) Log file is scanned forward to find the nearest checkpoint mark.
2) Starting from the nearest checkpoint, the log file is scanned forward to look

for transactions which have been committed before failure, and these transac-
tions will be put into the redo queue.

3) Looking for transactions which were not completed at the time of failure,
and these transactions will be put into the undo queue.

4) Transactions in the redo queue will be reprocessed, that is, the log file is
scanned forward, the operations registered in the log file will be re-executed, and
the results of the operations also will be written into the database.

5) Transactions in the undo queue will be revoked, that is, inverse operations
will be done on all modification operations.

4. Performance Evaluation

4.1. Metric and Parameters

The numbers of concurrent transactions per second, represented by TPS, is used
as metric of this model to evaluate the main performance, and TPS is obtained
by calculating the reciprocal of the average processing time of a transaction.

The main parameters involved in this model are as follows:
1) Rr: the ratio of the numbers of read transactions to the numbers of total

transactions.
2) Rw: the ratio of the numbers of write transactions to the numbers of total

transactions.
3) Rc: the ratio of the numbers of conflicting transactions to the numbers of

total transactions.
4) Nmr: The maximum numbers of read transaction objects executed in a

batch.
5) Nmw: The maximum numbers of write transaction objects executed in a

batch.

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 480 Journal of Software Engineering and Applications

The software environment parameters are as follows:
Redis Data Store: 3.0;
JDK: 1.7, 64 bit;
OS: Red Hat Enterprise Linux 6.
The hardware environment parameters are as follows:
Computers: 2 computers for deploying respectively of Redis and prototype

system. The key parameters of each computer are as follows:
CPU: Intel i5-3210M (4 cores, 2.6 GHz);
RAM: 4 G (DDR3);
Disk: 1 T, 7200 rpm;
Network card: gigabit Ethernet network card;
Network switch: 1 gigabit Ethernet switch for connecting these computers.

4.2. Change Analysis of Rr and Rw Parameters

Experiment 1: When other parameters are invariant, the changes of performance
are evaluated by changing the parameter Rr and parameter Rw, as shown in
Figure 2. In each scenario, 1000 transaction objects are processed concurrently.

As can be seen from Figure 2, performance improves when the ratio of para-
meter Rr to parameter Rw increases. The main reason is that the transaction
dispatcher does not need perform conflict detection when scheduling the read
transaction objects, so when the ratio of parameter Rr to parameter Rw increas-
es, the time of conflict detection will be greatly reduced, and the overall perfor-
mance will be improved.

4.3. Change Analysis of Nmr and Nmw Parameters

Experiment 2: When other parameters are invariant, the changes of performance
are evaluated by changing the parameter Nmr and parameter Nmw, as shown in
Figure 3. In each scenario, 1000 transaction objects are processed concurrently.

As can be seen from Figure 3, performance improves when the ratio of para-
meter Nmr to Nmw increases. The main reason is that in this scenario, the pa-
rameter values, Rr = 80% and Rw = 20%, means that there are more read trans-
action objects waiting to be processed. At the same time, when the ratio of pa-
rameter Nmr and parameter Nmw is increased, more read transaction objects
can be processed in one batch, thus the overall performance is improved.

4.4. Change Analysis of Rc Parameter

Experiment 3: When other parameters are invariant, the changes of performance
are evaluated by changing the parameter Rc, as shown in Figure 4. In each sce-
nario, 1000 transaction objects are processed concurrently.

As can be seen from Figure 4, performance decreases when the parameter Rc
increases. The main reason is that when the parameter Rc increases, the num-
bers of write transaction objects processed in the same batch will decrease, which
results in lower performance. In a very extreme case, when there are conflicts

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 481 Journal of Software Engineering and Applications

among all write transaction objects, the overall execution logic will become to
“serial execution”.

4.5. Delay Analysis of Transaction

Experiment 4: Performance differences between transactional mode and
non-transactional mode were tested, as shown in Figure 5. In each scenario,
1000 transaction objects are processed concurrently.

As can be seen from Figure 5, there is an operational delay after using trans-
action mode: the average response time increases 74 microseconds (about 19%).
This is mainly caused by transaction sorting and conflict detection.

Figure 2. Change analysis of Rr and Rw parameters.

Figure 3. Change analysis of Nmr and Nmw parameters.

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 482 Journal of Software Engineering and Applications

Figure 4. Change analysis of Rc parameter.

Figure 5. Delay analysis of transaction.

4.6. Evaluation Summary

1) The larger the numbers of read transaction objects in all transaction ob-
jects, the better the overall performance.

2) While the parameter Rr and parameter Rw remain unchanged, adjusting
the parameter Nmr and parameter Nmw properly will help to improve the per-
formance.

3) When the probability of conflict between write transaction objects is re-
duced, the overall performance is better.

5. Conclusions

The aim of this paper is to propose an effective transaction model for key-value

https://doi.org/10.4236/jsea.2018.1110028

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 483 Journal of Software Engineering and Applications

NoSQL databases including Redis to make possible allowing users to access data
in the ACID way. The key contents were described in detail including the mod-
el’s architecture, important features and implementation principle. In addition,
some key algorithms were also given in the corresponding section, and these al-
gorithms are presented in the form of pseudo program code. Finally, the per-
formance also was evaluated. The model can effectively reduce development
complexity and improve development efficiency of the software systems with
transaction demand. This is the result of further research on the related topic,
which fills the gap ignored by relevant scholars in this field to make a little con-
tribution to the further development of NoSQL technology.

Future works mainly involve the optimizations of algorithms. In addition,
authors also intend to support more NoSQL databases in the prototype system.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References

[1] Carlson, J.L. and Sanfilippo, S. (2013) Redis in Action. Manning Publications Co.,
Greenwich, CT.

[2] Chodorow, K. (2013) MongoDB: The Definitive Guide. O’Reilly Media Inc., USA.

[3] George, L. (2011) HBase: The Definitive Guide. O’Reilly Media Inc., USA.

[4] Vukotic, A., Watt, N., Abedrabbo, T., Fox, D. and Partner, J. (2014) Neo4j in Ac-
tion. Manning Publications Co., Greenwich, CT.

[5] Pokorny, J. (2013) NoSQL Databases: A Step to Database Scalability in Web Envi-
ronment. International Journal of Web Information Systems, 9, 278-283.
https://doi.org/10.1108/17440081311316398

[6] Ickert, F., Fabro, M., Almeida, E. and Scherzinger, S. (2013) NoSQL Data Model
Evaluation on App Engine Datastore. The 28th Brazilian Symposium on Databases,
2013, 1-6.

[7] Cruz, F., Gomes, P., Rui, O. and Pereira, J. (2011) Assessing NoSQL Databases for
Telecom Applications. The 2011 IEEE 13th Conference on Commerce and Enter-
prise Computing, Luxembourg, 5-7 September 2011, 267-270.
https://doi.org/10.1109/CEC.2011.48

[8] Shao, B. (2015) Are NoSQL Data Stores Useful for Bioinformatics Researchers. In-
ternational Journal on Recent and Innovation Trends in Computing and Commu-
nication, 3, 1704-1708. https://doi.org/10.17762/ijritcc2321-8169.1503176

[9] Xiong, W., Hawley, D. and Monismith, D. (2015) NoSQL in Database Education:
Incorporating Non-Relational Concepts into a Relational Database Course: Panel
Discussion. Journal of Computing Sciences in Colleges, 30, 151-152.

[10] Costa, C. and Santos, M.Y. (2016) Reinventing the Energy Bill in Smart Cities with
NoSQL Technologies. In: Ao, S., Yang, G.-C. and Gelman, L., Eds., Transactions on
Engineering Technologies, Springer, Singapore, 383-396.
https://doi.org/10.1007/978-981-10-1088-0_29

[11] Lawrence, R. (2014) Integration and Virtualization of Relational SQL and NoSQL
Systems Including MySQL and MongoDB. IEEE Conference on Computational

https://doi.org/10.4236/jsea.2018.1110028
https://doi.org/10.1108/17440081311316398
https://doi.org/10.1109/CEC.2011.48
https://doi.org/10.17762/ijritcc2321-8169.1503176
https://doi.org/10.1007/978-981-10-1088-0_29

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 484 Journal of Software Engineering and Applications

Science and Computational Intelligence, Las Vegas, NV, 10-13 March 2014, 285-290.
https://doi.org/10.1109/CSCI.2014.56

[12] Han, J., Haihong, E., Le, G. and Du, J. (2011) Survey on NoSQL Database. 6th In-
ternational Conference on Pervasive Computing and Applications, Port Elizabeth,
26-28 October 2011, 363-366.

[13] Tbhuvan, N. and Sudheep, E.M. (2015) A Technical Insight on the New Generation
Databases: NoSQL. International Journal of Computer Applications, 121, 24-26.
https://doi.org/10.5120/21553-4578

[14] Cattell, R. (2010) Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record, 39,
12-27. https://doi.org/10.1145/1978915.1978919

[15] Ferro, D., Junqueira, F., Kelly, I., Reed, B. and Yabandeh, M. (2014) Omid:
Lock-Free Transactional Support for Distributed Data Stores. 2014 IEEE 30th In-
ternational Conference on Data Engineering, Chicago, IL, 31 March-4 April 2014,
676-687. https://doi.org/10.1109/ICDE.2014.6816691

[16] Padhye, V. and Tripathi, A. (2015) Scalable Transaction Management with Snap-
shot Isolation for NoSQL Data Storage Systems. IEEE Transactions on Services
Computing, 8, 121-135. https://doi.org/10.1109/TSC.2013.47

[17] Ramesh, D., Jain, A.K. and Kumar, C. (2012) Implementation of Atomicity and
Snapshot Isolation for Multi-Row Transactions on Column Oriented Distributed
Databases Using RDBMS. 2012 International Conference on Communications, De-
vices and Intelligent Systems (CODIS), Kolkata, India, 28-29 December 2012, 298-301.
https://doi.org/10.1109/CODIS.2012.6422197

[18] Cai, P. and Ni, L. (2012) An Approach of Multi-Row Transaction Management on
HBase with Serializable Snapshot Isolation. Proceedings of 2012 2nd International
Conference on Computer Science and Network Technology, Changchun, China,
29-31 December 2012, 1741-1744. https://doi.org/10.1109/ICCSNT.2012.6526257

[19] Cruz, F., Vilaça, R., Oliveira, R., Pereira, J. and Coelho, F. (2014) pH1: A Transac-
tional Middleware for NoSQL. 2014 IEEE 33rd International Symposium on Relia-
ble Distributed Systems, Nara, Japan, 6-9 October 2014, 115-124.
https://doi.org/10.1109/SRDS.2014.23

[20] Ogunyadeka, A., Younas, M., Zhu, H. and Aldea, A. (2016) A Multi-Key Transac-
tions Model for NoSQL Cloud Database Systems. 2016 IEEE Second International
Conference on Big Data Computing Service and Applications, Oxford, UK, 29
March-1 April 2016, 24-27. https://doi.org/10.1109/BigDataService.2016.32

[21] Peng, D. and Dabek, F. (2010) Large-Scale Incremental Processing Using Distri-
buted Transactions and Notifications. Usenix Symposium on Operating Systems
Design and Implementation, Vancouver, 4-6 October 2010, 4-6.

[22] Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., et al. (2011) Me-
gastore: Providing Scalable, Highly Available Storage for Interactive Services. CIDR
2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, 9-12 January 2011, 223-234.

[23] Rao, J., Shekita, E.J. and Tata, S. (2011) Using Paxos to Build a Scalable, Consistent,
and Highly Available Datastore. Proceedings of the Vldb Endowment, 4, 243-254.
https://doi.org/10.14778/1938545.1938549

[24] Kanwar, R., Trivedi, P. and Singh, K. (2013) NoSQL, a Solution for Distributed Da-
tabase Management System. International Journal of Computer Applications, 67,
6-9. https://doi.org/10.5120/11365-6602

[25] Dharavath, R., Jain, A., Kumar, C. and Kumar, V. (2014) Accuracy of Atomic
Transaction Scenario for Heterogeneous Distributed Column-Oriented Databases.

https://doi.org/10.4236/jsea.2018.1110028
https://doi.org/10.1109/CSCI.2014.56
https://doi.org/10.5120/21553-4578
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1109/ICDE.2014.6816691
https://doi.org/10.1109/TSC.2013.47
https://doi.org/10.1109/CODIS.2012.6422197
https://doi.org/10.1109/ICCSNT.2012.6526257
https://doi.org/10.1109/SRDS.2014.23
https://doi.org/10.1109/BigDataService.2016.32
https://doi.org/10.14778/1938545.1938549
https://doi.org/10.5120/11365-6602

C. Q. Li, J. H. Gu

DOI: 10.4236/jsea.2018.1110028 485 Journal of Software Engineering and Applications

Intelligent Computing, Networking, and Informatics, 243, 491-501.
https://doi.org/10.1007/978-81-322-1665-0_47

[26] Dharavath, R. and Kumar, C. (2015) a Scalable Generic Transaction Model Scenario
for Distributed NoSQL Databases. Journal of Systems and Software, 101, 43-58.
https://doi.org/10.1016/j.jss.2014.11.037

[27] Lotfy, A., Saleh, A., El-Ghareeb, H. and Ali, H. (2015) A Middle Layer Solution to
Support ACID Properties for NoSQL Databases. Journal of King Saud Universi-
ty—Computer and Information Sciences, 28, 133-145.
https://doi.org/10.1016/j.jksuci.2015.05.003

https://doi.org/10.4236/jsea.2018.1110028
https://doi.org/10.1007/978-81-322-1665-0_47
https://doi.org/10.1016/j.jss.2014.11.037
https://doi.org/10.1016/j.jksuci.2015.05.003

	A Surfing Concurrence Transaction Model for Key-Value NoSQL Databases
	Abstract
	Keywords
	1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Our Contributions

	2. Related Works
	3. Surfing Concurrence Transaction Model
	3.1. Model’s Architecture
	3.1.1. Transaction Object
	3.1.2. Transaction Client
	3.1.3. Transaction Manager
	3.1.4. Transaction Sorter
	3.1.5. Transaction Dispatcher
	3.1.6. Transaction Executor
	3.1.7. Actor

	3.2. Model’s Features
	3.3. Transaction Sorter Algorithm
	3.4. Transaction Dispatcher Algorithm
	3.5. Transaction Executor Algorithm
	3.6. Exception Handling Method
	3.6.1. Transaction Rollback Method
	3.6.2. Timeout Processing Method
	3.6.3. Faults Detection Method

	4. Performance Evaluation
	4.1. Metric and Parameters
	4.2. Change Analysis of Rr and Rw Parameters
	4.3. Change Analysis of Nmr and Nmw Parameters
	4.4. Change Analysis of Rc Parameter
	4.5. Delay Analysis of Transaction
	4.6. Evaluation Summary

	5. Conclusions
	Conflicts of Interest
	References

