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Abstract 
Following previous work that discussed temperature fluctuations without 
flowing media a physical model of temperature oscillations into a 
Couette-Poiseuille flow was built. The temperature distribution into the flow 
was calculated according to oscillations constraints on the upper and lower 
plates, and heat dissipation due to shear stresses into the fluid. The physical 
model deals with different temperature amplitudes and different frequencies 
constraints on the upper and the lower plates. A physical superposition and 
complex numbers were used. It was shown that when the constraint frequen-
cy increases, its penetration capacity is reduced. Increasing gap width be-
tween plates leads to increased fluid temperature values due to enlarged fluid 
velocity. Increasing thermal diffusivity, increases constrains temperatures 
penetration intensity. 
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1. Introduction 

The study of fluid flow in a Couette flow encompasses a few subjects as magneto 
hydrodynamics, porous media, particles suspension or two phases flow, and heat 
transfer in micro and nanoscale. These subjects applications relates for example 
to heat exchangers, heat pipes, electronic cooling, geophysics, biomedical in-
strumentation and gas flow at microscales. Several works relevant to these topics 
are cited below.  

By using the Network Simulation Method (NSM), Beg et al. [1] examined the 
unsteady Hartmann-Coeutte flow and heat transfer in a parallel plate channel 
system containing a Darcian porous medium with lateral wall mass flux. The 
fluid was assumed as laminar, viscous and incompressible. Pressure gradient 
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along the plates was assumed to be constant. Beg et al. work deals with some ef-
fects as Hall current, ion slip, viscous dissipation and Joule heating under a 
strong uniform transverse magnetic field. Constants values were determined for 
the temperatures boundary conditions on the upper and the lower plates. It was 
revealed that fluid temperature increased with increasing Darcy number (Da). 
Some conclusions: Increasing lateral wall mass flux-suction at the upper plate 
and injection at the lower plate decreased fluid principles velocities and temper-
ature values. Increasing Hartmann number (Ha), which means stronger mag-
netic field, reduced primary velocity along the plates and increased secondary 
velocity due to Hall current, temperature value was reduced. Kuznetsov [2] per-
formed an analytical solution to Couette flow in a composite channel, partially 
filled with a porous medium and partially with a clear fluid. The lower plate is 
moving and transfer constant heat flux, while the upper plate is fixed and adia-
batic. It was shown that temperature value increases from the lower plate to the 
upper plate while the temperature gradient is decreases. Buonomo et al. [3] in-
vestigated fully developed, steady state forced convection in parallel-plate micro 
channels filled with a porous medium saturated with rarefied gases at high tem-
peratures in local thermal non-equilibrium (LTNE) condition for the first-order 
slip-flow regime ( )0 0.1Kn≤ ≤ . A uniform heat flux was applied at both walls 
of the parallel-plate channel. The result showed that the internal dissipation in-
creases as the velocity slip increases. Xu [4] investigated theoretically the thermal 
performance of multi-layered micro heat exchangers with porous media. It was 
shown that counter-flow heat exchanger is much more efficient than paral-
lel-flow heat exchanger, and the micro heat exchanger with porous medium is 
preferable than the heat exchanger without a porous medium, especially for 
counter-flow heat exchanger. Makinde and Onyejekwe [5] investigated the 
steady flow and heat transfer of an electrically conducting fluid with variable 
viscosity and electrical conductivity between two parallel plates in the presence 
of a transverse magnetic field. It was assumed that couple of effects drove the 
flow: pressure gradient along the plates and upper plate constant velocity (the 
lower plate was fixed). The plates were kept at constant but different tempera-
tures. The work showed that increasing the viscosity dependence at temperature 
caused the heat transfer rate to be reduced through the standing plate and in-
creased through the moving plate. Hatami et al. [6] showed a study of magne-
to-hydrodynamic (MHD) Couette flows between two parallel infinite plates. The 
fluid between the plates was characterized as electrically conducting with par-
ticles suspension. The two phases: fluid phase and particle phase were tested. 
The upper plate was fixed and lower plate was time dependent. It was shown 
that when the magnetic field was fixed to the moving plate, increasing the inten-
sity of the magnetic field (increasing Hartmann number) increases velocities of 
both phases, while the magnetic field was fixed to the standing plate, an inverse 
trend was received. Attia [7] investigated the MHD flow and heat transfer of a 
dusty and electrically conducting fluid in the presence of a uniform magnetic 
fluid while the variations of the viscosity and the electric conductivity of the flu-

https://doi.org/10.4236/epe.2018.109026


S. Sadik 
 

 

DOI: 10.4236/epe.2018.109026 416 Energy and Power Engineering 
 

id with temperature was taken under consideration. The governing equations 
were solved numerically using finite difference method. It was shown that in-
creasing the fluid viscosity, increases the temperatures and velocities of the fluid 
and the dust particles. A similar investigation was performed by Eguia et al. [8] 
using network simulation method (NSM). Same results were received. Abd-Alla 
et al. [9] investigated the effect of both rotation and magnetic field of a micro 
polar fluid through a porous medium induced by sinusoidal peristaltic waves 
travelling down the channel walls. It was shown that the pressure gradient in-
creases with increasing the rotation while it decreases with increasing the Hart-
mann number. It may be concluded that the rotation oppose the fluid flow while 
the magnetic field support the flow. Makinde and Chinyoka [10] investigated the 
unsteady flow and heat transfer of a dusty fluid between two parallel plates with 
variable viscosity and electric conductivity. The fluid was moving according to a 
constant pressure gradient while a magnetic field is acting perpendicular to the 
plates with Navier slip boundary condition. The plates were hold with constant 
but different temperatures. It was shown that increasing the slip intensity (pa-
rameter β) increases the velocities of both fluid and particles. There was not ob-
served any temperatures variant of both fluid and particles by increasing slip in-
tensity. Lockerby and Reese [11] introduced a study of steady-state micro Couette 
flow of a Maxwellian monatomic gas by applied Burnette equations. According to 
the results shown it may be concluded that maximum pressure distribution values 
is received for some intermediate Knudsen values, larger or lower Knudsen val-
ues leads to smaller pressure distribution values. A previous work under the 
same subject was performed by Xue et al. [12]. Comparative to Lockerby and 
Reese study it did not cover all Knudsen possible range. It was shown that the 
temperature distribution in slip flow is higher than that in non-slip flow.  

The above works do not deal with the effect of temperature fluctuations on the 
two surfaces that surround the fluid in a Couette-Poisseuille flow on the fluid 
convection ability or on its ability to remove heat. The current work deals with 
oscillating temperature constraints on both plates. The temperature oscillations 
may be differ by amplitude and frequency. Heat dissipation due to shear stresses 
was taken under consideration. The current physical model was introduced as a 
function of dimensional parameters since it was wished to focus the results on 
truly parameters. 

2. The Model Background 
2.1. Couette-Poisseuille Flow 

Couette-Poiseuille flow is a steady, one-dimensional flow between two plates 
with constant gap; the flow is along the plates or along the x̂  direction. Poi-
seuille flow structure and schematic velocity distribution is shown in Figure 1. 

Poiseuille velocity distribution is parabolic and given as: 

( )21 d
2 dx

pv y by
xµ

∗

= ⋅ −
                     

(1) 
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Figure 1. Poiseuille flow. 

 
where xv  is the velocity distribution along the x̂  axis, there is no velocity flow 
in the ŷ  direction, µ  is the dynamic viscosity, d dp x∗  is the piezo metric 
pressure gradient, for horizontal plates the piezo metric pressure gradient is 
equal to the pure pressure gradient. More information about Couette-Poisseuille 
flow may be found for example in Fox et al. [13].  

2.2. The Energy Equation 

The energy equation for a fluid is given as: 

2
v v

DTc k T
Dt

ρ µφ= ∇ +
                      

(2) 

where ρ  is the fluid density, vc  is the fluid specific capacity in a constant 
pressure, DT Dt  is the temperature material derivative, k is the fluid conduc-
tivity, 2T∇  is the temperature Laplacian, µ  is the dynamic viscosity and vφ  
is the dissipation function.  

3. The Current Model 

3.1. The Energy Model Equation 

For Poiseuille flow, the dissipation value is received as: 

( ) ( )
2 22

2 2
2

d 1 d 1 d2 4 4
d 2 d d4

x
v

v p py b y by b
y x x

φ
µ µ

∗ ∗    
= = ⋅ − = − +    
     

    (3) 

( )
2

2 21 d 4 4
4 dv

p y by b
x

µφ
µ

∗ 
= − + 

 
                 (4) 

The energy equation for two-dimensional coordinates is written as: 

( )
22 2

2 2
2 2

1 d 4 4
4 dv x y

T T T T T pc v v k y by b
t x y xx y

ρ
µ

∗    ∂ ∂ ∂ ∂ ∂
+ + = + + − +    ∂ ∂ ∂ ∂ ∂     

 (5) 

In Couette-Poiseuille flow there is no velocity component in the y direction, 
0yv =  and there is no changes in the x direction, 0T x∂ ∂ = . The energy equa-

tion will be received as: 

( )
22

2 2
2

1 d 4 4
4 dv

T T pc k y by b
t xy

ρ
µ

∗ ∂ ∂
= + − + ∂ ∂               

(6) 

or as: 
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( )
22

2 2
2

1 d 4 4
4 dv v

T k T p y by b
t c c xyρ µρ

∗ ∂ ∂
= ⋅ + − + ∂ ∂  

           (7) 

By marking: 

v

k
c

α
ρ

=                            (8) 

and: 
2

1 d
4 dv

p
c x

β
µρ

∗ 
= 

 
                       (9) 

the energy equation will be received as: 

( )
2

2 2
2 4 4T T y by b

t y
α β

∂ ∂
= + − +

∂ ∂                 
 (10) 

or as: 

( )
2

2 2
2 4 4T T y by b

ty
α β
∂ ∂

= − − +
∂∂

                 (11) 

by marking: 

( )2 24 4T y by b tβ θ− − + =
                  

 (12) 

it is received that: 

( )2 24 4T y by b tθ β= + − +
                  

 (13) 

and: 

( )2 24 4T y by b
t t
θ β∂ ∂
= − − +

∂ ∂
                  (14) 

With θ  the energy equation will be received as: 
2

2

T
ty
θ

α
∂ ∂

=
∂∂

                         (15) 

According to the above definitions (Equation (12)), the following relations are 
received:  

( )8 4T y b t
y y
θ

β
∂ ∂

= − −
∂ ∂

                    (16) 

2 2

2 2 8T t
y y
θ

β
∂ ∂

= −
∂ ∂                       

 (17) 

or: 
2 2

2 2 8T t
y y

θ
β

∂ ∂
= +

∂ ∂                       
 (18) 

Depending on θ  only, the energy equation is received as: 
2

2 8 t
ty

θ θ
α αβ
∂ ∂

+ =
∂∂

                      (19) 
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or as: 
2

2 8 t
ty

θ θ
α αβ
∂ ∂

= −
∂∂

                      (20) 

Now, a new function is defined: 
2

8
2
tφ θ αβ= −

                       
 (21) 

where the following relations are received: 
2

28 4
2
t tθ φ αβ φ αβ= + = +                    (22) 

8 t
t t
φ θ αβ∂ ∂
= −

∂ ∂
                       (23) 

y y
φ θ∂ ∂
=

∂ ∂
                          (24) 

y y
θ φ∂ ∂
=

∂ ∂                          
 (25) 

2 2

2 2y y
θ φ∂ ∂
=

∂ ∂                         
 (26) 

Finally, the energy equation is received as: 
2

2 ty
φ φ

α
∂ ∂

=
∂∂

                         (27) 

or: 
2

2t y
φ φ

α
∂ ∂

=
∂ ∂

                         (28) 

The last equation for oscillating solution is received (Sadik [14]) as: 

2 2 2 2
1 2e e

y i t y y i t y

c c
ω ω ω ωω ω
α α α αφ

   
+ + − + −      
   = +              (29) 

3.2. The Current Model—Basic Structure 

The basic model structure is shown in Figure 2. 

3.3. The Current Model—Stage 1 

The first stage structure of the current model is shown in Figure 3. 
 

 
Figure 2. The current model—basic structure. 
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Figure 3. The current model—first structure. 

 
The boundary conditions for this stage may written as: 

1
010 e

0

i t
y

y b

ωφ φ

φ
=

=

 =


=
                        (30) 

The first boundary condition leads to the following relation: 
1 1 1

01 1 2e e ei t i t i tc cω ω ωφ = +                      (31) 

or to: 

01 1 2 2 01 1c c c cφ φ= + → = −                    (32) 

The second boundary condition leads to the following connection: 

1 1 1 1
1 12 2 2 2

1 20 e e
b i t b b i t b

c c
ω ω ω ω

ω ω
α α α α

   
+ + − + −      
   = +              (33) 

or after dividing Equation (33) by 1ei tω  it leads to: 

1 1 1 1
2 2 2 2

1 20 e e
b i b b i b

c c
ω ω ω ω
α α α α

+ − −
= +                  (34) 

It is received that: 

( ) ( )1 11 1
2 2

1 20 e e
b i b i

c c
ω ω
α α

+ − +
= +                    (35) 

By inserting 2c  value from Equation (32) into Equation (35), the following 
relations are received: 

( )
( )

( )1 11 1
2 2

1 01 10 e e
b i b i

c c
ω ω
α αφ

+ − +
= + −                 (36) 

( ) ( ) ( )1 1 11 1 1
2 2 2

1 01 10 e e e
b i b i b i

c c
ω ω ω
α α αφ

+ − + − +
= + −              (37) 

( ) ( ) ( )1 1 11 1 1
2 2 2

1 01e e e
b i b i b i

c
ω ω ω
α α αφ

− + + − + 
 − =
 
 

              (38) 

( )

( ) ( )

1

1 1

1
2

01
1

1 1
2 2

e

e e

b i

b i b i
c

ω
α

ω ω
α α

φ
− +

− + +
=

−                    

 (39) 

For this stage the first boundary condition may be written with its real value 
as ( )01 10 cosy tφ φ ω

=
= , then related to θ  the first boundary condition is re-

ceived as ( ) 2
01 10 cos 4y t tθ φ ω αβ

=
= + , and related to T the first boundary condi-

tion is received as ( ) 2 2
01 10 cos 4yT t t b tφ ω αβ β

=
= + + . With T the second boun-
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dary condition is received as 2 24y bT t b tαβ β
=
= + .  

In the initial time with 0t =  at the boundaries it is received that 

010, 0t yT φ
= =

=  and 0, 0t y bT
= =

= . 

Full solution for φ  is θ  is  
1 1 1 1

1 12 2 2 2 2
1 2e e 4

y i t y y i t y

c c t
ω ω ω ωω ω
α α α αθ αβ

   
+ + − + −      
   = + +  and for  

1 1 1 1
1 12 2 2 2

1 2e e
y i t y y i t y

c c
ω ω ω ωω ω
α α α αφ

   
+ + − + −      
   = + , for T the full solution is received as 

( )
1 1 1 1

1 12 2 2 2 2 2 2
1 2e e 4 4 4

y i t y y i t y

T c c t y by b t
ω ω ω ωω ω
α α α α αβ β

   
+ + − + −      
   = + + + − + . 

For T, the initial condition is 
1 1 1 1

2 2 2 2
1 20 e e

y i y y i y

tT c c
ω ω ω ω
α α α α

+ − −

=
= + , or it may 

be written that 00 ttT φ ==
= . 

3.4. The Current Model—Stage 2 

The second stage structure of the current model is shown in Figure 4. 
The boundary conditions for this stage may written as: 

2

0

02

0

e
y

i t
y b

ω

φ

φ φ
=

=

 =


=
                       (40) 

The first boundary condition leads to the following connections: 

2 2
1 2e e 0i t i tc cω ω+ =                        (41) 

1 2 2 10c c c c+ = → = −                      (42) 

The second boundary condition leads to the following relations: 

2 2 2
2 2

22 2 2 2
1 2 02e e e

b i t b b i t b
i tc c

ω ω ω ωω ω
α α α α ωφ

   
+ + − + −      
   + =            (43) 

Equation (43) may be divided by 1ei tω  to get: 

2 2
22 2 2

1 2 02e e
b i b b i t

c c
ω ω ω ω
α α α φ

+ − −
+ =                  (44) 

( ) ( )2 21 1
2 2

1 1 02e e
b i b i

c c
ω ω
α α φ

+ − +
− =                   (45) 

( ) ( )2 2

02
1

1 1
2 2e e

b i b i
c

ω ω
α α

φ
+ − +

=

−

                    (46) 

 

 
Figure 4. The current model second structure. 
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For this stage with T the first boundary condition is received as  
2 2

0 4yT t b tαβ β
=
= +  and the second boundary condition is received as  

( ) 2 2
02 2cos 4y bT t t b tφ ω αβ β

=
= + + .  

In the initial time with 0t =  at the boundaries it is received that 
0, 0 0t yT

= =
=  

and 020,t y bT φ
= =

= .  

In a parallel way to the first stage, Full solution for φ  is  
2 2 2 2

2 22 2 2 2
1 2e e

y i t y y i t y

c c
ω ω ω ωω ω
α α α αφ

   
+ + − + −      
   = + , for θ  is  

2 2 2 2
2 22 2 2 2 2

1 2e e 4
y i t y y i t y

c c t
ω ω ω ωω ω
α α α αθ αβ

   
+ + − + −      
   = + +  and for T the full solution is 

received as  

( )
2 2 2 2

2 22 2 2 2 2 2 2
1 2e e 4 4 4

y i t y y i t y

T c c t y by b t
ω ω ω ωω ω
α α α α αβ β

   
+ + − + −      
   = + + + − + . 

For T, the initial condition is 
2 2 2 2

2 2 2 2
1 20 e e

y i y y i y

tT c c
ω ω ω ω
α α α α

+ − −

=
= + , or it may 

be written that 00 ttT φ ==
= . 

3.5. The Current Model—Stage 3 

Stage 3 is a simple addition of the results received at stage 1 and 2. 

4. Results and Discussion 

Figure 5 shows the functions ( )yφ  and ( )T y  for intervals of 0.1667 s (1/6 
s).  The fluid characteristics were taken for air: specific capacity in constant 
pressure 1007 J kg Kpc = ⋅ , dynamic viscosity 7184.6 10 kg m sµ −= × ⋅ , fluid 
density 31.1614 kg mρ = , thermal conductivity 326.3 10 W m Kk −= × ⋅ . Oth-
er parameters were taken as: ( )0.01m 1cmb = , 1 2 2π 6.28 rad sω ω= = = ,  

01 02 10 Cφ φ= =  . Every successive line from 1t  designate a progressive time in-
terval of 0.1667 seconds. The phi and temperature plots are related to two time 
cycles. One time cycle is continued 1s ( )2π 2π 2π 1T ω= = = , while two time 
cycles is continued 2 s. So, despite that in the phi plots, Figure 5(a), is intro-
duced only six lines, actually it represent all the thirteen lines shown in Figure 
5(b) ( 1 1 7 13Tt t t tφ φ φ≡ ≡ ≡ , 2 2 3 3,T Tt t t tφ φ≡ ≡ , 4 4Tt t φ≡ , 5 5Tt t φ≡ , 6 6Tt t φ≡ ,

7 7 1Tt t tφ φ≡ ≡ , 8 8 2Tt t tφ φ≡ ≡ , 9 9 3Tt t tφ φ≡ ≡ , 10 10 4Tt t tφ φ≡ ≡ , 11 11 5Tt t tφ φ≡ ≡ ,

12 12 6Tt t tφ φ≡ ≡ , 13 13 7 1Tt t t tφ φ φ≡ ≡ ≡ ). Figure 5(b) shows change of temperature 
over time. It is shown that fluid temperature increases with time progression 
compare to Figure 5(a) plots. Without heat dissipation the phi function would 
represent the temperature distribution as is shown in Figure 5(a). The temper-
ature increasing in Figure 5(b) over the temperature area in Figure 5(a) is due 
to the dissipation function. All the plot lines in Figure 5 are symmetric related to 
the ŷ  axis, according to identity of phi amplitudes and frequencies. What was 
written above can be shown clearly by following the black line in Figure 5(b) 
( )13Tt . The temperatures, which the black line represent, are highest according 
to maximum heat dissipation time. Its parallel line in the phi plot (Figure 5(a)) 
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is the red line ( )1 7 13t t tφ φ φ≡ ≡ .This line can be considered as a reference line for 
the black line in Figure 5(b). Following the black line in Figure 5(b) shows 
maximum temperatures values near the plates where maximum shear stresses 
are produced and smaller temperature in the center according to extremum 
point area and smaller shear stresses.  

 

 

 
Figure 5. ( )yφ  and ( )T y  for intervals of 0.1667 s (1/6 s). 
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Figure 6 shows ( )yφ  and ( )T y  for multiple distance between plates, oth-
er parameters are left unchanged. Figure 6(a) shows the limited penetration of 
the temperature constraints, the temperature absolute values in the middle area 
between plates are smaller than is shown in Figure 5(a). By comparing the black 
lines ( )13Tt  in Figure 5(b) and Figure 6(b) it is revealed that the temperature 
values in the middle area between plates in Figure 6(b) increases a little while 
near the plates the temperature values increases a lot. The fluid velocity between 
plates increases as a result of enlarged gap distance, this leads to increased pro-
nounced shear stresses near the plates and significant heat dissipation in this 
area, where in the middle area the fluid velocities gradients are significantly 
smaller which leads to tiny temperature value increasing.  

Figure 7 shows ( )yφ  and ( )T y  for decreasing the upper phi amplitude to 

02 5 Cφ =  , other parameters remain unchanged according to Figure 5 as the ba-
sic figure. Figure 7 shows referring to both Figure 7(a) and Figure 7(b) the 
larger constraint amplitude penetration compare to the smaller amplitude pene-
tration. By following every plot line, it may be concluded and seen that fluid 
temperatures follow the constraint temperature. By following for example the 
light blue line in Figure 7(a) it is shown that larger absolute temperatures values 
are received near the lower plate where the amplitude constraint is larger. By 
following the black line in Figure 7(b) where heat dissipation is also considered, 
the same diagnosis is shown, the temperature values near the lower plate are 
larger than the temperatures values near the upper plate.  

Figure 8 shows ( )yφ  and ( )T y  for decreasing absolute pressure gradient 
to 30 Pa/m (the real pressure gradient is −30 Pa/m in order to move the fluid in 
the x̂  direction, since the pressure gradient in the energy equation is in second 
power its real sign does not matter), other parameters remain unchanged ac-
cording to Figure 5 as the basic figure. Since fluid velocity is strongly dependent 
on the pressure gradient, temperature rising is limited due to reduced shear 
stresses and heat dissipation. The black lines in Figure 5(b) and Figure 8(b) 
show clearly the contribution of the pressure gradient to heat dissipation and 
temperature rising, the absolute temperatures in Figure 5(b) where the absolute 
pressure gradient is larger have larger values than the temperatures in Figure 
8(b) where the absolute pressure gradient is smaller. Figure 8 plots and what is 
written above referring to the pressure gradient is suitable for increasing four 
times the fluid dynamic viscosity. 

Figure 9 shows ( )yφ  and ( )T y  for increasing thermal conductivity to 
352.6 10 W m Kk −= × ⋅  (the thermal diffusivity grows accordingly), other pa-

rameters remain unchanged according to Figure 5 as the basic figure. The in-
creased thermal conductivity or the increased thermal diffusivity allows the heat 
to pass more easily into the fluid and follow the temperature constraints, it is 
shown clearly in both Figure 9 plots for φ  and T. In order to follow the black 
line ( )13Tt  in Figure 9(b), the right border of the temperature value was in-
creased to 40˚C. The increased temperatures into the fluid in Figure 9 which is  
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Figure 6. ( )yφ  and ( )T y  for 0.02m (2 cm).b =  
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Figure 7. ( )yφ  and ( )T y  for 02 5 C.φ =    
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Figure 8. ( )yφ  and ( )T y  for d d 30 Pa m.p x∗ = −   
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Figure 9. ( )yφ  and ( )T y  for 352.6 10 W m K.k −= × ⋅   
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Figure 10. ( )yφ  and ( )T y  for 32.3228 kg m .ρ =  
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Figure 11. ( )yφ  and ( )T y  for ( )2 1 1 23 2π 6.2832 rad s, 6π 18.8496 rad s .ω ω ω ω= = = = =  
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greatly highlighted by the black line is due to the increased thermal conductivity 
or due to the increased thermal diffusivity and not to heat dissipation.  

Figure 10 shows ( )yφ  and ( )T y  for increasing two times the fluid densi-
ty, to 32.3228kg mρ = , other parameters remain unchanged according to Fig-
ure 5 as the basic figure. Changing the fluid parameters was performed only in 
order to examine the effect of those parameters; the changed parameters are not 
expected to characterize another real fluid. Increasing the fluid density leads to 
decreasing the thermal diffusivity and reduce the tracking ability of the fluid af-
ter the temperature constraints. This explanation is shown clearly in both plots 
of Figure 10 compare to the basic situation introduced in Figure 5. The same 
results and explanation are compatible for increasing two times the specific ca-
pacity, to 2014 J/kg∙K.  

Figure 11 shows ( )yφ  and ( )T y  for increasing upper constraint fre-
quency to three times the lower constrain frequency,  

( )2 1 1 23 2π 6.2832 rad s , 6π 18.8496 rad sω ω ω ω= = = = = , other parameters re-
main unchanged according to Figure 5 as the basic figure. Both Figure 11 plots 
show the difference of the constraints intensity penetration to the fluid. It is 
shown in both Figure 11 plots that the temperatures values range near the upper 
plate with the larger frequency is smaller than the temperatures values range 
near the lower plate with the smaller frequency. Similar results for temperature 
fluctuations were obtained without a fluid media (Sadik [14] and [15]). This re-
sult can be applied, for example, if it is necessary to remove heat by convection 
from an electronic chip that leads current with high frequency fluctuations or 
with high frequency of Ohmic power which causes to high temperature oscilla-
tions, and there is a limit on the convection liquid thickness, the thickness of the 
liquid needed may be reduced.  

5. Conclusion 

Main conclusion referred to the reduced penetration intensity of the enlarged 
frequency constraint. When the constraint frequency increases, its penetration 
capacity is reduced. Other conclusion relates to gap width between plates; larger 
gap width increases fluid temperatures due to fluid increased velocity. Referring 
to fluid thermal parameters, increasing thermal fluid conductivity or decreasing 
fluid density or decreasing heat specific capacity, increases constrains tempera-
tures penetration intensity; this is due to enlarged thermal fluid diffusivity. Some 
expected results are shown: increasing gradient pressure leads to enlarged fluid 
velocity and more heat dissipation resulted in larger temperatures values into the 
fluid, increasing temperature constraint amplitude, and increasing heat penetra-
tion that leads to enlarged temperature into the fluid. 
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