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Abstract 
 
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the stan- 
dard Black-Scholes model. The new option-pricing model, representing a controlled Brownian motion, in- 
cludes two wave-type approaches: nonlinear and quantum, both based on (adaptive form of) the Schrödinger 
equation. The nonlinear approach comes in two flavors: for the case of constant volatility, it is defined by a 
single adaptive nonlinear Schrödinger (NLS) equation, while for the case of stochastic volatility, it is de- 
fined by an adaptive Manakov system of two coupled NLS equations. The linear quantum approach is de- 
fined in terms of de Broglie’s plane waves and free-particle Schrödinger equation. In this approach, financial 
variables have quantum-mechanical interpretation and satisfy the Heisenberg-type uncertainty relations. Both 
models are capable of successful fitting of the Black-Scholes data, as well as defining Greeks. 
 
Keywords: Black-Scholes Option Pricing, Adaptive Nonlinear Schrödinger Equation, Adaptive Manakov 

System, Quantum-Mechanical Option Pricing, Market-Heat Potential 

1. Introduction 
 
Recall that the celebrated Black-Scholes partial differ- 
ential equation (PDE) describes the time-evolution of the 
market value of a stock option [1,2]. Formally, for a 
function  defined on the domain   = ,u u t s

, 00 <s t T    and describing the market value of a 
stock option with the stock (asset) price s , the Black- 
Scholes PDE can be written (using the physicist notation: 

=zu u z  ) as a diffusion-type equation: 

 21
=

2t ss su s u rs u      ,ru        (1) 

where > 0  is the standard deviation, or volatility of s, 
r is the short-term prevailing continuously—compounded 
risk—free interest rate, and  is the time to matur-
ity of the stock option. In this formulation it is assumed 
that the underlying (typically the stock) follows a geomet-
ric Brownian motion with “drift” 

> 0T

  and volatility  , 
given by the stochastic differential equation (SDE) [3] 

       d = d d  ,s t s t t s t W t         (2) 

where W is the standard Wiener process. The Black-Scholes 
PDE (1) is usually derived from SDEs describing the 
geometric Brownian motion (2), with the stock-price 
solution given by: 

   
 1 2

2= 0 e
t W t

s t s
     
  .  

In mathematical finance, derivation is usually perfor- 
med using Itô lemma [4] (assuming that the underlying 
asset obeys the Itô SDE), while in physics it is performed 
using Stratonovich interpretation [5,6] (assuming that the 
underlying asset obeys the Stratonovich SDE [8]). 

The Black-Sholes PDE (1) can be applied to a number 
of one-dimensional models of interpretations of prices 
given to u, e.g., puts or calls, and to s, e.g., stocks or fu- 
tures, dividends, etc. The most important examples are 
European call and put options, defined by: 

     Call 1 2, = d e d e ,Tu s t s k   rT      (3) 

     Put 2 1, = d e d e ,rT Tu s t k s         (4) 
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where  erf   is the (real-valued) error function, k de- 
notes the strike price and   represents the dividend yield. 
In addition, for each of the call and put options, there are 
five Greeks (see, e.g. [9,10]), or sensitivities, which are 
partial derivatives of the option-price with respect to stock 
price (Delta), interest rate (Rho), volatility (Vega), elapsed 
time since entering into the option (Theta), and the sec- 
ond partial derivative of the option-price with respect to 
the stock price (Gamma). 

Using the standard Kolmogorov probability approach, 
instead of the market value of an option given by the 
Black-Scholes Equation (1), we could consider the cor- 
responding probability density function (PDF) given by 
the backward Fokker-Planck equation (see [6,7]). Al- 
ternatively, we can obtain the same PDF (for the market 
value of a stock option), using the quantum-probability 
formalism [11,12], as a solution to a time-dependent linear 
or nonlinear Schrödinger equation for the evolution of 
the complex-valued wave  -function for which the 
absolute square, 2

,  is the PDF. The adaptive nonlin-
ear Schrödinger (NLS) equation was recently used in [10] 
as an approach to option price modelling, as briefly re- 
viewed in this section. The new model, philosophically 
founded on adaptive markets hypothesis [13,14] and Elliott 
wave market theory [15,16], as well as my own recent 
work on quantum congition [17,18], describes adaptively 
controlled Brownian market behavior. This nonlinear ap- 
proach to option price modelling is reviewed in the next 
section. Its important limiting case with low interest-rate 
reduces to the linear Schrödinger equation. This linear 
approach to option price modelling is elaborated in the 
subsequent section. 
 
2. Nonlinear Adaptive Wave Model for  

General Option Pricing 
 
2.1. Adaptive NLS Model 
 
The adaptive, wave-form, nonlinear and stochastic option- 
pricing model with stock price s, volatility   and interest 
rate r is formally defined as a complex-valued, focusing 
(1+1)-NLS equation, defining the time-dependent op-
tion-price wave function  = ,s t  , whose absolute 
square   2

,s t  represents the probability density func- 
tion (PDF) for the option price in terms of the stock price 
and time. In natural quantum units, this NLS equation 
reads: 

 21
= , =

2t ssi i         1 ,


m

    (5) 

where  denotes the adaptive market-heat po- 
tential (see [19]), so the ter

= ,r w 
   2

=V   

the

 represents 

  -dependent potential field. In the simplest nonadap- 
tive scenario   is equal to the interest rate r, while in 
the adaptive case it depends on the set of adjustable syn- 
aptic weights  i

jw  as: 

  2
1

=1 3

, = erf
in

i
i

i

w s
.r w

w

 
 
 

r w           (6) 

Physically, the NLS Equation (5) describes a nonlinear 
wave (e.g. in Bose-Einstein condensates) defined by the 
complex-valued wave function  ,s t  of real space and 
time parameters. In the present context, the space-like 
variable s denotes the stock (asset) price. 

The NLS Equation (5) has been exactly solved using 
the power series expansion method [20,21] of Jacobi 
elliptic functions [22]. Consider the  -function descri- 
bing a single plane wave, with the wave number k and 
circular frequency  : 

     i, = e ,ks ts t                (7) 

with           = ands kt    .   

Its substitution into the NLS Equation (5) gives the 
nonlinear oscillator ODE: 

     2 31
= 0.

2
'' k            

    (8) 

We can seek a solution     for (8) as a linear func-
tion [21] 

  0 1= sna a  ,    

where    sn ,= sns s m  are Jacobi elliptic sine func- 

tions with elliptic modulus  0,1m , such that  
   sn = sin,0s s and   sn ,1 = tanh s s . The solution of 

(8) was calculated in [10] to be 

     =

 

sn , for  0,1 ,
  



 m m  

 =  tanh , for  = 1.m
 

   

This gives the exact periodic solution of (5) as [10] 
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where (9) defines the general solution, while (10) defines 
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the envelope shock-wave1 (or, “dark soliton”) solution of 
the NLS Equation (5). 

Alternatively, if we seek a solution     as a linear 
function of Jacobi elliptic cosine functions, such that 

   cn ,0 = coss s  and cn  ,1 = sech  s s 2, 

   0 1= cna a ,    

then we get [10] 

     
 

 

2 21
i 1 2

2
3 , = cn e ,

for  0,1 ;

 


      



ks t m k

s t m s kt
w

m

(11) 

     
 21

i 1
2

4 , = sech e ,

for  = 1,

ks t k

s t s kt
w

m

 


     
 (12) 

where (11) defines the general solution, while (12) de- 
fines the envelope solitary-wave (or, “bright soliton”) so- 
lution of the NLS Equation (5). 

In all four solution Expressions (9), (10), (11) and (12), 
the adaptive potential  is yet to be calculated us- 
ing either unsupervised Hebbian learning, or supervised 
Levenberg-Marquardt algorithm (see, e.g. [23,24]). In 
this way, the NLS Equation (5) becomes the quantum 
neural network (see [18]). Any kind of numerical analy- 
sis can be easily performed using above closed-form 
solutions  as initial conditions. 

 w

= 1, ,4   ,   s t i i

The adaptive NLS-PDFs of the shock-wave type (10) 
has been used in [10] to fit the Black-Scholes call and 
put options (see Figures 1 and 2). Specifically, the adap-
tive heat potential (6) was combined with the spatial part 
of (10) 

   
2

= tanhs s k
 


 ,t         (13) 

while parameter estimates where obtained using 100 it- 
erations of the Levenberg-Marquardt algorithm. 

 

Figure 1. Fitting the Black-Scholes call option with (w)-adap- 
tive PDF of the shock-wave NLS-solution (10). 
 

 

Figure 2. Fitting the Black-Scholes put option with (w)-adap- 
tive PDF of the shock-wave NLS 2(s, t) solution (10). Notice 
the kink near s = 100. 
 

As can be seen from Figure 2 there is a kink near 
. This kink, which is a natural characteristic of the 

spatial shock-wave (13), can be smoothed out (Figure 3) 
by taking the sum of the spatial parts of the shock-wave 
solution (10) and the soliton solution (12) as: 

= 100s

 

   
2

1 2= d tanh d sech .

s

s kt s kt



  


    
 (14) 1A shock wave is a type of fast-propagating nonlinear disturbance that 

carries energy and can propagate through a medium (or, field). It is 
characterized by an abrupt, nearly discontinuous change in the charac-
teristics of the medium. The energy of a shock wave dissipates rela-
tively quickly with distance and its entropy increases. On the other 
hand, a soliton is a self-reinforcing nonlinear solitary wave packet that 
maintains its shape while it travels at constant speed. It is caused by a 
cancelation of nonlinear and dispersive effects in the medium (or, 
field). 
2A closely related solution of an anharmonic oscillator ODE:  

     3 = 0'' s s s     
is given by 

  2 2
= cn 1  ,

1 2 1 2

m m

The adaptive NLS-based Greeks (Delta, Rho, Vega, 
Theta and Gamma) have been defined in [10], as partial 
derivatives of the shock-wave solution (10). 
 
2.2. Adaptive Manakov System 
 
Next, for the purpose of including a controlled stochastic 
volatility3 into the adaptive-NLS Model (5), the full bidi-
rectional quantum neural computation model [18] for 
option-price forecasting has been formulated in [10] as a 
self-organized system of two coupled self-focusing NLS 

.s s m
m m


 

    
 

3Controlled stochastic volatility here represents volatility evolving in a 
stochastic manner but within the controlled boundaries. 
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Figure 3. Smoothing out the kink in the put option fit, by com- 
bining the shock-wave solution with the soliton solution, as 
defined by (14). 
 
equations: one defining the option-price wave function 

 = ,s t   and the other defining the volatility wave 
function  = ,s t  : 

Volatility NLS:  

  2 21
i = ,

2t ss r w  ,              (15) 

Option price NLS:  

  2 2 i = , .
2t ss r w
1              (16) 

In this coupled model, the  -NLS (15) governs the 
 ,s t -evolution of stochastic volatility, which plays the 
role of a nonlinear coefficient in (16); the  -NLS (16) 
defines the ( , )s t -evolution of option price, which plays 
the role of a nonlinear coefficient in (15). The purpose of 
this coupling is to generate a leverage effect, i.e. stock 
volatility is (negatively) correlated to stock returns4 (see, 
e.g. [27]). This bidirectional associative memory effec-
tively performs quantum neural computation [18], by 
giving a spatio-temporal and quantum generalization of 
Kosko’s BAM family of neural networks [28,29]. In ad- 
dition, the shock-wave and solitary-wave nature of the 
coupled NLS equations may describe brain-like effects 
frequently occurring in financial markets: volatility/price 
propagation, reflection and collision of shock and soli- 
tary waves (see [30]). 

The coupled NLS-system (15)-(16), without an em- 
bedded learning (i.e., for constant w = r -the inter-
est rate), actually defines the well-known Manakov sys-
tem,5 proven by S. Manakov in 1973 [31] to be com- 
pletely integrable, by the existence of infinite number of 

involutive integrals of motion. It admits “bright” and “dark” 
soliton solutions. The simplest solution of (15)-(16), the 
so-called Manakov bright 2-soliton, has the form re- 
sembling that of the sech-solution (12) (see [34-40]), and 
is formally defined by: 

      2 22i 2 2

solψ , = 2 sech 2 4 e ,
  


a t as b t

s t b b s atc (17) 

where    
 sol

,
ψ , =

,



 
 
 

s t
s t

s t
,  is a unit vector 

such that 

 1 2= ,
T

c cc

2 2

1 2 = 1c c . 

Real-valued parameters a and b are some simple func-
tions of  , ,k  , which can be determined by the Le- 
venberg-Marquardt algorithm. I have argued in [10] that 
in some short-time financial situations, the adaptation 
effect on   can be neglected, so our option-pricing Mo- 
del (15)-(16) can be reduced to the Manakov 2-soliton 
Model (17), as depicted and explained in Figure 4. 
 
3. Quantum Wave Model for Low  

Interest-Rate Option Pricing 
 
In the case of a low interest-rate , we have  1r 
  1r  , so   0,V    and therefore Equation (5) 

can be approximated by a quantum-like option wave 
packet. It is defined by a continuous superposition of de 
Broglie’s plane waves, ‘physically’ associated with a free 
quantum particle of unit mass. This linear wave packet, 
given by the time-dependent complex-valued wave func- 
tion  ,= s t 

ˆ

, is a solution of the linear Schrödinger 
equation with zero potential energy, Hamiltonian opera- 
tor H  and volatility   playing the role similar to the 
Planck constant. This equation can be written as: 
 

 

Figure 4. Hypothetical market scenario including sample 
PDFs for volatility 

2  and 
2  of the Manakov 2-soli- 

ton (17). On the left, we observe the evolution of 
stochastic volatility: we have a collision of two volatility com- 
ponent-solitons, 

 ,s t 

 ,1S s t  and  ,2S s t , which join together 
into the resulting soliton  ,2S s t , annihilating the  ,1S s t  
component in the process. On the right, we observe the 
 ,s t -evolution of option price: we have a collision of two 
option component-solitons,  ,1S s t  and  ,2S s t , which 
pass through each other without much change, except at the 
collision point. Due to symmetry of the Manakov system, 
volatility and option price can exchange their roles. 

4The hypothesis that financial leverage can explain the leverage effect 
was first discussed by F. Black [26]. 
5Manakov system has been used to describe the interaction between 
wave packets in dispersive conservative media, and also the interaction 
between orthogonally polarized components in nonlinear optical fibres 
(see, e.g. [32, 33] and references therein). 

Copyright © 2011 SciRes.                                                                                 JMF 



 45V. G. IVANCEVIC

2
ˆ ˆi = , where =

2

   t sH H . s    (18) 

Thus, we consider the  -function describing a single 
de Broglie’s plane wave, with the wave number k, linear 
momentum =p k,  wavelength = 2π ,k k  angular 
frequency 2= 2,k k   and oscillation period  

2= 4= 2Tk k k   . It is defined by (compare with 
[41,42,12]) 

   

2
i

2i

2 2

, = e = e

= cos isin ,
2

k

k
ks t

ks t
k s t A A

k k

2
A ks t A ks t




 

 
    

  
    

  





(19) 

where A is the amplitude of the wave, the angle  

 
2

=
2k

k
ks t ks t


 

 
 

  represents the phase of the wave  

k
 with the phase velocity: = =k kv k k 2.  The 

space-time wave function  ,s t  that satisfies the lin- 
ear Schrödinger Equation (18) can be decomposed (using 
Fourier’s separation of variables) into the spatial part 
 s  and the temporal part ie t as: 

     
i

i, = e = e .
Etts t s s   

  

The spatial part, representing stationary (or, amplitude) 
wave function,  satisfies the linear har- 
monic oscillator, which can be formulated in several 
equivalent forms: 

  i= e ,kss A

2
2

2

2

= 0, = 0,

2
= 0, = 0.

'' ''

'' ''k k

k

p
k

E

v

   


   


    
 

 
  
 

     (20) 

Planck’s energy quantum of the option wave k  is 

given by:  21
= =

2k kE k  .  

From the plane-wave expressions (19) we have:  

   i

, = e
ps E tk

k s t A  

—for the wave going to the “right” and  

   i

, = e 
 ps E tk

k s t A  

—for the wave going to the “left”. 
The general solution to (18) is formulated as a linear 

combination of de Broglie’s option waves (19), compris- 
ing the option wave-packet: 

   
=0

, = , , (with ).
n

i ki
i

s t c s t n        (21) 

Its absolute square,   2
, ,s t  represents 

ability density function at a time t. 
n option

by

the prob- 

The group velocity of a  wave-packet is given 
: = d d .g kv k  It is related to the phase velocity v  

of a plane wave as:  
k

= d d .g k k k kv v v   

Closely related is the center of the option wave-pack t 
(the point of maximu

e
m amplitude), given :   by

= d d .ks t k  
The following quantum-motivated assertions can be 

stated: 
y 1) Volatilit   has dimension of financial action, or 

energy   time. 
2) The total rgy E of an option wave-packet is (in 

the case of simil r plane waves) given by Planck’s su- 
perposition of the

ene
a
 energies kE  of n individual waves:  

 2
= = ,

2k

n
E n k   

=L nwhere  denotes the angular momentum of the 
option wave-packet, representing the shift between its 

 and decaygrowth , and vice versa. 
3) The average energy E  of an option wave-packet 

is given by Boltzmann’s partition function: 

=0

e
= = ,

k
T

k
n k

nE
E

E




 

=0

e e 1

b

nE Ek k
bT bT

n



 


where b is the Boltzmann-like kinetic constant and T is 
the market temperature. 

nE

4) The energy form of the Schrödinger Equation (18) 
reads: = i tE   . 

5) The eigenvalue equation for the Hamiltonian op- 
erator Ĥ  is the stationary Schrödinger equation: 

       
2

ˆ = , or = ,
2 ssH s E s E s s
      

which is just another form of the harmonic oscillator (20). 
It has oscillatory solutions of the form: 

 
i i

2 2

1 2= e e ,
E s E sk k

E s c c 


  

called energy eigen-states with energies  and deno- 
ted by: 

kE

   E k E
ˆ = .H s E s   

The Black-Scholes put and call options have been fit-
ted with the quantum PDFs (see Figures 5 and 6) given 
by

t opti

 the absolute square of (21) with = 7n  and = 3n , 
respectively. Using supervised Levenberg-Marquardt al- 
gorithm and Mathematica 7, the following coefficients 
were obtained for the Black-Scholes pu on: 
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Figure 5. Fitting the Black-Scholes put option with the quan- 
tum PDF given by the absolute square of (21) with n = 7. 
 

 

Figure 6. Fitting the Black-Scholes call option with the quan- 
tum PDF given by the absolute square of (21) with n = 3. 
Note that fit is good in the realistic stock region:

Using the same algorithm, the following coefficients 
were obtained for the Black-Scholes call option: 

Now, given some initial option wave function, 

 [ ]75,140s . 

 
* *= 0.0031891, = 0.0031891, 

= 2.62771, = 2.62777, = 2.65402,

  t

k k k1 2 3

4 5 6 7

1 2

3 4 5

6 7

= 2.61118, = 2.64104, = 2.54737, = 2.62778, 

= 1.26632, = 1.26517,

= 2.74379, = 1.35495, = 1.59586, 

= 0.263832, = 1.26779,

with

k k

c c

c c c

c c
* *= 94.0705 , = 31.3568 .  BS BSt t

 

k k

* *

1 2

3 1

2 3

* *

= 11.9245, = 11.9245, 

= 0.851858, = 0.832409,

= 0.872061, = 2.9004, 

= 2.72592, = 2.93291,

with 0.0251583 , = 0.00838609 .BS

t

k k

k c

c c

t t



 

 

 

 

  ,0 = ,0s s   

a solution to the initial-value problem for the linear Schrö- 
dinger Equation (18) is, in terms of the pair of Fourier 
transforms  1, ,   given by (see [42]) 

 

   
2

i1 i 1 2
0 0

,s t

= e = e .
k

tt






 
  

 
      

   
  (22) 

p- 
tion wave-function at time t = 0 giv by the complex- 
valued Gaussian function: 

he width p is the av- 
erage momentum of the wave. Its Fourier transform, 

For example (see [42]), suppose we have an initial o
en 

  2 /2 i, 0 = e e ,as kss    

where a is t of the Gaussian, while 

   0ˆ = ,0k s  ,    is given by 

 
 2

2

0

e
ˆ = .

k p

a

k
a

The solution at time t of the initial value problem is 
given by 
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i

2 21
, = e e d ,
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a
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which, after some algebra becomes 

 
 

 

2 22i i
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iven by the real-valued Gaussian function, 
As a simpler example,6 if we have an initial option wave- 

function g

 
2 2

4

e
,0 = ,

s

s



 

the solution of complex-valued (18) is given by the  - 
function, 

 
 

2

4

exp
2 1 i

, = .
1 i

s

t
s t
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6An example of a more general Gaussian wave-packet solution of (18) 
is given by:  

 
   2 2

0 0 0 0

1 i
i

2 2, = exp ,
1 i 1 i

a s s p t p s sa
s t

at at


      
 

   
 

 

where 0 0,s p

t

 are initial stock-price and average momentum, while a is 
the width of the Gaussian. At time  the `particle' is at rest around 

, its average momentum 0 . The wave function spreads 
with time while its maximum decreases and stays put at the origin. At 
time  the wave packet is the complex-conjugate of the wave-packet 
at time t. 

= 0t
= 0p= 0s
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From (22) it follows that a stationary option wave-packet 
is given by: 

       
i1

ˆ ˆ= e d , where = [
2

ks
].s k k k s  



 
  

As   2
s  is the stationary stock PDF, we can cal-

culate the expectation values of the stock and the wave 
number of the whole option wave-packet, consisting of n 
measured plane waves, as: 

   2
ˆ= d and =

2
d .s s s s k k k k 

 

   (23) 

red around the mean values (23). The width 
of the distribution of the recorded 

The recordings of n individual option plane waves (19) 
will be scatte

s - and -values are 
uncertainties 

k
s  and respectively. The  satisfy th  

Heisenberg-type uncertainty relation: 
,k  y e

,
2

n
s k    

which imply the similar relation for the total option en-
ergy and time: 

.
2

 
4. A New Stock-Market Research Program 
 
Based on the above wave stock-market a

  
n

E t  

nalysis, I pro-
pose a new financial research program as follows. 

Firstly, define the general adaptive wave model for 
option pricing evolution as a (linear) combination of the 

(5). The three wave-components of this 
general model are:   

1) the linear wave packet 

previously defined particular solutions to the adaptive 
NLS-Equation 

 pack ,et s t , given by (21);  

2) the shock-wave  ,shock s t , given by (10); and  

3) the soliton  soliton ,s t , given by (12).  

Formally, the general adaptive wave model is defined by: 
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2
3 sec ,
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s t A c
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1
i

h e
 
  kt

w  den tudes of 
the t  
in

Secondly, we need to find the most representative fi- 
nancial index or contemporary markets data that clearly 

show in their evolution both the efficient markets hy- 
pothesis [13] and adaptive markets hypothesis [14]. Once 
we find such a representative data, we need to fit it using 
our general wave Model (24) and the powerful Le n-
berg-Marquardt fitting algorithm. I remark here that, based 
on my empirical experience, the general wave Model (24) 
is capable of fitting any financial data, provided we use 
appropriate number of fitting coefficients (see [10] for 

al details). 

l have a model that can be used 
fo

waves. For the purpose of fitting 
a, the Levenberg-Marquardt algo- 

n

here  , = 1,iA i ote adaptive ampli,5
hree waves, while the other parameters are defined

 the previous section. 

ve

technic
Once we have successfully fitted the most representa- 

tive market data we wil
r prediction of many possible outcomes of the current 

global financial storm. 
 
5. Conclusions 
 
I have proposed an adaptive-wave alternative to the stan- 
dard Black-Scholes option pricing model. The new model, 
philosophically founded on adaptive markets hypothesis 
[13,14] and Elliott wave market theory [15,16], describes 
adaptively controlled Brownian market behavior. Two ap- 
proaches have been proposed: 1) a nonlinear one based 
on the adaptive NLS (solved by means of Jacobi elliptic 
functions) and the adaptive Manakov system (of two 
coupled NLS equations); 2) a linear quantum-mecha- 
nical one based on the free-particle Schrödinger equation 
nd de Broglie’s plane a

the Black-Scholes dat
rithm was used. 

The presented adaptive and quantum wave models are 
spatio-temporal dynamical systems of much higher com- 
plexity [25] then the Black-Scholes model. This makes 
the new wave models harder to analyze, but at the same 
time, their immense variety is potentially much closer to 
the real financial market complexity, especially at the 
time of financial crisis. 
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