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Abstract 
In this paper, a presented definition of type-2 fuzzy sets and type-2 fuzzy set 
operation on it was given. The aim of this work was to introduce the concept 
of general topological spaces were extended in type-2 fuzzy sets with the 
structural properties such as open sets, closed sets, interior, closure and 
neighborhoods in topological spaces were extended to general type-2 fuzzy 
topological spaces and many related theorems are proved. 
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1. Introduction 

The fuzzy set theory proposed by Zadeh [1] extended the classical notion of sets 
and permitted the gradual assessment of membership of elements in a set [2]. 
After introducing the notion of fuzzy sets and fuzzy set operations, several at-
tempts have been made to develop mathematical structures using fuzzy set 
theory. In 1968, chang [3] introduced fuzzy topology which provides a natural 
framework for generalizing many of the concepts of general topology to fuzzy 
topological spaces and its development can be found in [3]. The concept of a 
type-2 fuzzy set as extension of the concept of an ordinary fuzzy set (henceforth 
called a type-1 fuzzy set) in which the membership function falls into a fuzzy set 
in the interval [0,1], [2] [4]. Many scholars have conducted research on type-2 
fuzzy set and their properties, including Mizumoto and Tanaka [5], Mendel [6], 
Karnik and Mendel [4] and Mendel and John [7]. Type-2 fuzzy sets are called 
“fuzzy”, so, it could be called fuzzy set [6]. In [6] Mendel was introduced the 
concept of an interval type-2 fuzzy set. Type-2 fuzzy sets have also been widely 

How to cite this paper: AL-Khafaji, M.A.K. 
and Hussan, M.S.M. (2018) General Type-2 
Fuzzy Topological Spaces. Advances in Pure 
Mathematics, 8, 771-781. 
https://doi.org/10.4236/apm.2018.89047  
 
Received: August 7, 2018 
Accepted: September 18, 2018 
Published: September 21, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2018.89047
http://www.scirp.org
https://doi.org/10.4236/apm.2018.89047
http://creativecommons.org/licenses/by/4.0/


M. A. K. AL-Khafaji, M. S. M. Hussan 
 

 

DOI: 10.4236/apm.2018.89047 772 Advances in Pure Mathematics 
 

applied to many fields with two parts general type-2 fuzzy set and interval type-2 
fuzzy sets. The interval type-2 fuzzy topological space introduced by [2]. Because 
the interval type-2 fuzzy set, as a special case of general type-2 fuzzy sets, and 
general type-2 fuzzy sets may be better that the interval type-2 fuzzy sets to deal 
with uncertainties and because general type-2 fuzzy sets can obtain more degrees 
of freedom [8], we introduce general type-2 fuzzy topological spaces. The paper 
is organized as follows. Section 2 is the preliminary section which recalls defini-
tions and operations to gather with some properties type-2 fuzzy sets. In Section 
3, we introduce the definition of general type-2 fuzzy topology and some of its 
structural properties such as type-2 fuzzy open sets, type-2 fuzzy closed sets, 
type-2 fuzzy interior, type-2 fuzzy closure and neighborhood of a type-2 fuzzy 
set are studied. 

2. Preliminaries 

In this section, we recall the preliminaries of type-2 fuzzy sets, define type-2 
fuzzy and some important associated concepts from [7] [9] and throughout this 
paper, let X be anon empty set and I be closed unit interval, i.e., [ ]0,1I = . 

Definition 1 [7] [9]. Let X be a finite and non empty set, which is referred to 
as the universe a type-2 fuzzy set, denoted by A  is characterized by a type-2 
memberships function ( ),

A
x uµ





, as 

[ ] [ ] [ ]( ): 0,1 0,1 0,1xJ
xA

X Jµ × → ⊆




, where x X∈  and xu J∈ , that is 

( ) ( )( ) [ ] ( ){ }, , , : where and 0,1 , where 0 , 1xA A
A x u x u x X u J x uµ µ= ∈ ∈ ⊆ ≤ ≤

 

 



  (1) 

A  can also be expressed as 

( ) ( )
( ) [ ]

, ,

, 0,1
x X A

x x

u Jx

x X u Jx

A x u x u

f u u x J

µ
∈ ∈

∈ ∈

=

= ⊆

∑ ∑
∑ ∑









               (2) 

where ( ) ( ),x A
f u x uµ=





 an ∑∑  denotes union over all admissible x and u 
for continuous universes of discourse, ∑  is replaced by ∫ . The class of all 
type-2 fuzzy sets of the universe X denoted by ( )

2T X

 . 
Definition 2 [2] [7]. A vertical slice, denoted ( )

A
xµ ′





, of A , is the intersec-
tion between the two-dimensional plane whose axes are u and ( ),

A
x uµ ′





 and 
the three-dimensional type-2membership function A , i.e.,  

( ) ( ) ( ), ,
x x xu JA A

x x x u f u u J Iµ µ
′ ′ ′∈

′ ′= = = ⊆∑ 

 

 in which ( )0 1xf u′≤ ≤ . A  

can also be expressed as follows: ( )( ){ }, :
A

A x x x Xµ= ∀ ∈








 
or as following 

( ) ( )
( ) [ ], 0,1

x X u Jx

x

A

x xX u Jx

A x x

f u u x J

µ
∈ ∈

∈ ∈

=

= ⊆

∑ ∑
∑ ∑









               (3) 

The vertical slice, ( )
A

xµ ′




 is also called the secondary membership function, 
and its domain is called the primary membership of x, which is denoted by XJ  
where XJ I⊆  for any x X∈ . The amplitude of a secondary membership 
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function is called the secondary grade. 
When configuring any type-2 fuzzy topological structures we must present 

some special types of type-2 fuzzy sets. 
Definition 3 [5] [8]. (Type-2 fuzzy universe set). 
A type-2 fuzzy universe set, denoted X , such that 

[ ]1,1 1ux X u xX
∈∈

=∑ ∑

                      (4) 

Definition 4 [5] [8]. (Type-2 fuzzy empty set) 
A type-2 fuzzy empty set, denoted ∅ , such that 

[ ]0,0 1x X u u x
∈ ∈

∅ =∑ ∑

                      (5) 

Definition 5 [6]. (Interval type-2 fuzzy set). 
When all the secondary grades of types A  are equal to 1, that is ( ), 1

A
x uµ =





 
for all x X∈  and for all [ ]0,1xu J∈ ⊆ , A  is as an Interval type-2 fuzzy 
set. 

Operation of Types-2 fuzzy sets 6. Consider two type-2 fuzzy sets, A  and 
B , in a universe X. Let ( )

A
xµ





 and ( )
B

xµ




 be the membership grades of these 
two sets, which are represented for each x X∈ , ( ) ( )u

xu xA Jx f u uµ
∈

=∑



 and 
( ) ( )

x
ww xB Jx g w wµ

∈
=∑



, respective, where u
xu J∈ , x

ww J∈  indicate the pri-
mary memberships of x and ( ) ( ) [ ], 0,1x xf u g w ∈  indicate the secondary mem-
berships (grades) of x. The membership grades for the union, intersection and 
complement of the type-2 fuzzy sets A  and B  have been defined as follows [5]. 

Containment: 
A  is a subtype-2 fuzzy set of B  denoted A B⊆ 

   if u w≤  and  
( ) ( )x xf u g w≤  for every x X∈ . 
Equality: 
A  and B  are type-2 fuzzy sets are equal, denoted A B= 

   if u w=  and 
( ) ( ) ( ) ( ), ,x x BA

f u x u g w x wµ µ= = =
 

 

 for every x X∈ . 
Union of two type-2 fuzzy sets: 

( ) ( ) ( ) ( )
( ) ( ) ,

u w
x xu J w xA B

BA

J xA B x f u g w

x x x

u

X

w

µ

µ

µ
∈∪ ∈

∪ ⇔ = ∨

≡ ∈

∑ ∑ 

 

 

 

 

 




        (6) 

Intersection of two type-2 fuzzy sets: 

 

( ) ( ) ( ) ( )
( ) ( ) ,

u w
x xu J w xA B

BA

J xA B x f u g w

x x x

u

X

w

µ

µ

µ
∈∩ ∈

∩ ⇔ = ∨

≡ ∈

∑ ∑ 

 

 

 

 

 





      

 (7) 

Complement of a type-2 fuzzy set: 

( ) ( ) ( ) ( )1 ,u
xu J xA A

A x f u u x x Xµ µ
∈∼

= = − ≡∼ ¬ ∈∑ 

 



          (8) 

Where ∨  represent the max t-conorm and   represent a t-norm. The 
summation indicate logical unions. We refer to the operations ,   and ¬  as 
join, meet and negation respectively and ( )

A B
xµ

∪ 

 

, ( )
A B

xµ
∩ 

 

, ( )
A

xµ




 and 
( )

B
xµ





 are the secondary membership functions and all are type-1 fuzzy sets. If 
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( )
A

xµ




 and ( )
B

xµ




 have continuous domains, then the summations in 3, 4 and 
5 are replaced by integrals. 

Example 7: Let { }1 2 3, ,X x x x=  be anon empty set, and let A  and B  are 
type-2 fuzzy sets over the same universe X. 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 1 2 2 3,0.1 ,0.3 , ,0.5 ,1 , ,0.5 ,1 , ,0.6 ,0.3 , ,0.8 ,1A x x x x x=  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 1 2 3 3,0.1 ,0.7 , ,0.2 ,1 , ,0.6 ,1 , ,0.5 ,0.6 , ,0.9 ,1B x x x x x=  

( )

( ) ( ) { }( ){ }
( )( ) ( )( ) ( )( ){ }

1

1

1 1 1 1

for to get
0.3 0.7 0.3 1 1 0.7 1 1   
0.1 0.1 0.1 0.2 0.5 0.1 0.5 0.2
0.3 0.3 0.7 1   0.1,0.3 , 0.2,0.3 , 0.5,max 0.7,1
0.1 0.2 0.5 0.5

for , ,0.1 ,0.3 , ,0.2 ,0.3 , ,0.5 ,1

A B

A B x x

x

A B x x x x x

µ
∪

∪ =
∧ ∧ ∧ ∧

= + + +
∨ ∨ ∨ ∨

= + + + =

∪ =

 

 

 

 

 

 

 

( ) { }( ){ }
( )( ){ }

2

2

2 2

for to get
1 1 0.3 1 1 0.3  0.6,max 1,0.3

0.5 0.6 0.6 0.6 0.6 0.6

for ,0.6 ,1

A B

A B x x

x

A B x x x

µ
∪

∪ =
∧ ∧

= + = + ⇒
∨ ∨

∪ = ⇒

 

 

 

 

 

 

 

( ) ( ) ( ){ }

( )( ) ( )( ){ }

3

3

3 3 3

for to get
1 0.6 1 1 0.6 1 0.8,0.6 , 0.9,1

0.8 0.5 0.8 0.9 0.8 0.9

for ,  ,0.8 ,0.6 , ,0.9 ,1

A B

A B x x

x

A B x x x x

µ
∪

∪ =

∧ ∧
= + = + =

∨ ∨

∪ =

 

 

 

 

 

 

 

( )( ) ( )( ) ( )( ) ( )( ){
( )( ) ( )( )}

1 1 1 2

3 3

,0.1 ,0.3 , ,0.2 ,0.3 , ,0.5 ,1 , ,0.6 ,1 ,

,0.8 ,0.6 , ,0.9 ,1

A B x x x x

x x

∪ = 

 

 

( )

{ }( ) ( ){ }
( )( ) ( )( ){ }

1

1

1 1 1

for to get
0.3 0.7 0.3 1 1 0.7 1 1
0.1 0.1 0.1 0.2 0.5 0.1 0.5 0.2
0.3 0.3 0.7 1 0.1,max 0.3,0.3,0.7 , 0.2,1
0.1 0.1 0.1 0.2

for , ,0.1 ,0.7 , ,0.2 ,1

A B

A B x x

x

A B x x x x

µ
∩

∩ =
∧ ∧ ∧ ∧

= + + +
∧ ∧ ∧ ∧

= + + + =

∩ =

 

 

 

 

 

 

 

( ) ( ) ( ){ }

( )( ) ( )( ){ }

2

2

2 2 2

for to get
1 1 0.3 1 1 0.3 0.5,1 , 0.6,0.3

0.5 0.6 0.6 0.6 0.5 0.6

for , ,0.5 ,1 , ,0.6 ,0.3

A B

A B x x

x

A B x x x x

µ
∩

∩ =
∧ ∧

= + = + ⇒
∧ ∧

∩ =

 

 

 

 

 

 

 

( ) ( ) ( ){ }

( )( ) ( )( ){ }

3

3

3 3 3

for to get
1 0.6 1 1 0.6 1 0.5,0.6 , 0.8,1

0.8 0.5 0.8 0.9 0.5 0.8

for , ,0.5 ,0.6 , ,0.8 ,1

A B

A B x x

x

A B x x x x

µ
∩

∩ =

∧ ∧
= + = + ⇒

∧ ∧

∩ =
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( )( ) ( )( ) ( )( ) ( )( ){
( )( ) ( )( )}

1 1 2 2

3 3

,0.1 ,0.7 , ,0.2 ,1 , ,0.5 ,1 , ,0.6 ,0.3 ,

,0.5 ,0.6 , ,0.8 ,1

A B x x x x

x x

∩ = 

 

 
The complement of a type-2 fuzzy set A  is 

( ) ( ) ( )
( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 1 2 2 3

1

,0.9 ,0.3 , ,0.5 ,1 , ,0.5 ,1 , ,0.4 ,0.3 , ,0.2 ,

,

1 .

u
xu J xA

A

A x f u u

X

x x x

x x

x x

µ

µ
∈∼

=∼

¬ ∈

=

≡

=

−∑











 

Operations under collection of type-2 fuzzy sets 8: Let { }:iA i∈



  be an  

arbitrary collection of type-2 fuzzy sets subset of X such that   is countable set, 
operation are possible under an arbitrary collection of type-2 fuzzy sets. 

1) The union i iA∈∪




  is defined as 

( )
( )( )

( )
 

u
xi

i

i x i
i x X u J

i

f u
A x

u
∈

∈ ∈ ∈
∈

∧ ∪ =   ∨∑ ∑








              (9) 

2) The intersection i iA∈∩




  is defined as 

 
( )

( )( )
( )

 
u
xi i

i

i x i
x X u J

i

f u
A x

u
∈

∈ ∈
∈

∈

∧ ∩ =   ∧∑ ∑










             (10) 

Proposition 9: Let { }:iA i∈



  be an arbitrary collection of type-2 fuzzy sets  

subset of X such that   is countable set and B  be another type-2 fuzzy set of 
X, then 

1) ( )i ii iB A B A∈ ∈
 ∩ ∪ = ∪ ∩   

  

   . 

2) ( )i ii iB A B A∈ ∈
 ∪ ∩ = ∩ ∪   

  

   . 

3) ( )1 1ii i iA A∈ ∈
 − ∪ = ∩ −   

 

  . 

4) ( )1 1ii i iA A∈ ∈
 − ∩ = ∪ −   

 

  . 

3. General Type-2 Fuzzy Topological Space 

In this section we introduced the concept general type-2 fuzzy topology. 
Definition 1: Let F  be the collection of type-2 fuzzy set over X; then F is 

said to be general type-2 fuzzy topology on X if 
1) , X∅ ∈ 

 



F  

2) A B∩ ∈ 

 



F  for any ,A B∈ 

 



F . 

3) i iA∈∪ ∈








F  for any iA ∈ 

F ,   countable set. 

The pair ( ),X 

F  is called general type-2 fuzzy topological space over X. 

Remark 2: Let ( ),X 

F  be general type-2 fuzzy topological space over X; then 

the members of F  are said to be type-2 fuzzy open set in X and a type-2 fuzzy 
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set A  is said to be a type-2 fuzzy closed set in X, if its complement ~ A∈ 

F . 

Proposition 3: Let ( ),X 

F  be general type-2 fuzzy topological space over X 

then the following conditions hold: 
1) , X∅ 

   are type-2 fuzzy closed sets. 
2) Arbitrary intersection of type-2 fuzzy closed sets is closed sets. 
3) Finite union of type-2 fuzzy closed sets is closed sets. 
Proof: 
1) , X∅ 

   are type-2 fuzzy closed sets because they are the complements of the 
type-2 fuzzy open sets , X∅ 

   is respectively. 

2) Let { }:iA i∈



  be an arbitrary collection of type-2 fuzzy closed sets, then 

( )
( )( )

( )
( )( )

( )( ) ( )

( )

 

 proposition 2.7 part 3
1 1

~

u
x

u
x

i x
i i

i

i

i i

i
x X u J

i

i x i
x X u J

i

f
A x

u

u

x

u

f u

A

∈

∈ ∈
∈

∈

∈ ∈
∈

∈

∈

∧ ∩ =   ∧
∧

=
− ∨ −

 = ∪  

∑ ∑

∑ ∑





















 

since arbitrary union of type-2 fuzzy open sets are open ( )~i iA x∈
 ∪  



  is an 

open and ( )i iA x∈
 ∩  



  is a type-2 fuzzy closed sets. 

3) If ( )iA i∈



  is type-2 fuzzy closed sets, then i iA∈∪




  is a type-2 fuzzy 
closed set, [finite intersection of type-2 fuzzy open sets are open]. 

Example 4: Let { }1 2,X x x=  and let ,A ∅    and X  be three type-2 fuzzy 
sets in X which are 

( )( ) ( )( )1 2,0 ,1 , ,0 ,1x x∅ = , ( )( ) ( )( ){ }1 2,1 ,1 , ,1 ,1x xX =  

( )( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( )}

1 1 1

2 2 2

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6 ,

,0.8 ,0.9 , ,0.5 ,1 , ,0.4 ,0.5 .

x x x

x x x

A =
 

( ) ( ) ( )( ){ }1 1 1
1 1for : 1,1 ,1 ,1 .
0 1X

X x x xµ
∅∪

∧
∅∪ = ⇒ = ⇒ =

∨
 

 

 

   

( ) ( ) ( )( ){ }2 2 2
1 1for : 1,1 ,1 ,1 .
0 1X

X x x xµ
∅∪

∧
∅∪ = ⇒ = ⇒ =

∨
 

 

 

 

( )( ) ( )( ){ }1 2,1 ,1 , ,1 ,1X x x X∅∪ = =  

    

( ) ( ) ( )( ){ }1 1 1
1 1for : 0,1 ,0 ,1 .
0 1X

X x x xµ
∅∩

∧
∅∩ = ⇒ = ⇒ =

∧
 

 

 

   

( ) ( ) ( )( ){ }2 2 2
1 1for : 0,1 ,0 ,1 .
0 1X

X x x xµ
∅∩

∧
∅∩ = ⇒ = ⇒ =

∧
 

 

 

   

( )( ) ( )( ){ }1 2,0 ,1 , ,0 ,1x xX =∅ =∩ ∅ 

   

( )

( )( ) ( )( ) ( )( ){ }
1 1

1 1 1

1 1 1 0.7 1 0.6for :
0 0.8 0 0.6 0 0.3

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6
A

A x x

x x x

µ
∅∪

∧ ∧ ∧
∅∪ = + +

∨ ∨ ∨
=
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( )

( )( ) ( )( ) ( )( ){ }
2 2

2 2 2

1 0.9 1 1 1 0.5for :
0 0.8 0 0.5 0 0.4

,0.8 ,0.9 , ,0.5 ,1 , ,0.4 ,0.5

A
A x x

x x x

µ
∅∪

∧ ∧ ∧
∅∪ = + +

∨ ∨ ∨
=

 

 

 

 

 

( )( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( )}

1 1 1

2 2 2

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6 ,

,0.8 ,0.9 , ,0.5 ,1 , ,0.4 ,0.5

x x x

x x x

A

A

∅

=

∪ = 

 





 

( )

{ }( ) ( )( ){ }
1 1

1

1 1 1 0.7 1 0.6 1 0.7 0.6for :
0 0.8 0 0.6 0 0.3 0 0 0

0,max 1,0.7,0.6 ,0 ,1 ,

A
A x x

x

µ
∅∩

∧ ∧ ∧
∅∩ = + + = + +

∧ ∧ ∧
= ⇒

 

 

 

 

 

( )

{ }( ) ( )( ){ }
2 2

2

1 0.9 1 1 1 0.5 0.9 1 0.5for :
0 0.8 0 0.5 0 0.4 0 0 0

0,max 0.9,1,0.5 ,0 ,1 ,

A
A x x

x

µ
∅∩

∧ ∧ ∧
∅∩ = + + = + +

∧ ∧ ∧
= ⇒

 

 

 

 

 

( )( ) ( )( ){ }1 2,0 ,1 , ,0 ,1x xA∅∩ = ∅=  

  

 

( )

{ }( ) ( )( ){ }
1 1

1

1 1 1 0.7 1 0.6 1 0.7 0.6for :
1 0.8 1 0.6 1 0.3 1 1 1

1,max 1,0.7,0.6 ,1 ,1 ,

A X
A X x x

x

µ
∪

∧ ∧ ∧
∪ = + + = + +

∨ ∨ ∨
= ⇒

 

 

 

 

 

( )

{ }( ) ( )( ){ }
2 2

2

1 0.9 1 1 1 0.5 0.9 1 0.5for :
1 0.8 1 0.5 1 0.4 1 1 1

1,max 1,0.9,0.5 ,1 ,1

A X
A X x x

x

µ
∪

∧ ∧ ∧
∪ = + + = + +

∨ ∨ ∨
= ⇒

 

 

 

 

 

A X X∪ =  

    

( )

( )( ) ( )( ) ( )( ){ }
1 1

1 1 1

1 1 1 0.7 1 0.6 1 0.7 0.6for :
1 0.8 1 0.6 1 0.3 0.8 0.6 0.3

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6

A X
A X x x

x x x

µ
∩

∧ ∧ ∧
∩ = + + = + +

∧ ∧ ∧
=

 

 

 

 

 

( )( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( )}

1 1 1

2 2 2

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6 ,

,0.8 ,0.9 , ,0.5 ,1 , ,0.4 ,0.5

A X x x x

x x x A

∩ =

=

 

 





 

Then { }, ,X A= ∅ 





 F  is general type-2 fuzzy topologies defined on X and the 

pair ( ),X 

F  is called general type-2 fuzzy topological space over X, every 

member of F  is called type-2 fuzzy open sets. 

Theorem 5: Let { }:r r∈



F  be a family of all general type-2 fuzzy topologies 

on X ; then rr∈∩




F  is general type-2 fuzzy topologies on X. 

proof: we must prove three conditions of topologies, 

1) { }, ,: rrrX Xr ∈∈ ⇒∅ ∈ ∅ ∈∩


   

 



  F F . 

2) Let { }: r riA i ∈∈ ⊆ ∩












F , then i rA ∈ 





F  for all i∈  so 

thus i i r rA∈ ∈∪ ∈∩
 







F . 

3) Let , r rA B ∈∈∩




 







F , then , rA B∈  





F  and because r


F  are all general type-2 
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fuzzy topologies rA B
≈

∩ ∈ 

  F  for all r∈ , so r rA B ∈∩ ∈∩




 







F . 

Remark 6: Let ( )1,X 

F  and ( )2,X 

F  be two general type-2 fuzzy topological 

spaces over the same universe X then ( )1 2,X ∪ 

 F F  need not be general type-2 

fuzzy topological space over X, we can see that in example 3.7. 

Example 7: Let { }1 2,X x x=  and { }1 , ,X A= ∅ 





 F , { }2 , ,X B= ∅ 





  F  be two 

general type-2fuzzy topologies defined on X where , ,A B ∅ 

   and X  defined as 

follows: ( )( ) ( )( ){ }1 2,0 ,1 , ,0 ,1x x∅ = , 

( )( ) ( )( ){ }1 2,1 ,1 , ,1 ,1x xX =  

( )( ) ( )( ) ( )( ){
( )( ) ( )( ) ( )( )}

1 1 1

2 2 2

,0.8 ,1 , ,0.6 ,0.7 , ,0.3 ,0.6 ,

,0.8 ,0.9 , ,0.5 ,1 , ,0.4 ,0.5 .

x x x

x x x

A =
 

( )( ) ( )( ) ( )( ) ( )( ){ }1 1 2 2,0.5 ,1 , ,0.6 ,0.2 , ,0.3 ,0.7 , ,0.9 ,1 .x x x xB =  

Let { }1 2 , , ,X A B∅∪ = 

 

  

  F F  so ( )1 2,X ∪ 

 F F  is not general type-2 fuzzy to-

pological space over X since 1 2A B∩ ∉ ∪ 



 

  F F . 

Definition 8: Let ( ),X 

F  be general type-2 fuzzy topological space over X 
and let A  be type-2 fuzzy set over X. Then the type-2 fuzzy interior of A , de-
noted by ( )int A , is defined as the union of all type-2 fuzzy open sets contained 
in A . That is, 

( ) { }int : type-2 fuzzy open sets in , ,i i iA G G X G A i= ∪ ⊆ ∈    

    

 , ( )int A  is the 

largest type-2 fuzzy open set contained in A . 

Theorem 9: Let ( ),X 

F  be general type-2 fuzzy topological space over X, 

and let ,A B    be two type-2 fuzzy sets in X. Then 

1) ( )int ∅ =∅ 

   and ( )int X X= 

  . 

2) ( )int A A⊆ 

  . 

3) A  is type-2 fuzzy open set if and only if ( )int A A= 

  . 

4) ( )( ) ( )int int intA A= 

  . 

5) ( ) ( )int intA B A B⊆ → ⊆  

   . 

6) ( ) ( ) ( )int int intA B A B∩ = ∩  

   . 

Proof: 

1) ( ) { }int : type-2 fuzzy open sets in , ,i i iA G G X G A i= ∪ ⊆ ∈    

    

 , ∅  is 

type-2 fuzzy open set in F  and ( )int∅ ⊆∅⇒ ∅ =∅   

    . 
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Now to prove ( )int X X= 

  ,  

( ) { }int : type-2 fuzzy open sets in , ,i i iX G G X G X i= ∪ ⊆ ∈   

   

 , X  is type-2  

fuzzy open set in F  and ( )intX X X X⊆ ⇒ =   

    . 

2) To prove ( )int A A⊆ 

  , since  

( ) { }int : type-2 fuzzy open sets in , ,i i iA G G X G A i= ∪ ⊆ ∈    

    

 , such that iG A⊆ 

   

that is A  is type-2 membership function ( ),
A

x uµ




 where x X∈  and 

[ ]0,1Xu J∈ ⊆  less than a type-2 membership function ( ),
iG

x uµ




 where 

x X∈  and [ ]0,1Xw J∈ ⊆  such that w u≤  and ( ) ( ), ,
iG A

x u x uµ µ≤
 

 

,  

( ) ( ){ }sup , , ,
iG A

x u x u w uµ µ≤ ≤
 

 

 hence ( )inti iG A G A∪ ⊆ ⇒∪ ⊆   

    , therefore 

( )int A A⊆ 

  . 

3) If A  is type-2 fuzzy open set, then ( )intA A⊆ 

  , but ( )int A A⊆ 

   from 

part (2), hence ( )int A A= 

  . 

4) ( )int A  is a type-2 fuzzy open set and from part (3) we have 

( )( ) ( )int int intA A= 

   

5) If A B⊆ 

   and from part(2) ( )int A A⊆ 

  , ( )int B B⊆ 

  , then  

( )int A A B⊆ ⊆  

   . Therefore ( )int A B⊆ 

   and ( )int A  is a type-2 fuzzy open set 

contained in B , so ( ) ( )int intA B⊆ 

  . 

6) Because ( )A B A∩ ⊆ 

   and ( )A B B∩ ⊆  

   , from part (5)  

( ) ( )int intA B A∩ ⊆ 

   and ( ) ( )int intA B B∩ ⊆  

   , thus  

( ) ( ) ( )int int intA B A B∩ ⊆ ∩  

   , since ( )int A B A B∩ ⊆ ∩  

   , so  

( )( ) ( ) ( )int int intA B A B∩ ⊆ ∩  

    from part(5) but ( ) ( )int intA B∩ 

   is a type-2 

fuzzy open sets then ( )( ) ( ) ( )int int int intA B A B∩ ⊆ ∩  

    from part(3).Hence 

( ) ( ) ( )int int intA B A B∩ = ∩  

   . 

Definition 10: Let ( ),X 

F  be general type-2 fuzzy topological space over X  

and let A  be type-2 fuzzy set over X. Then the type-2 fuzzy closure of A , de-

noted by ( )cl A , is defined as the intersection of all type-2 fuzzy closed sets 

containing A . That is 

( ) { }: type-2 fuzzy closed sets in , ,i i icl A M M X A M i= ∩ ⊆ ∈   

   

 , 
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( )cl A  is the smallest type-2 fuzzy closed set containing A . 

Theorem 11: Let ( ),X 

F  be general type-2 fuzzy topological space over X, 

and let ,A B    be two type-2 fuzzy sets in X. Then 

1) ( )cl ∅ =∅ 

   and ( )cl X X= 

  . 

2) ( )A cl A⊆ 

  . 

3) A  is type-2 fuzzy closed set if and only if ( )cl A A= 

  . 

4) ( )( ) ( )cl cl A cl A= 

  . 

5) ( ) ( )A B cl A cl B⊆ → ⊆  

   . 

6) ( ) ( ) ( )cl A B cl A cl B∩ = ∩  

   . 

Proof: The proof this theorem similar to the proof of theorem 3.7. 

Definition 12: Let ( ),X 

F  be a general type-2 fuzzy topological space over X 

and N ⊆ 

F . Then is said to be a neighborhood or nbhd for short, of a type-2 

fuzzy set A  if there exist a type-2 fuzzy open set W  such that A W N⊆ ⊆  

   . 
Proposition 13: A type-2 fuzzy set A  is open if and only if for each type-2 

fuzzy set B  contained in A , A  is a neighborhood of B . 
Proof: If A  is open and B A⊆ 

  then A  is a neighborhood of B . Con-
versely, since A A⊆ 

  , there exists a type-2 fuzzy open set W  such that 
A W A⊆ ⊆ 

  . Hence A W= 

   and A  is open. 

Definition 14: Let ( ),X 

F  be a general type-2 fuzzy topological space over X  

and B  be a subfamily of F . If every member of F  can be written as the 
type-2 fuzzy union of some members of B , then B  is called a type-2 fuzzy 
base for the general type-2 fuzzy topology F . We can see that if B  be type-2 
fuzzy base for F  then F  equals the collection of type-2 fuzzy unions of ele-
ments of B . 

Definition 15: Let ( ),X 

F  and ( ),Y 

S  be two general type-2 fuzzy topo-

logical space.The general type-2 fuzzy topological space Y is called a subspace of 
the general type-2 fuzzy topological space X if Y X⊆  and the open subsets of 

Y are precisely of the form { }:
Y

Y= = ∩ ∈




    

    F F   . Here we may say that each 

open subset 

  of Y is the restriction to 

  of an open subset 

  of X. That is, 

( ),Y 

S  is called a subspace of ( ),X 

F  if the type-2 fuzzy open sets of Y are the 

type-2 fuzzy intersection of open sets of X with 

 . 

4. Conclusion 

The main purpose of this paper is to introduce a new concept in fuzzy set theory, 
namely that of general type-2 fuzzy topological space. On the other hand, type-2 
fuzzy set is a kind of abstract theory of mathematics. First, we present definition 
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and properties of this set before introducing definition of general type-2 fuzzy 
topological space with the structural properties such as open sets, closed sets, in-
terior, closure and neighborhoods in general type-2 fuzzy set topological spaces 
and some definitions of a type-2 fuzzy base and subspace of general type-2 fuzzy 
sets. 
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