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Abstract 
Pathogenic strains of E. coli including enteropathogenic E. coli (EPEC), en-
terohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC) are principle 
causes for diarrhoea in many parts of the globe. Citrobacter rodentium (C. 
rodentium), a gram negative bacterium, is a murine pathogen that also util-
izes type III secretion system and similar virulence factors to EPEC and 
EHEC and forms comparable attaching/effacing lesions in the intestines as 
EPEC and EHEC. The infection caused by C. rodentium in mice is usually 
self-limiting and results in only minor systemic effects with higher mortality 
in some susceptible mouse strains. All these characteristics have made the 
bacteria a commonly used model to study host immune responses to patho-
genic E. coli infection. In this review, we focus on the impact of virulence 
factors of the pathogen; different immune components involved in the im-
mune response and summarize their role during C. rodentium infection. 
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1. Introduction 

Escherichia coli is a frequent commensal organism of human intestine, often 
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colonizing immediately after birth and usually remaining for decades [1]. How-
ever, some E. coli strains exhibit pathogenic potential, when they acquire certain 
virulence associated genes [2]. Pathogenic strains of E. coli including enteropa-
thogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are the leading 
causes of diarrheal outbreak in most parts of the world [3]. EPEC is a major 
source of diarrhoea in children under two years of age causing deaths of a mil-
lion each year in developing countries [4] [5]. EHEC causes bloody diarrhoea in 
children and elderly in developed countries with approximately 73,000 cases re-
ported each year in the United states [6] [7] which can cause fatal diseases like 
haemorrhagic colitis and haemolytic uremic syndrome [8] [9]. The hallmark of 
EPEC and EHEC induced pathology is that they populate in the intestinal epi-
thelium through the development of attaching and effacing (A/E) lesions [10]. 
As these pathogens are a profound global health concern understanding their 
clinical manifestation, pathogenesis and immunity has become the focus of ex-
tensive investigation. However, EPEC and EHEC elicit narrow range of host 
specificity and do not elicit a pertinent disease in laboratory animal genera, 
which makes it difficult to study EPEC and EHEC pathogenesis [11]. Citrobacter 
rodentium is an accepted mouse pathogen that uses comparable virulence fac-
tors as EPEC and EHEC and forms analogous A/E lesions in the distal colon of 
mice [12] [13] [14]. Subsequently, C. rodentium has become a commonly used 
animal representative to explore the immune responses to pathogenic E. coli 
contamination in humans. 

2. C. rodentium, an Attaching and Effacing Pathogen 

C. rodentium (formerly known as Citrobacter freundii biotype 4280) a non-motile, 
gram-negative bacteria in the family of Enterobacteriaceae, is recognised as the 
contributing species of transmissible murine colonic hyperplasia (TMCH) [15]. 
The disease is spread through the faecal-oral route and clinical symptoms occur 
predominantly in weanling mice [16]. Overall, the infection is self-curing in 
adult mice with higher mortality in some susceptible mouse strains [13]. In gen-
eral, the infected mice exhibit decrease in body weight, excretion of soft faecal 
pellets with diarrhoea in severe cases and crypt hyperplasia. 

Following entry to the body via oral route, C. rodentium colonizes the caecal 
patch, a type of lymphoid tissue in caecum, from where the bacteria gradually 
progress to colonise distal colon [17] [18] [19]. For colonization, the bacteria trig-
gers localised damage of brush border microvilli, which mediates bacteria to attach 
to the epithelial cell surface. This attachment subsequently produces actin-rich 
structures of epithelial cells which resemble pedestal and they form these lesions 
beneath the associated bacteria [20]. The ultra-structural alterations are known 
as attaching and effacing lesions [21] [22] [23]. The effector proteins essential for 
the generation of A/E lesion are transported to an intestinal cell through a type 
III secretion system (Figure 1), a needle-like structure, which ensures a smooth 
passage of bacterial proteins directly in to the host cell cytoplasm.  
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Figure 1. Illustration of type III secretion system (T3SS) in C. rodentium. The T3SS consists of a complex 
apparatus that actively delivers bacterial effector proteins into the cytoplasm of a host cell. The basal body 
spans the bacterial membranes and a needle-like syringe extends from the surface which is capped by a tip 
complex. Upon host cell contact, a translocon is inserted in the host cell membrane and forms a pore. Bac-
terial virulence proteins are then selectively secreted through the syringe into the host cell, where they ma-
nipulate host cell functions essential for subsequent pathogenicity. 

2.1. Virulence Factors of C. rodentium 

The type III secretion system is programmed by a cluster of genes recognized as 
locus of enterocyte effacement (LEE), a conserved pathogenicity island consist-
ing of 35.6 kb [24]. The LEE pathogenicity island consists of over 40 genes which 
are organised in to five operons including LEE1, LEE2, LEE3, LEE4 and LEE5 
[24] [25] [26]. LEE encodes several structural components of T3SS, effectors, 
translocators and several other proteins (Figure 2) [27] [28]. One important ef-
fector protein is Tir (translocated intimin receptor) a bacteria derived receptor, 
which following translocation binds to the host epithelial cell and interacts with 
intimin, the bacterial outer membrane protein, thereby facilitates anchorage of 
bacteria to host cell, leading to pedestal formation [29] (Figure 3). The intimins 
are encoded by eae genes that are extremely conserved in N-terminal regions, 
however, display substantial heterogeneity at the C-termini [30]. Five different 
intimin types α, β, γ, δ and ε have been recognized [31] [32]. Intimin α and in-
timin β are expressed mainly by strains pertaining to EPEC clones 1 and 2, cor-
respondingly, whereas intimin γ is expressed by enterohaemorrhagic E. coli 
(EHEC) serotype O157:H7 and intimin δ by EPEC O86:H34 [33].  
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Figure 2. Genetic assembly of C. rodentium LEE. The orientation of each gene is shown by the direction of the 
arrow. The different locations of the rorf1 (r1) and rorf2 (espG/r2) genes in C. rodentium LEE, as well as the asso-
ciation of several IS’s or IS remnants with the C. rodentium LEE. The major operons encoded by the LEE (LEE1, 
-2, -3, and -4, Tir, and R1/R2) and their transcriptional directions are shown and adapted from reference [25]. 

 

 
Figure 3. Translocation of C. rodentium secreted proteins occurs through a LEE-encoded type III secre-
tion system that spans the inner and outer membranes of the bacteria as well as that of the host cell. EscJ is 
the inner membrane ring which forms the platform for all other Type III secretion components. 
EspA-containing surface organelles form a filamentous tube for the translocation into the host cell cytosol. 
EspB and EspD are then inserted into the host cell membrane, form a pore structure in the plasma mem-
brane enabling the passage of bacterial effectors, such as Tir. Tir serves as a receptor for the outer mem-
brane ligand, intimin. Tir and intimin interaction initiates a signal transduction cascade that aids in the 
recruitment of actin to form attaching and effacing (A/E) pedestals beneath the adherent bacteria. Tir 
molecules recruit Nck leading to the activation of N-WASP and strong actin polymerization. 
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Upon entry to the host cells, Tir is tyrosine phosphorylated, which recruits 
non-catalytic region of tyrosine kinase adaptor protein Nck [34] [35] [36] [37]. 
Nck binds to the phosphorylated tyrosine and this in turn triggers the recruit-
ment of nucleation promoting factor N-WASP (neural Wiscott-Aldrich syn-
drome protein) and actin-regulated protein Arp2/3 complex, resulting in host 
actin rearrangement [38] [39] [40]. Tir triggers localized actin polymerization by 
another two different pathways. After translocation, LEE and non-LEE effectors 
contribute to the impediment of several signalling pathways in the host cell, in-
cluding actin polymerization, tight junction integrity, endosomal trafficking, 
apoptosis, phagocytosis and innate immune responses, as well as epithelial cell 
shedding and detachment [41].  

Besides Tir, LEE encodes several secreted translocators: EspA, EspD, EspB, 
EspF, EspG, EspH, EspZ, which are entirely translocated into the host cells and 
are involved in modulating host cytoskeleton leading to the manifestation of 
disease [4] [42] [43]. A/E pathogens secrete numerous LEE-encoded regulatory 
proteins, Ler, GlrA and GlrR, which exhibit a significant role in the transcrip-
tional regulation of LEE and several non-LEE virulence determinants [44] [45] 
[46]. Moreover, RegA adjusts LEE expressions through upregulating grlR/A 
transcription [47]. There are several effectors that are not secreted and translo-
cated by the LEE-encoded T3SS including prophages and insertion sequences. 
They comprise the Espl/NleA, an indispensable protein for entire virulence of C. 
rodentium [48] [49] [50] and binds host PDZ-domain proteins [51]; EspB, es-
sential for intimate attachment and signal transduction (Figure 3) [52]; EspJ, 
which display a negligible part in enteric colonization [53]; and EspG, stimulates 
the dissociation of microtubules beneath adherent bacteria [54]. In addition, two 
non-LEE encoded proteins, NleB to NleH, are found in C. rodentium and they 
are mostly produced by the LEE-encoded T3SS [49] [55]. Among these, NleC 
and NleD have been recognized to be translocated into host cells [56]. NleB1 
binds to host cell death domain encoding proteins, diminishes the signalling of a 
death receptor and thereby disrupting a major antimicrobial host response [57]. 

Other than the genes for rorf1 and rorf2/espG and several insertion sequences 
(IS) and IS remnants, both the LEE of C. rodentium and that of EPEC and 
EHEC shares all 41 ORFs and the linear gene sequences (Figure 2) [25]. This 
suggests that the LEE encoded pathogens has a mutual evolutionary origin and 
reciprocal function which supports the use of C. rodentium as an animal model 
to study A/E pathogenesis. 

2.2. Disease Progression of C. rodentium 

Similar to EPEC and EHEC, C. rodentium infection encompasses three distinct 
phases: 1) an initial colonization phase specially facilitated by bacterial effector 
proteins, 2) an acute phase characterized by colonic hyperplasia with the initia-
tion of diarrhoea in severe cases, 3) a convalescent phase manifest as the clear-
ance of bacteria and the prevention of further invasion.  
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During the first week after inoculation, C. rodentium colonizes the brush 
border microvilli and higher numbers of bacteria are seen closely adherent to the 
mucosal epithelial cells (Figure 4) [59] [60]. Acute phase of infection follows 
over the subsequent 2 weeks when the levels of bacteria peak around >109 c.f.u 
per gram of tissue in the colon [16] and the bacteria induce a profound hyper-
plasia of colonic mucosa with the development of secretory diarrhoea [61]. At 
the time of peak hyperplasic phase, the organism can no longer be isolated from 
the intestines and the infected mucosa are thickened markedly. Convalescent 
phase of infection comes following 4 weeks and above, for the period of which 
the reactive epithelial hyperplasia to clinical diarrhoea get resolved and colonic 
mucosa appears normal [13] [62]. 

2.3. Immune Defense against C. rodentium 

Most of the existing knowledge on the immune response and its relation with 
pathology has been expanded using mice with the targeted ablations of various 
immune components. Innate immune response as well as adaptive immune re-
sponse appears to control mucosal defence against C. rodentium [63].  

2.3.1. Role of Adaptive Mucosal Immune Responses 
The concept of exploring mice with deficiencies in immune components first 
came from the study that colonic mucosa of infected mice contained large infil-
trates of CD4+ T cells with a helper T cell 1 cytokine response [64]. Substantial 
mortality was observed in mice deficient in CD4+ T cells or TCRαβ+ T cells [59]. 
Mice lacking CD4 showed a survival limit of two weeks and exhibited 100%  

 

 
Figure 4. Infection kinetics in C57BL/6 mice infected with C. rodentium. (a) C. rodentium bacterial burden at 
three distinct phases of infection: A colonization phase which persists from day 3 to day 5 after infection, an acute 
phase manifest as diarrhoea and host inflammatory responses and a convalescent phase during which the host 
clears pathogen (partially adapted from [58]); (b) The image here represents the gastrointestinal tract isolated from 
a normal (upper one) and an infected mouse (lower one). Infection results in empty and retracted caecum and a 
thickened colon devoid of normal stool (partially adapted from [12]). 
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mortality. However, depletion of CD8+ T cells or TCRγδ+ T cells did not ad-
versely affect survival of infection and played a minor role in surviving the acute 
phase of infection. Two studies [63] [65] [66] separately demonstrated the vital 
significance of B cells for the protective immunity against C. rodentium. Mice 
lacking mature B cells (μMT mice) failed to mount early inflammatory response 
at 2 weeks and could not lessen bacterial load or clear bacterial colonization over 
a prolonged period [63] [65] [66]. RAG1-deficient mice in which both B and T 
cells were absent displayed chronic intestinal colonization and more severe 
colonic damage and these mice were unable to clear infection and died after 3-4 
weeks [59] [63] [67].  

To analyse the potential of secretory antibodies in bacterial clearance, mice 
with selective deficiencies for IgA, IgM or IgG were used [65]. Both IgA- and 
IgM- deficient mice had been found to develop effective immunity against a 
secondary challenge and played a negligible role in controlling C. rodentium in-
fection. However, mice deficient in IgG antibodies lost the ability to develop ro-
bust protective response against secondary challenge. Thus host defense against 
C. rodentium was dependent on IgG antibodies but did not require secretion of 
IgA or IgM [65]. A comparative analysis of the specific ablation of different 
adaptive immune components is summarized in Table 1. 

Simmons and co-workers investigated C. rodentium infection in IFNγ-deficient 
and IL-12 deficient mice. IFNγ-deficient mice had higher bacterial numbers and  

 
Table 1. Summary of the effects of selective ablation of adaptive immune components on C. rodentium infection in mice. 

Mouse models Effects of ablation of specific adaptive immune components on C. rodentium infection Refs 

Mice lacking CD4+ T cells or 
TCRαβ+ T cells 

A survival limit of two weeks and exhibited 100% mortality [59] [64] 

Mice lacking CD8+ T cells or 
TCRγδ+ T cells 

Do not adversely affect survival of infection [59] 

Mice without mature B cells 
(μMT mice) 

Cannot lessen bacterial load or clear bacterial colonization over a prolonged period [63] [65] 
[66] 

RAG1-deficient mice (both B 
and T cells are absent) 

Develop chronic intestinal colonization and unable to clear infection and die after 3-4 weeks [59] [63] 
[67] 

IgA- and IgM- deficient mice Develop effective immunity against a secondary challenge and play a negligible role in controlling C. 
rodentium infection. 

[65] 

Mice deficient in IgG antibodies Lose the ability to develop protective response against secondary challenge. [65] 

IFNγ-deficient mice Higher bacterial numbers and enhanced mucosal thickening in colons and cannot clear infection until 
day 28 

[68] 

IL-12 deficient mice Elicit higher bacterial numbers for the first 3 weeks of infection and eventually clear infection by day 
35 

[30] 

Mice lacking IL-22 Display systemic bacterial load and enhanced epithelial hyperplasia and mortality range up to 100% 
within the first two weeks of infection 

[69] 

Treg deficient mice (DEREG 
mice) 

Diminished bacterial clearance, systemic dissemination of bacteria with compromised Th17 immune 
response accompanied by less inflammation-associated pathology 

[70] 

IL-10 ablated mice Resolve infection earlier than wild-type mice with less infection associated colitis [71] 
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enhanced mucosal thickening in their colons and could not clear infection until 
day 28 [68]. Alternatively, IL-12 deficient mice had been shown to elicit higher 
bacterial numbers for the first 3 weeks of infection and eventually cleared infec-
tion by day 35 [30]. Interleukin-22 (IL-22) has been identified as an essential cy-
tokine for mediating protection against C. rodentium infection. While compared 
to wild-type mice, mice lacking IL-22 infected with C. rodentium displayed sys-
temic bacterial load and enhanced epithelial hyperplasia. In multiple repeat ex-
periments, the mortality of IL-22 knockout mice ranged from 80% to 100% 
within the first two weeks after infection [69]. Administration of Reg3γ, an an-
timicrobial peptide to IL-22 knockout mice controlled infection.  

During infection, CD4+ Th17 cell subsets were particularly amplified in 
Peyer’s patches (PP) but were unaltered in mesenteric LNs [70]. The differentia-
tion of Th17 cells in PP were dependent on the inflammatory cytokine IL-6 as 
treatment with anti-IL-6 antibodies reduced Th17 cells and exacerbated clinical 
manifestation of colitis. Moreover, following anti-IL-6 antibody treatment, there 
was a reduction of IL-22 mRNA expression in the small intestine during infec-
tion but had no effect on IgA production by B cells [70]. 

Symonds and co-workers demonstrated an elevated FoxP3 mRNA expression 
in the distal colon at all stages of infection with C. rodentium. Also, C. roden-
tium infection exhibited an up-regulation of IL17 mRNA expression [58]. Wang 
and co-workers investigated role of Treg during C. rodentium infection using 
DEREG mouse model. Depletion of Treg by diphtheria toxin led to a diminished 
bacterial clearance and systemic dissemination of bacteria. Also, Th17-associated 
immune response was compromised following Treg-depletion, with less in-
flammation-associated pathology in the colons of Treg-depleted mice. Treat-
ment with Anti-IL2 in depleted mice retained Th17 induction, suggesting that 
Treg induced a protective Th17 response by intake of local IL-2 [71]. IL-10 was 
found dispensable in controlling inflammation as IL-10 ablated mice resolved 
infection earlier than wild-type mice and had less infection associated colitis 
[72]. In addition, following infection, IL-27 was produced which subsequently 
suppressed Th17 in vitro and thus play role in anti-inflammatory circuit in the ab-
sence of IL-10. The neutralization of IL-27 led to pronounced colitis in mice lacking 
IL-10 suggesting that IL-10 enacts a minor part in the bacterial clearance whereas 
IL-27 might be an important cytokine for attenuation of inflammation [72].  

Th22 cells were found to be important in the mucosal anti-microbial host de-
fense against C. rodentium. Basu and co-workers [73] demonstrated that C. ro-
dentium induced a wave of IL-22 producing ILCs and CD4+ T cells were each 
critical to host protection during infection. Though the IL-22 production by 
ILCs was strictly IL-23 dependent, IL-22 production by CD4 cells was not IL-23 
dependent rather the production was dependent on IL-6 and transcription fac-
tors T-bet and AhR. Also IL-22 producing CD4 cells (Th22) were more effective 
in host protection than Th17 cells. IL-17 was found to be important in host de-
fense against C. rodentium [74]. The bacterial burden in the colon after infection 
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with C. rodentium showed similar increases in IL-17f-/-, IL17a-/-, and 
IL-17a-/-IL17f-/- mice, indicating that deficiency of just one of the IL-17 pro-
teins resulted in full susceptibility to infection. However, splenomegaly and co-
lon hypertrophy, which were associated with severe colonic inflammation, were 
more pronounced in IL-17f-/- mice than in IL-17a-/- mice suggesting that IL-17f 
was more important than IL-17a in protecting colonic epithelial cells from the 
pathogenic effects of this bacterium. 

2.3.2. Role of Innate Mucosal Immune Responses 
There are several innate immune components which perform a vital role in mu-
cosal homeostasis and in antimicrobial immunity. An augmented pathology was 
observed in mice lacking Toll-like receptor 2 (TLR2) due to an impaired epithe-
lial barrier [75]. Mice lacking the signalling adaptor MYD88, a myeloid differen-
tiation primary response protein 88, which is essential for signalling by the ma-
jority of TLRs [76] [77] had greater bacterial loads both in the colon and in pe-
ripheral tissues as the bacteria penetrated deeply into colonic crypts compared to 
WT mice. Moreover, they suffered from severe colitis and death after infection. 
The innate immune receptor type-I interleukin-1 receptor (IL-1R), utilizing 
MyD88 signalling pathway protected mice from severe damage caused by C. ro-
dentium [78]. IL-1R deficient mice exhibited increased susceptibility to tissue 
damage comparable to that of MyD88 knockout mice. Yet, distinct from MyD88 
knockout mice, mice deficient in IL-1R did not display amplified pathogen bur-
dens in the colon. In another study, Khan and co-workers exhibited that the 
bacteria triggered TLR4 and prompted NF-κB nuclear translocation which was 
dependent on TLR4. Deficiency of TLR4 decreased tissue pathology and in-
flammatory cell infiltration in gut. Unexpectedly, dissemination of bacteria 
through colon was hindered in mice lacking TLR4, while the extent of infection 
was unaffected, suggesting that TLR4-mediated responses were eventually mal-
adaptive to the host [79]. 

Liu and co-workers demonstrated the biological function of inflammasomes 
in immune response against C. rodentium. Mice deficient in inflammasome 
components Nlrp3, Nlrc4, and caspase-1 were hyper susceptible to C. rodentium 
induced intestinal inflammation due to impaired production of IL-1β and IL-18 
[80]. However, these deficient mice exhibited only mild defects and none of 
these mice died after infection, indicating that inflammasome is not essential for 
mice survival after C. rodentium infection. In addition, IL-1β−/− and IL-18−/− 
mice suffered from increased bacterial burdens and had severe histopathology. 
Therefore, Nlrp3 and Nlrc4 inflammasome-mediated IL-1β and IL-18 response 
contributed a significant role in host protection against C. rodentium [80] [81]. 
In another study, Kim and co-workers characterized the role of the intracellular 
Nod-like receptor family members Nod2 in protection against C. rodentium in-
fection [82]. Nod2−/− mice displayed diminished intestinal clearance to C. roden-
tium. The enhanced bacterial load was due to impaired secretion of chemokine 
ligand 2 (CCL2) from colonic cells and subsequent inflow of monocytes. Fur-
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thermore, IL-12, a cytokine produced by monocytes triggered Th1 immunity vi-
tal for bacterial clearance. The adoptive transfer experiments established the sig-
nificant contribution of Ly6Chi monocytes in the clearance of bacteria in vivo 
[82]. Table 2 summarizes a comparative analysis of the specific ablation of dif-
ferent innate immune components. 

Mice lacking the p50 subunit of the NF-κB transcription factor, a nuclear factor 
kappa B, had reduced ability to clear C. rodentium infection [83]. Also a continued 
bacterial load was reported in mice deficient in p38α, a mitogen-activated pro-
tein kinase (MAPK) in intestinal epithelial cells [84]. Interestingly, these animals 
exhibited no apparent histological lesions, however, failed to recruit CD4+ T cells 
and had impaired chemokines expression. Thus, p38α in IECs by employing 
immune cells and adjusting chemokine expression played a part to the host pro-
tective immune responses. CXCL9, an ELR (glutamic acid-leucine-arginine) mo-
tif chemokine had direct antimicrobial potential against C. rodentium and de-
fended crypts from bacterial dissemination. Blockade of this antimicrobial activ-
ity by anti-CXCL9 antibodies escalated host exposure to C. rodentium infection  

 
Table 2. Summary of the effects of selective ablation of innate immune components on C. rodentium infection in mice. 

Mouse models Effects of ablation of specific innate immune components on C. rodentium infection Refs 

Mice lacking Toll-like receptor 2 
(TLR2) 

An augmented pathology due to an impaired epithelial barrier [75] 

Mice lacking MYD88 Have greater bacterial loads in colon and peripheral tissues and suffer from severe colitis and death [76] 
[77] 

IL-1R deficient mice Increased susceptibility to tissue damage but do not display amplified pathogen burdens in colon. [78] 

Deficiency of TLR4 Decreased tissue pathology and inflammatory cell infiltration in gut. While the extent of infection is 
unaffected, dissemination of bacteria through colon is hindered 

[79] 

Mice deficient in Nlrp3, Nlrc4, and 
caspase-1 

Hyper susceptible to C. rodentium induced intestinal inflammation. However, exhibit only mild 
defects and do not die after infection 

[80] 
[81] 

IL-1β−/− and IL-18−/− mice Increased bacterial burdens and severe histopathology. [80] 
[81] 

Nod2−/− mice Diminished intestinal clearance to C. rodentium. due to impaired secretion of CCL2 from colonic 
cells 

[82] 

Mice lacking the p50 subunit of 
NF-κB 

Reduced ability to clear C. rodentium infection. [83] 

Mice deficient in p38α A continued bacterial load with no apparent histological lesions, however, fails to recruit CD4+ T 
cells and impaired chemokines expression. 

[84] 

Ablation of specific 
macrophage/monocyte compartment 

Neither cell type is essential to trigger immunity [85] 

Mice lacking PSGL-1 and P, E and 
L-selectin 

Mice defective in PSGL-1 and P-selectin suffer morbidity, extensive inflammatory responses and 
augmented bacterial burden, however, mice defective in either E or L-selectin do not exhibit severe 
infection 

[86] 

Mice lacking β7 integrin Efficiently control infection and clear bacteria 5-6 week after inoculation [59] 

Mice deficient Muc2 Susceptible to the C. rodentium-induced colitis and display quick weight loss and exhibit 90% 
mortality 

[87] 
[88] 
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with noticeable bacterial dissemination, augmented bacterial titre, and deterio-
rated tissue pathology [89]. Surface lymphotoxin expression on group 3 innate 
lymphoid cells (ILC3s) is critical for early immune responses against C. roden-
tium [90] [91]. LT aids in IL-22 secretion by intestinal ILCs. Blocking of LTβR 
signaling rapidly diminished intestinal IL-22 production after C. rodentium in-
fection [91]. In addition, stimulating LTβR signaling induced IL-22 pathway in 
LT-deficient mice. LT-beta receptor (LTbR) signaling in intestinal epithelial cells 
was essential for recruitment of neutrophils to the site of infection through se-
cretion of CXCL1 and CXCL2 chemokines. In contrast, surface LT produced by 
adaptive B and T cells was dispensable for protection against gut bacterial infec-
tion [90]. 

The function of macrophages and monocytes during C. rodentium infection 
was investigated using ablation of specific macrophage/monocyte compartment 
during infection. Although neither cell type was essential to trigger immunity, 
monocytes and macrophages played a role by secreting IL-12, which prompted 
Th1 polarization and IFN-γ secretion. Thus, monocytes and macrophages con-
tribute in C. rodentium immunity by secreting cytokines that direct T cell po-
larization [85]. 

To outline the function of selectins and their ligands during C. rodentium in-
fection, Kum and co-workers investigated infection in mice lacking PSGL-1, a 
P-selectin glycoprotein ligand-1 and P, E and L-selectin [86]. Mice defective in 
PSGL-1 and P-selectin suffered morbidity, extensive inflammatory responses 
and augmented bacterial burden, however, mice defective in either E or 
L-selectin did not exhibit severe infection. Also, intestinal inflammation and re-
cruitment of inflammatory cells i.e., neutrophils and macrophages were signifi-
cantly diminished in P-selectin defective mice which received blocking antibod-
ies to ICAM-1 or LFA-1, suggesting that these adhesion molecules can counter-
balance the defect in selectins during leucocyte recruitment [86]. Mice lacking β7 
integrin efficiently controlled infection and cleared bacteria 5-6 week after in-
oculation [59]. 

Mice deficient in main intestinal mucin, Muc2, which have an altered intesti-
nal mucus layer, were more susceptible to the C. rodentium-induced colitis and 
displayed quick weight loss and exhibited about 90% mortality due to a closer 
interaction of intestinal microbes with the epithelial barrier [87] [88]. Muc2−/− 
mice had 10 - 100 fold increased C. rodentium load, maximum of which were 
closely attachded to the mucosa in colon. FITC-Dextran administration exhib-
ited considerably exacerbated disruption in intestinal barrier integrity in Muc2−/− 
mice, with explicit bacterial translocation into the colonic mucosa [87] [88].  

2.4. Role of Probiotics and Antibiotic Administration 

Probiotics, a combination of live microorganisms attenuated infection with C. 
rodentium in adult mice and provided a protective role in C. rodentium induced 
death in neonatal mice [92]. In one study, it had been shown that probiotic 
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mixture exhibited inhibitory role on the growth of C. rodentium. Mice that were 
administered live probiotics containing a mixture of Lactobacillus rhamnosus 
and L. acidophilus stayed healthy. Pretreatment of mice with probiotics restored 
colonic integrity and lessened both hyperplasia and inflammatory-cell infiltra-
tion in colon [93]. In a recent study, Collins et al. demonstrated that probiotics 
such as Lactobacillus acidophilus, L. rhamnosus, and Lactobacillus helveticus 
administered daily in the form of fermented dairy products (FDPs) lessened C. 
rodentium induced colonic hyperplasia and stopped the loss of significant bacte-
rial genera that might lead to disease pathology. However, the FDPs did not re-
sult in any noteworthy reduction in C. rodentium colonization when estimated 
by bacterial load [94]. 

Metronidazole pretreatment augmented exposure to C. rodentium-induced 
colitis compared to that of untreated mice 6 days postinfection and resulted in a 
diminished number of Porphyromonadaceae and amplified population of lacto-
bacilli [95]. Metronidazole treatment resulted an impaired goblet cell function, 
decreased Muc2 secretion, a major component of intestinal secretory mucin and 
thinning of inner mucus layer, resulting in microbially induced immune activa-
tion prior to disease induction. Perturbation of the microbiota with metronida-
zole resulted augmented attachment of bacteria to the intestinal epithelium, re-
sulting in a severe form of C. rodentium-induced colitis in mice [95].  

2.5. Limitations of C. rodentium Model 

A limitation to the study of C. rodentium infection model is the absence of anti-
gen-specific tools with which to characterize the fate and function of the patho-
gen/antigen-specific response during infection [96]. The only means that are 
currently available to address this limitation include transgenic strains of C. ro-
dentium that express OVA or GFP [96] [97] [98]. Another probable limitation to 
study this pathogen could be the loss of antibiotic sensitivity of C. rodentium 
due to the development of worldwide emergence of multi-resistant strains [19]. 
However, the likelihood of this loss is occasional due to the germ-free condition 
of the animal houses. 

3. Concluding Remarks 

EPEC and EHEC are the leading cause of diarrhoea in human, affecting children 
and adults in both developing and developed countries. C. rodentium is an en-
teric murine pathogen that mimics virulence factors of human EPEC and EHEC 
and forms comparable attaching and effacing lesions, as a central mechanism of 
tissue targeting, virulence factors and infection in mice. As a result of this asso-
ciation with other important inflammatory diseases, and that there are cases of 
more than a million deaths each year from EPEC and EHEC, the knowledge 
about the pathophysiology of C. rodentium infections and following infection 
how the host immune system responds to it is of immense significance to under-
stand its subsequent function during these inflammatory diseases.  
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This review comprehensively covers the salient features of recent discoveries 
related to C. rodentium virulence, epithelial hyperplasia, innate and adaptive 
immune responses, and the pathophysiology of diarrhoea. It is acknowledged 
that EPEC and EHEC can be modelled efficiently in mice. Murine C. rodentium 
is a well characterised model of diarrhoeal disease as the molecular, cellular, 
pathophysiological aspects of the disease have been well studied. Therefore, C. 
rodentium represents an excellent model in which to study the innate and adap-
tive immune components. We believe that the advances that have been included 
in this review will give a comprehensive insight to combat the acute diarrhoeal 
illness in human. Nevertheless, once again C. rodentium has been proved to be a 
useful in vivo model for studying pathogenesis of secretory diarrhoeal dis-
eases/gastrointestinal pathogen and for preventive/mucosal vaccinations and 
therapeutic approaches.  
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