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1. Introduction

The Foldy-Wouthuysen transformation (FW) [1] is one of several methods used
to investigate the low-energy limit of the relativistic Dirac equation (low-speed);
due to a series of sequential unitary transformations [2], it has proven to be the
favorite method to meaningfully obtain the nonrelativistic limit of the Dirac eq-
uation in which it gives the Schrédinger-Pauli equation [3] [4] [5]; in the FW
representation for relativistic particles in external fields, the operators have the
same form as in the nonrelativistic quantum theory, this is mainly because of the
fact of the hamiltonian and all operators in this representation are block-diagonal,
furthermore the basic characteristics of the FW representation are obviously de-
scribed in [6] [7] [8] [9].
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In the present work, the basic properties of the Dirac hamiltonian in the FW
representation in the noncommutative phase-space are investigated and the
Schrodinger-Pauli equation is found, where the common methods for extracting
the full phase-space noncommutative Dirac equation are both of the linear transla-
tion method, which known as Bopp-Shift translation in which it matches between
the commutative quantum mechanics and the noncommutative quantum mechan-
ics (NCQM) [10], and the Moyal-Weyl product (*-product) [11] [12] [13] [14].

2. Phase-Space Noncommutativity

In the two-dimensional commutative phase-space, the coordinates x, and the

kinetic momentum p, satisfy the usual canonical commutation relations
[x,.,x_,-] = 0’[17[’1’1] = 0’[%174/} =15, (i,j =1,2). (1)

In the recent study results on the phase-space noncommutativity (PSNC) is
shown that at very tiny scales (string scales) the space may not commute any-
more, let us consider the operators of coordinates and kinetic momentum in a
two-dimensional noncommutative phase-space X, and p, respectively, where

the noncommutative phase-space operators satisfy the commutation relations
A A o A A _ . A ~ . gff P
[xi,xj} —z@ij,[pi,pj] = mlj,[xi,pj} =in" o, (l,] = 1,2), 2)
with the effective Plank constant being

ne = h(1 + ?h?j 3)

where
®ij = eijk®k>®k = (0’0’®)a77ij =€l = (0,0,77) >

®,n are noncommutative parameters, they are real-valued and antisymme-
tric constant matrices with dimension of (length)’ and (momentum)?, re-
spectively.

The noncommutativity in phase-space can be realized in terms of Moyal-Weyl
product (*-product) [15] [16] [17] which means that the noncommutativity in-
formation is encoded in the Moyal product, defined as

(/% 2)()=exp BG)“”&‘“% }f(xa) a(x,)
- @)
= f(X)g(x)+Za_l(niJ(é] O .03, -0, f(x)d, ...0, g(*).

The noncommutative phase-space operators are related to the commutative
phase-space one, due to the so-called Bopp-shift linear transformation [18] [19]
[20], knowing that the latter induced from the *-product, and it is given by

)2=x—i®p, )3=y+i®p
2n 2h (5)

. 1 . 1
= + — = ——nXx
Pe=pot_ony by=p, =
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If ®=7=0 the noncommutative phase-space algebra reduces to the com-

mutative one.
3. Nonrelativistic Limit of the Dirac Equation in
Noncommutative Phase-Space

3.1. The Dirac Equation in Noncommutative Phase-Space

As it known by the use of the *-product, we obtain the Dirac equation for the

noncommutative quantum mechanics [21] [22]
H (%, p)*y(%)=Ey, (6)

knowing that the Dirac equation in interaction with the electromagnetic

four-potential 4, in commutative phase-space is

{cai ( p-S4 (x)j—i—eAO (x)+ ﬂmcz}// ~ By (x), @)

—iEt
x
where !//(x,t)ze h { (( ))] is the wave function (bi-spinor) in the Dirac re-
x(x

presentation.

At first we achieve the noncommutativity in space, by the mapping between
the noncommutative coordinates X and the commutative coordinates x using
the *-product, with the help of Equation (4) we find

H(fc,ﬁ)*y/(fc):{cai(ﬁi —54(2))+er(£)+ﬂmc2}<1//(5c). (8)

Consider the electromagnetic potential (x)=/x, where A is a constant, the
derivations in the Equation (4) roughly turned off in the first order, then Equa-
tion (8) can be written as follows

(B < (3) = (5) 50,0, a5 =249

+e4, (fc)+ﬁmc2}8b1//(x)+0(®2) )
= Ey (x),
with 9, (ce,p,) =20, (ﬂmcz) =0, Equation (9) reduced to
H (5, p)y (1) 50,0, [, (4()) = 4, () ] (1) = By (x). (10)

Anew we achieve the noncommutativity in phase by the mapping between the
noncommutative kinetic momentum p and the commutative one p, using Equa-

tion (5) to get the following full noncommutative phase-space Dirac equation

H(fc,jy) * (//(fc) = {cai (P; +ﬁryijxj _EA,. (x))+eA0 (x) + fmc?
c

0,0, (a(4,()-4.(92,) |y (x) a

= Ey (x),
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rewrite the Equation (11) in a more compact form (see Appendix A for the sim-

plification):

I:I*V/(NC) ={c&[ﬁ—§2)+e140 + pmc’ +%(d><)?)oﬁ

(9= 4)xp) 0y, (12)
= EW ey
—l(E+(&><7c)-ﬁjt 4(3)
where ., =exp R is the wave function in
(ve) A Z(x)

noncommutative phase-space.

3.2. Foldy-Wouthuysen Transformation in Noncommutative
Phase-Space

Deriving the Schrodinger-Pauli equation in noncommutative phase-space,
which is the nonrelativistic limit of the Dirac equation in a simple way using the
Foldy-Wouthuysen transformation, this one achieved by a series of successive
unitary transformations performed on the phase-space noncommutative Dirac
hamiltonian in Equation (12), knowing that it is only applicable to weak fields.

The Dirac hamiltonian in PSNC is given by
A :c&[ﬁ—f;lj+e/10 + pmc? +%(dxx).m%(ﬁ(&AT—AO)xﬁ).@, (13)
c

in order to perform the FW transformation, we have to rewrite the Dirac hamil-

tonian Equation (13) to the form:
1:1=é+€+ﬁmcz, (14)

where the Dirac hamiltonian is divided into block diagonal and off diagonal

parts denoted even operator ¢ and odd operator 0 respectively'.

(15)
0=cal p-£AJr(axs)is(9(ad)) .

these are defined to satisfy
BO=—0B and Bé=¢p. (16)

Because of the presence of the odd operators (of & matrices), the Dirac ha-
miltonian is not block diagonalized, so that we try to eliminate odd operators

from the Dirac hamiltonian, by applying FW transformation
Vive) =€ Ve)

A (17)
H/ — elSHe—lS’

'0dd operators (off diagonal in Pauli-Dirac basis): «,,y,,--- even operators (diagonal in Pau-

li-Dirac basis): f,%,1,--- suffice at the 4rd order of §.
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with § is Hermitian and it is of the form

—i

§= 6. 18
* 2mczﬁ (18)

Using the Maclaurin series expansion of ¢” defined as

A .A\2
ei§ =1+E+(ls)
1!

nian (Campbell-Baker-Hausdortf expansion) (23] [24]
~ o . i’ . i .
H=H +l|:S,H:|_ +Z[s,[s,Hll +§|:s,[s,[s,H]_1l I
[T . oA
+EI:S’|:S’.”|:S’Hj|_ ...:|7j|_ NI

3
Writing our hamiltonian, restricting ourselves to terms up to order 1/ ( mc2) ,

thus we suffice at the 4 order of S,

+--- in the Equation (17) yields a transformed Dirac hamilto-

(19)

Using the properties mentioned in Equation (16) and with Equation (14) and
Equation (18), knowing that

Blo.c] =-[b.¢] B, (21)

we calculate the various commutators of § and H

—é[@[@[@]—}ll 1 - 6m1204 & - 6m1306 ﬂAéﬂ " 48n113c6 ﬁ[é’[é’[é’gll l , (24)

with the same manner we continue, with taking into account only terms of the
3
order 1/ (m0c2) , we get

1 alalara a 1 A A
_ﬁ[s’[s’[s’[s’ﬂ ’"62”” *2ame P (25)
by collecting the terms of a' Equations ((22), (25)), we find
A Aooa 1 an ,B A 1 ~a 1 A
H=H-0+ 0> +—L—10,¢| — 6 — 6
mc* p 2mc? [ 6]- 2mc? p 2m?c?
1 AT A L | N 1 ~a
] [9,[9,611 e (26)

1 Al AT ATA & 1 A
- 48m’ct ,8[6’,[6,[9,61 ll " 24m’c® ﬂ04’
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A

H" = fmc* +€ +

A

_ 2 2 1 s 1 4 [3 H 2 1 3
_e+ﬂ{mc el AL [0.¢] ——=0

mc 2mc?
_ﬁ[é’[é’éll - 48;3&’ ﬁ[é’[é’[é’élll’

as it shown in the Equation (27) the new hamiltonian is not free of the odd op-

(27)

erator, the odd part not omit, so By further FW transformation we reduce the
odd part of the transformed hamiltonian, so we perform a second transforma-
tion, remembering that the product of two even or odd operators is an even op-
erator.

To reduce the odd part of the transformed hamiltonian, thus we chose

N T
S =

T 0. (28)

in where
H =H+0 +¢+ Bmc?, (29)

with

0= 25& [8.¢] - 3mlzc4 0= 48n113c(’ Z [é’[é’[é’élu > G0
6~ 1204 6[6.e] ] (31)
H"=¢"He™, (32)

-%[@', [5.[5.[5.pme H” o

3
We restrict ourselves to terms up to order 1/ (ch) , as in the first FW

(33)

. . A 1 . .
transformation (knowing that 6'~—-), so that the new hamiltonian is
mc

A

B

2
2mc

L g 1204 [é',[é',g'u_. (34)

2mc 8m

A 1 PP
[0.¢ ]—+2mc2 po” -

The terms proportional to 6" and 0 contain large powers of l/mc2 ,
therefore they can be neglected, more precisely we take into account only terms
of order that we restrict ourselves in the expansion, and thus Equation (34) is

given by
A= s+ 2P [68] — pmese (35)
2me -

H" is not yet free of the odd operators, we apply a third FW transformation to

eliminate 6",

[:Im _ e[&”l_}ne—if” , (36)
with
A =i A
= pl (37)
mc
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so that

13 s 12 {é,[é,éll. (38)

8m’c 8m c

N . A R
H'":[J’mc2+e':,3m02+e+mc2 pO* —

Finally the transformed hamiltonian is completely free of odd operators, next
we calculate the various terms of the Equation (38), according to Equation (15),
we make use of the following known relations for three arbitrary vectors A4, B
and C:

Ny}
—_
[>T}
X
&
1]
>oT)
~
X
Ny
S—
1]
@
™
X
o]
Ny
X
o]
a
1]
ST
X
&
N
1]
—_
@
X
&S
o
N
N

the Equation (15) becomes

9:co?(ﬁ—EZJ+%&[(£xﬁ)+E§Z(ﬁx@)):c&(ﬁ—fﬂj+£dﬁ, (40)

c c c h
with
fl:?cxﬁ+fa;1(]3x@), (41)
c
yields
e ? 2¢ e c? 2
0 =cfal5-a)| + % 5-%ilao+ < (aa), 0
olalr-5a)) a(p-tifane ey,
using the following relation’
(@4)(@B)=AB+i%-(AxB), (43)
we obtain
2 2
0o &(ﬁ—fﬂ) ﬁ(p_fzjmc—zcz
c h c /]
(44)
+ic’Y Zh—ef?+g(ﬁ—£;1}<ﬁ+lﬁxﬁ s
c h c h
and
1 A il -
8m*c* [9361 N _8mzc4 cavd,
) (45)
e = ~ e-) ¢ _= Cc _=
+ —(V xp|-O,cal p——A|+—aQ| +|—aQ,e ,
8mzc4{|:h( (Aﬂ) p) (p B j 7 :|_ |:h Ao:|}
for 4,=V wehave VV =—E and using Equation (45) we have
Al A L eh’c® - ieh*c? - -~ =
[0.[6.¢] | - S VE+ LS VXE
s i-EX"+[£dﬁich:| (46)
4m3ct P no 8m*ct _

‘a'a’ =a'Ba’ =-Ba’'fa’ =y'y’ :7%({7’,7’}+[7’,7’]):7g"‘ +ie" 2 =57 +ie" 2t
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using Equation (43) we simplify Equation (46) (see Appendix B), to have

[00.6] | =L VR 5 G5 Exp
Ll 8wt 8m*c* 4m*c* P

ic? = - == = 1 e . e-) c=
+W([Q,E:|—+ZZZ(QXE))+WE C(p-;A)"F%Q ,

(47)

Adding the various contributions Equations ((44), (47)), in Equation (38),

P o' ~ 13c6 p*,and For y,, = (((/))j the Schrodinger-Pauli

with assuming
mc &m

equation is

1'7/“12 = ,[§ n102+L "—EZZ— ! "4+L -S40+ ! o’
6t¢ 2m 8m3csp mh P c 2mi*

. . 2 2
+Li[3(*_Ez}mhizm@j}ev_ﬂﬂzé_’eh_cimé
C

9}

2m \ h 2mc 8m?c*
eh =« - _ e;- _\ = ehc -~ ic _
o Z.Exp+%(E><p) o VE o ([Q.E] +2i5(QxE)

The reason of the explicit noncommutative terms entangled in the obtained
Schroédinger-Pauli Equation (48), (in FW representation) is that the effect of the
noncommutativity in the Dirac equation appears as a kind of potential which
depends on noncommutativity parameters (77, and ), then after applying the
nonrelativistic limit that potential is the responsible on generating a new terms
and a modified known terms, which contain the noncommutative parameters
(reduced in Q), in Equation (48), where terms in the first parenthesis describe
the NC nonrelativistic kinetic energy, and its first NC nonrelativistic correction
(at least to the order of approximation we have considered), this is manifested as

a terms contain phase-space NC parameters added to the known terms, then
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successive two terms describe the electrostatic energy and the magnetic dipole

energy, thereafter — 672'“1 Z S-Exp +£(E">< 13) .0, represents the ®-modified
4m°c h
spin-orbit interaction term, in a spherically symmetric potential, with
ﬁszO,E:—?V(r):—la—V*,and Fxp=L,
r or
. . . 1oVa - el -
®-modified spin-orbit term = %_8_1/2 -L —E—a—VL ‘0. (49)
4m=c" r or hror
el’c® -~ ic’

Next term in Equation (48), _8 > 4VE—8 > 4<[Q,EJ +2i§l(f)x1§‘)),
m-c m-c -

represents the @ 7-modified Darwin term (attributed to the Zitterbewegung [25]
[26] [27]), with E=-VV(r) and A=0, Q=%xij,

®7n-modified Darwin term
(50)

eh’c? - ic?
- \ 2 4
c

Vo (%797 ] +2i8(5x7x V7))

The other terms in the Equation (48) represent the NC Schrédinger-Pauli eq-
uation corrections.

Essentially the intriguing part of our result is the fact that noncommutative
effects grant a ®7p-modified terms entangled in the obtained NC Schrédin-
ger-Pauli equation.

Under the condition that space-space and momentum-momentum are all
commutative (namely, 7=0, ®=0) the results return to that of usual quan-

tum mechanics.

4. Conclusions

In conclusion, the phase-space noncommutativity effect is introduced in the Di-
rac equation and subsequently the Foldy-Wouthuysen transformation is ex-
ploited to reduce the system in presence of electromagnetic field to a nonrelati-
vistic regime, which gives the Schrédinger-Pauli equation.

Knowing that the phase-space noncommutativity effect is introduced by ap-
plying both of the Bopp-shift linear translation method, and the Moyal-Weyl
product.

The usage of the FW representation in most cases allows one to reduce the
problem of finding a classical limit of relativistic quantum mechanical equations
to the replacement of operators in the hamiltonian of the quantum mechanical
equations of motion by the respective classical quantities, even with noncom-
mutativity in phase and space, and the effects of the latter are manifested in the

various terms of the obtained hamiltonian.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

DOI: 10.4236/jmp.2018.911127

2029 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.911127

|. Haouam, L. Chetouani

References

(1]

(2]

(3]
(4]
(5]
(6]

(7]

(8]

9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]
[24]

Foldy, L.L. and Wouthuysen, S.A. (1950) Physical Review; 78, 29.
https://doi.org/10.1103/PhysRev.78.29

Greiner, W. (2000) Quantum Mechanics an Introduction, 4th Edition, Vol. I,
Springer, Berlin.

Greiner, W. (1994) Quantum Mechanics. 3rd Edition, Springer, Berlin, Heidelberg.
Davydov, A.S. (1965) Quantum Mechanics. 2nd Edition, Pergamon, Oxford.
Messiah, A. (1968) Quantum Mechanics, Vol. II. Wiley, New York.

Costello, J.P. and McKellar, B.H.]. (1995) American Journal of Physics, 63,
1119-1121. https://doi.org/10.1119/1.18017

Silenko, A.J. (2003) Journal of Mathematical Physics, 44, 2952.
https://doi.org/10.1063/1.1579991

Silenko, A.J. (2008) Physical Review A, 77, Article ID: 012116.
https://doi.org/10.1103/PhysRevA.77.012116

Nikitin, A.G. (1998) Journal of Physics A: Mathematical and General, 31, 3297-3300.
https://doi.org/10.1088/0305-4470/31/14/015

Delduc, F., Duret, Q., Gieres, F. and Lefrancois, M. (2008) Journal of Physics Con-
ference Series, 103, Article ID: 012020.
https://doi.org/10.1088/1742-6596/103/1/012020

Douglas, M.R. and Nekrasov, N.A. (2001) Reviews of Modern Physics, 73,
977-1029. https://doi.org/10.1103/RevModPhys.73.977

Connes, A., Douglas, M.R. and Schwarz, A. (1998) /HEP, 9802, 003.
https://doi.org/10.1088/1126-6708/1998/02/003

Seiberg, N. and Witten, E. (1999) JHEP, 9909, 032.
https://doi.org/10.1088/1126-6708/1999/09/032

Chaichian, M., Demichev, A. and Presnajder, P. (2000) Nuclear Physics B, 567, 360.
https://doi.org/10.1016/S0550-3213(99)00664-1

Mirza, B. and Mohadesi, M. (2014) Communications in Theoretical Physics, 42,
664-668. http://iopscience.iop.org/0253-6102/42/5/664

Bastos, C., Bertolami, O., Dias, N.C. and Prata, J.N. (2008) Journal of Mathematical
Physics, 49, Article ID: 072101. https://doi.org/10.1063/1.2944996

Eftekharzadeh, A. and Hu, B.L. (2005) Brazilian Journal of Physics, 35, 333-342.
https://doi.org/10.1590/S0103-97332005000200019

Li, K., Wang, J. and Chen, C. (2005) Modern Physics Letters A, 20, 2165-2174.
https://doi.org/10.1142/S0217732305017421

Jiang, X., Long, C. and Qin, S. (2013) Journal of Modern Physics, 4, 940-944.
https://www.doi.org/10.4236/jmp.2013.47126

Hassanabadi, H., Molaee, Z. and Zarrinkamar, S. (2014) Advances in High Energy
Physics, 2014, Article ID: 459345. http://dx.doi.org/10.1155/2014/459345

Adorno, T.C., Baldiotti, M.C., Chaichian, M., Gitman, D.M. and Tureanu, A. (2009)
Physics Letters B, 682, 235-239. https://doi.org/10.1016/j.physletb.2009.11.003

Bertolami, O. and Queiroz, R. (2011) Physics Letters A, 375, 4116-4119.
https://doi.org/10.1016/j.physleta.2011.09.053

Schwabl, F. (1995) Quantum Mechanics. Springer, Berlin.
Kurlin, V. (2007) Journal of Lie Theory, 17, 525-538. arXiv:math/0606330.

DOI: 10.4236/jmp.2018.911127

2030 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.911127
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1119/1.18017
https://doi.org/10.1063/1.1579991
https://doi.org/10.1103/PhysRevA.77.012116
https://doi.org/10.1088/0305-4470/31/14/015
https://doi.org/10.1088/1742-6596/103/1/012020
https://doi.org/10.1103/RevModPhys.73.977
https://doi.org/10.1088/1126-6708/1998/02/003
https://doi.org/10.1088/1126-6708/1999/09/032
https://doi.org/10.1016/S0550-3213(99)00664-1
http://iopscience.iop.org/0253-6102/42/5/664
https://doi.org/10.1063/1.2944996
https://doi.org/10.1590/S0103-97332005000200019
https://doi.org/10.1142/S0217732305017421
https://www.doi.org/10.4236/jmp.2013.47126
http://dx.doi.org/10.1155/2014/459345
https://doi.org/10.1016/j.physletb.2009.11.003
https://doi.org/10.1016/j.physleta.2011.09.053

|. Haouam, L. Chetouani

[25] Hestenes, D. (1990) Foundations of Physics, 20, 1213-1232.
https://doi.org/10.1007/BF01889466

[26] Huang, K. (1952) American Journal of Physics, 20, 479.
https://doi.org/10.1119/1.1933296

[27] Barut, A.O. and Bracken, A.J. (1981) Physical Review D, 23, 2454.
https://doi.org/10.1103/PhysRevD.23.2454

DOI: 10.4236/jmp.2018.911127 2031 Journal of Modern Physics


https://doi.org/10.4236/jmp.2018.911127
https://doi.org/10.1007/BF01889466
https://doi.org/10.1119/1.1933296
https://doi.org/10.1103/PhysRevD.23.2454

|. Haouam, L. Chetouani

Appendix A: Moving from Equation (11) to Equation (12)
The simplification to move from Equation (11) to Equation (12):

1
Using 7, =7n7¢, and 7, :Eek”n” , we find:

c < O
aiEUij —E(Zrykekij)ai)(j -
c
:%nkekija[Xj’
where ¢ =¢, , knowing that (UxV)” =¢,,UV,,
¢ cC(. =
Enkekijain:E(aX )k77k
(52)
C —
=—(axX)7q,
pl X
with the same manner we prove that
~ie®,¢,,0, (@4~ 4,)0,
= —ie%@keabkaa (@d-4,)o, (53)
e (= N - —
Z%(V'(aA—AO)Xp)-G.
Appendix B: The Elimination of & from the Two Last
Terms in Equation (46)
Using The Equation (43) we find
[E&Q, i 4co7E} “Can M GE- M aECa0
n 8m _ h  8mc 8m*c n
ct ih =
= oo {aQaE—&EaQ}
.2
ic® (a= ==\ s o =~
= [QF +i5(QxE)-EG-iZ(ExQ)|
_ e ([@E] +i5(axE)
8m>c* -
And for the second term
e-) c_.~ -1 e-) Cc_.=)e; = ~
cd| p——A |+—aQ, cid| p——A|-—aQ |,—(-Exp)-©
{ (p c ] h 8mzc4K (p c j h ]h( p) }
- 124 Eo?f),eV
8m e’ | h B
) (55)

_ {az[ fy—%?l}t%éﬁ, p— %e&[fz,V”
{ca(ﬁ_gz}%mﬁﬁcd(ﬁ_g,aj_gmj,g(m)x ﬁ).@H_,

we start with the 1* term of the above Equation (55)
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{ (p cAj Rereariil }

_ ((p ey Ea[w]j
_am]j( ] (56)
Lsm pealor] [( ] H
P L))

using Equation (39), we continue with the 2™ term,

{ (p CA) st Sml K (,s_gzj_%mjé(gxﬁ).@H_

i s s efene

Aeldo-ca) el p-ca)safenne
ooz 1)

¢ ( -
+ c
e jx c(i) ey QJ
/] c
(57)
¢ +£ij (c( 5L ()
c h c
(Exfa)-@ D EZJ—EQJX(C[[?—EA Q]},
c fi c
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finally we find
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