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Abstract 
Aging populations are increasing the incidence of age-related diseases, re-
sulting in problems at the individual and socioeconomic level. The need for 
effective strategies in regenerative medicine for the elderly is more important 
than ever. Previous studies have shown that the number and function of stem 
cells decline with age, thereby undermining endogenous repair processes. It 
has also been suggested that the aging-induced deterioration of stem cell 
function may play a key role in the pathophysiology of various aging-related 
diseases. Recent advances in our understanding of tissue regeneration and the 
development of methods aimed at inducing and differentiating pluripotent 
stem cells for cell replacement therapy which provides exciting opportunities 
for the treatment of degenerative diseases, such as those related to senility. In 
this review article, we examine several mechanisms that are believed to con-
tribute to the aging-related dysfunction of stem cells associated with diseases 
of the immune system, cardiac tissue, neuronal system, articular cartilage, 
and skeletal muscle. We also discuss factors that affect the therapeutic poten-
tial of adult stem/progenitor cells as well as current trends in the treatment of 
these conditions using regenerative medicine. 
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1. Introduction 

Aging-related tissue changes and stem cell depletion in mammals lead to imbal-
ances in tissue homeostasis and decreased organ regenerative capacity [1] [2]. 
The mediation of aging by complex cellular and physiological processes is driven 
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by various acquired and genetic factors [3]. The physiological processes of aging 
often lead to destructive diseases, such as dementia, autoimmunity, arthritis, 
cardiovascular disease, cancer, tissue degeneration, neuropathy, stroke, obesity, 
and depression [4] [5] [6] [7]. The effects of aging are particularly noticeable in 
retarded eyesight, hearing, muscle strength, and bone strength [8]. Regenerative 
medicine can reverse or inhibit many of these health problems through the use 
of endogenous stem cells or exogenous replacement cells derived from stem or 
progenitor cells to restore or rejuvenate tissue and maintain homeostasis [9] [10] 
[11]. This approach is a promising strategy for rehabilitation and reducing 
age-related diseases [12]. In this review, we discuss several mechanisms believed 
to contribute to aging-related stem cell dysfunction. We also briefly discuss the 
neutralizing ability of stem cells and other life extension factors used to treat 
conditions of the immune system [13], cardiac tissue [14], central nerve system 
[15], articular cartilage [16], and skeletal muscle [17]. Researchers have shown 
that stem cell interventions could one day be used to delay senescence and pro-
long lifespan. 

2. Impact of Stem Cell Senescence in Aging and Diseases 

Tissue-specific stem cells are capable of self-renewal and differentiation to pro-
duce mature effector cells, which play a crucial role in prolonging tissue function 
[3] [18]. Adult stem cells, also known as somatic stem cells, serve as self-renewing 
cell pools to supplement senescent cells and regenerate damaged tissues 
throughout the body. Mesenchymal stem cells [19], cartilage progenitor [20], 
satellite cells [21], and adipose derived stem cells [22] are pluripotent stem cells 
capable of differentiating into mesenchymal tissue cells. There is ample evidence 
that a decline in the number of stem cells is an important factor in the initiation 
of several diseases associated with the aging process [23]. It has been hypothe-
sized that the loss of stem cell populations and/or activity over time contributes 
to this decline. Previous research has explored key molecular pathways that are 
often disrupted when tissue and stem cell senescence and degradation, and ex-
perimental evidence supports these pathways themselves can reverse the aging 
phenotype. However, the mechanisms related to the rejuvenation of tissues have 
yet to be fully elucidated [24].  

Epigenetic regulation is essential for establishing and maintaining stem cell 
function, and evidence suggests that epigenetic dysregulation leads to potential 
changes in stem cells during aging [18] [25] [26] [27]. The term epigenetics re-
fers to changes in gene expression that do not involve changes in the underlying 
DNA sequence [28] [29]. Hereditary changes in epigenetic landscapes produced 
in stem cells can be passed on to offspring with functional consequences exhi-
bited in downstream lineages. Changes in dynamic chromatin structure, includ-
ing DNA methylation and histone modifications, are keys to stem cell function. 
Protein coding information is encoded in the genome by the nucleotide se-
quence, whereas epigenetic information can be encoded by chemically modify-
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ing the cytosine base [30] [31] [32]. Methylated cytosine is found throughout the 
genome, mainly in the promoter region of housekeeping and developmental 
regulatory genes. The methylated cytosine is predominantly found within CpG 
dinucleotides [33]. Another epigenetic regulation that does not directly alter the 
nucleotide chemistry of DNA involves histone modification. Unlike genomic le-
sions that occur during aging, age-related epigenetic changes are not permanent. 
Appropriate epigenetic regulation of stem cells is critical to the maintenance of 
tissue, which is particularly important given that stem cells can genetically 
transmit epigenetic markers to their offspring. 

Autophagy is one of the hallmarks of aging [34]. It is a constitutive pathway 
associated with damage to organelles and protein aggregates through a decline in 
the number and function of stem cells [3] [35]. Recent studies have shown that 
stem cells require autophagy to eliminate cellular waste generated during quies-
cence. Autophagy promotes cell survival by helping to maintain cell homeostasis 
and proper metabolic functions under conditions of stress and by maintaining 
bioenergetic levels and amino acid pools [36] [37]. Several studies have de-
scribed the decline in autophagy activity and the expression of autophagic genes, 
such as ATG1, ATG5, ATG6, ATG7, ATG8, and ATG12 [38] [39] [40] [41]. Re-
cent studies on muscle stem cells (MSCs) and hematopoietic stem cells (HSCs) 
have revealed impaired autophagy associated with a decline in stem cell activity 
[41] [42]. These findings indicate that at in advanced age, MSCs and HSCs lose 
their ability to regenerate and that defects in autophagy are present in aging 
stem cells. The effects of autophagy on maintaining cellular homeostasis open 
the door to novel therapies to deal with aging and age-related diseases. 

It has been assumed that reactive oxygen species (ROS) may lead to a loss of 
differentiation [43] [44] [45]. Excessive production of ROS by environmental 
stresses triggers cellular senescence and the amorphous differentiation of MSCs. 
One member of the mitogen-activated protein kinase (MAPK) family, p38 
MAPK, is an important mediator responsive to extracellular stressors [46] [47] 
[48]. The fact that p38 MAPK is involved in the molecular interaction during 
aging indicates that p53 is a major mediator of ROS-related signal transduction. 
The cyclin-dependent kinase inhibitor gene p16INK4a is believed to be a key 
factor in regulating oxidative stress-induced cell division and arresting the se-
nescence of MSCs and tissue progenitor cells [49] [50]. It is generally believed 
that high levels of ROS promote senescence by inducing oxidative stress. This 
would mean that MSCs may contribute to organism aging by undermining tis-
sue homeostasis.  

Many types of monocytes are present in skeletal muscle, which are essential to 
the maintenance of stem cells, fibroblasts, and immune cells [23] [51] [52]. 
Age-related changes in the extracellular matrix (ECM), which can lead to pa-
thogenicity, are associated with induced stiffness in skeletal muscle [53] [54]. 
These age-related changes affect stem cell behavior, and stromal cell proteins se-
creted by aged ECM and aged fibroblasts drive differentiation into fibroblasts 
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[55]. Thus, senescence is associated with intensive ECM deposition and loss of 
stem cell function, leading to reductions in regenerative capacity and strength. 
Age-related changes in the density and biophysical properties (i.e., hardness) 
may have negative effects on the function of satellite cells. Directly or indirectly 
modifying ECM may provide a basis for age-related growth and insufficient 
strength [56] [57]. The regeneration of skeletal muscle depends on the dynamic 
interaction between muscle stem cells and the microenvironment or niche.  

3. Stem Cells for Anti-Aging and Rejuvenation 

Stem cells are characterized by their multiple-efficacy and self-renewal capabili-
ties, resulting in progenitor or mature cells that can repair tissue and retain the 
characteristics of stem cells to ensure long-term maintenance of the stem cell 
pool [58] [59]. As stem cells age, their renewal ability deteriorates, and their 
ability to differentiate into various cell types is depleted. Based on current un-
derstanding of stem cells, it is feasible to design and test interventions to slow 
aging and improve health and longevity [8]. It is believed that stem cell failure 
contributes to a decline in health during aging; therefore, the development of ef-
fective methods to induce and differentiate pluripotent stem cells via cell re-
placement therapy provides an exciting avenue for the treatment of degenerative 
age-related diseases [12] [60] [61] [62]. It is believed that the regenerative poten-
tial of these cells is due to their high proliferation and differentiation capabilities, 
paracrine activity, and immune privilege [63]. Somatic stem cell populations 
differ according to the regenerative needs of the host tissue. In high turnover 
tissue, such as the gut or hematopoietic system, most stem cell or progenitor cell 
populations are active throughout life [64]. In organs lacking stem cells, induc-
ing pluripotent stem cell (iPSC) to replace cells is a promising therapeutic ap-
proach for functional recovery [65] [66]. iPSCs restore the same developmental 
potential of embryonic stem cells, which means that they can then differentiate 
into any type of tissue. Stem cells play a key role in organogenesis and main-
taining homeostasis throughout life, possess the ability to migrate long distances 
and target pathological conditions, express therapeutic genes, and respond to 
cues that redirect their differentiation into defective lineages [67]. This means 
that stem cells can be used for cell replacement as a therapeutic intervention 
aimed at mitigating the effects of aging. 

4. Immune System Rejuvenation 

In most species, including humans, the later stages of life see a decline in the 
overall maintenance of an organism and subsequent decline in health [68]. This 
also applies to hematopoietic systems, in which senescence is associated with in-
creased susceptibility to hematological malignancies and other diseases. Hema-
topoietic stem cells are a continuous source of various lymphocytes and myeloid 
cells from early development through to old age [69] [70] [71]. Blood cells are 
responsible for the ongoing maintenance and immune protection of every cell 
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type. This leads to the production of billions of new blood cells by hematopoietic 
stem cells every hour [3] [12]. At the population level, the adaptive immune 
responses of elderly individuals are retarded. Studies on the process of blood cell 
formation have revealed that aging reduces adaptive immune responses and 
hemocyte components, leading to an increase in the incidence of myeloid dis-
eases, including cancer [4] [72]. 

Rejuvenation is meant to reverse aging rather than simply delay it. Rejuvena-
tion can be achieved through the reconstitution of endogenous hematopoietic 
stem cells or the transplantation of pluripotent hematopoietic stem cells, usually 
derived from bone marrow, peripheral blood, or umbilical cord blood [4] [73] 
[74]. The pharmacological modulation of deregulated factors is one strategy 
aimed at the reconstitution of endogenous HSCs. Currently, this type of inter-
vention has achieved only partial rejuvenation. Previous proof-of-concept stu-
dies have shown that modulation of the HSC aging state can be achieved by tar-
geting mTOR and cdc42 using exogenous agents [75] [76]. The recent use of 
novel compounds for the ablation of senescent cells has led to the renewal of 
hematopoietic stem cells and muscle stem cells in wild type aged mice, further 
demonstrating the efficacy of adult stem cells in overcoming the effects of aging 
[77]. Most research on the use of allogeneic hematopoietic stem cells for the 
treatment of hematological malignancies in the 1980s and early 1990s was re-
stricted to young patients [78]. Hematopoietic stem cell transplantation is now 
considered a mature technology and remains an effective method for the treat-
ment of patients presenting hematological symptoms.  

5. Cardiac Rejuvenation 

We are still far from a definite quantitative measure of cardiac turnover; howev-
er, it has finally been accepted that heart muscle cells can be regenerated after 
birth [24] [79] [80]. Nonetheless, mature cardiomyocytes are withdrawn from 
the cell cycle soon after birth [81] [82] [83]. The metabolism of cardiomyocytes 
requires the contribution of immature cells to myocyte, which are differentiation 
from cardiac stem cells, replacement repeatedly. However, senescent blasts and 
cardiomyocytes accumulate in the myocardium of elderly patients with severe 
systolic dysfunction. Patients with severe obstructive cardiac disease caused by 
the narrowing of atherosclerotic plaques present tissue retention and a reduction 
in the functionality of circulating vascular stem/progenitor cells to repair tissue 
damage [84]. This has led a number of researchers to use stem cell transplanta-
tion as a means to regenerate tissue heart in a process referred to as heart reju-
venation [24].  

Researchers have recently succeeded in treating cardiovascular diseases using 
alternative approaches to regenerative medicine [84]. Systemic interventions in-
volving the pharmacological removal of senescent cells inhibit pro-survival and 
anti-apoptotic pathways in senescent cells [85] [86]. The restoration of a juvenile 
microenvironment through the administration of systemic factors or the inhibi-
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tion of pathways alters with age [24] [87] [88] [89]. Researchers have also inves-
tigated cell therapies involving the administration of young, healthy stem cells to 
a diseased heart to provide protection from cardiomyocyte senescence and pro-
mote cardiac repair [24] [90] [91]. They also investigated the ex vivo rejuvena-
tion of reparative cells through the in vitro pharmacological pretreatment of 
stem cells isolated from old diseased animals followed by in vivo delivery. This 
approach was aimed at suppressing or activating modifications induced by the 
aging process, and epigenetic drugs were shown to at least partially restore 
changes associated with systemic disease [90] [92] [93]. Another approach was 
the genetic modification of stem cells to enhance functionality, such as the over-
expression of the pro-survival kinase Pim-1 or nucelostemin to reverse cellular 
senescence [94] [95] [96]. Further studies have demonstrated the potential of 
these alternative therapeutic interventions.  

6. Nerve System Rejuvenation 

For decades, research proceeded on the assumption that the nervous system of 
adult mammals is unable to produce new neurons. However, the identification 
of neurogenic regions in the adult brain has prompted intense activity in the 
field of adult neurogenesis [97]. Most neurons are mitotic, and slow-cycle neural 
stem cells (NSC) maintain neural regeneration in specific areas of the mamma-
lian brain during adulthood [98] [99]. Age-induced reduction in the number of 
satellite cells and neural stem cells undermines nerve regeneration [100]. Aging 
of the central nervous system is associated with the progressive loss of function, 
which can be exacerbated by neurodegenerative diseases, such as Alzheimer’s 
disease, dementia, stroke, and Parkinson’s disease [97] [101] [102] [103]. At the 
cellular level, senescence of the central nervous system is accompanied by a 
number of changes that impair cell function, including elevated levels of oxida-
tive stress and oxidative damage associated with proteins and DNA [104]. It has 
also been linked to impaired cellular metabolism, lipid and protein by-products, 
and the accumulation of advanced glycation end products [97] [105]. The most 
notable age-related changes in the brain are associated with cognition and plas-
ticity. Even in the absence of disease, aging can negatively affect nerve function. 
Recent data suggest that age-related defects in neural stem cells can be reversed 
through the reactivation of telomerase, suggesting that aged oligodendrocyte 
precursor cells can theoretically be used to preserve the regeneration of myelin 
sheaths [106]. In the adult central nervous system, remyelination is a spontane-
ous regenerative process that restores skip conduction, prevents axonal degene-
ration, and promotes functional recovery [107]. 

Most previous studies reported that cell therapy may be able to replenish lost 
cells and promote neuronal regeneration, protect neuron survival as well as play 
a role in overcoming permanent paralysis and sensory loss and restoring neuro-
logical function [108] [109]. Unfortunately, mechanisms for determining treat-
ment capacity have yet to be identified [101] [110]. Previously researches im-
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plied that possible mechanisms may include the following: 1) the promotion of 
angiogenesis, 2) induced neuronal differentiation and neurogenesis, 3) reduced 
reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic 
factors, 6) immunomodulatory functions, and 7) the promotion of neuronal in-
tegration [101]. The two primary cell replacement strategies involve 1) the 
transplantation of exogenous tissue and 2) the endogenous activation of cell pro-
liferation. Tissue can be transplanted directly in order to replace lost tissue. Ge-
netically engineered cells can also be implanted for the secretion of factors that 
promote survival and/or proliferation [97] [111] [112]. The specialized microen-
vironment of the neural niche ensures that neural stem cells (NSCs) self-renew 
and differentiate but mainly enter the neurons [108] [113]. Thus, understanding 
the physiological characteristics of NSCs and how they are affected by changes in 
pathological conditions could open the door to exploiting the plasticity of NSCs 
for the prevention and/or treatment of degenerative diseases. 

7. Articular Cartilage Rejuvenation 

Articular cartilage injury is a debilitating disease that can result in fibrillation 
and the subsequent deterioration of the peripheral articular surface and may also 
involve the subchondral bone, thereby facilitating the development of osteoarth-
ritis [114]. The special composition of the ECM gives it viscoelastic properties, 
which facilitate the normal function of the ECM. Collagen is hyaline cartilage 
composed of 60% (by dry weight) chondrocytes. Fibrocartilage and elastic carti-
lage are two other types of cartilage differing in ECM and cell components [115]. 
Age-induced changes in articular cartilage include chondrocytes acquiring a se-
cretory phenotype, chondrocyte sensitivity to growth factors, the destructive ef-
fects of chronic ROS, and glycosylation of end products [116]. This disturbs the 
balance between anabolic activity and the destructive processes of chondrocytes. 
As the matrix decreases, articular cartilage becomes increasingly thin, the hydra-
tion of cartilage decreases, and the number of cartilage cells also decreases [115]. 
It appears that the bioactive paracrine factors secreted by mesenchymal stem 
cells (MSC) can have beneficial effects in regulating the microenvironment of 
damaged tissue, leading to more favorable conditions for tissue regeneration 
[117]. MSCs secrete a range of paracrine factors, collectively referred to as se-
creted proteomes, which perform a variety of biological functions, including 
immune regulation, angiogenesis, anti-apoptosis, anti-oxidation, cell homing, 
and the promotion of cell differentiation. Most previous studies have focused on 
the clinical benefits of MSC treatment, regardless of the source of the cells, the 
indications, or the mode of administration [114]. MSCs have been used in cell 
therapy to promote the repair of cartilage, muscle, or bone [115]. These cells are 
typically harvested from bone marrow and are characterized according to the 
stimulatory factors they provide [118]. Elucidating the mechanism that pro-
motes the aging of articular cartilage could lead to treatments aimed at slowing 
aging-related changes or promoting the regeneration of articular cartilage. 
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8. Skeletal Muscle Rejuvenation 

The extraordinary regenerative capacity of skeletal muscle can be attributed to a 
reserve pool of muscle-resident satellite cells located in the niche between mus-
cles. These cells are essential to the repair and regeneration of muscle through-
out life [62]. Recent studies have shown that cellular and extracellular factors are 
dysregulated during aging [55] [119] [120]. Aging is associated with a progres-
sive loss of tissue function associated with a decrease in the functionality of 
muscle satellite cells and the total size of the muscle stem cell pool [121]. The 
aging of muscle is characterized by a decrease in repair capacity. Aging satellite 
cells show evidence of several intrinsic cellular changes associated with genomic 
instability, DNA damage, oxidative damage, and the deterioration of mitochon-
drial function [122]. Changes in homeostasis may explain the reduction in anti-
oxidant activity, changes in protein folding, decreased myogenic differentiation, 
and tendency of these cells to adopt fibroblastic and adipogenic fates [123]. 
Another intrinsic change observed in the satellite cells of the elderly is an im-
balance in protein homeostasis [35]. Satellite cells are also affected by the local 
microenvironment and systemic circulation, both of which are affected by aging. 
This means that changes in intrinsic cellular function and regenerative environ-
mental cues tend to impair stem cell activity and reduce the regenerative capaci-
ty of aging muscle. 

Interventions aimed at reversing age-related changes in satellite cells or their 
niche have been shown to partially restore the ability of aging muscle stem cells 
to regenerate. Current attempts to recover aged satellite cells include the genetic 
and pharmacological inhibition of p16INK4a [62] [124], STAT3 and p38 MAPK 
[125] [126] [127], autophagic flux [35], and NAD+ recruitment [128] as well as 
the administration of hormones to revitalize oxytocin [129]. Satellite cells are 
essential to the maintenance and repair of many types of adult tissue during 
normal physiological processes as well as to the response to injury or aging 
[130]. Recent advances in the isolation of muscle satellite cells and the elucida-
tion of the cellular and molecular media that control their activity have indicated 
that these cells are a promising therapeutic target [131]. Satellite cell-based 
therapy could involve the direct replacement of cells or the development of 
drugs that enhance endogenous muscle repair mechanisms. Satellite cells are a 
population of major regenerative cell in adult skeletal muscle that is capable of 
supporting multiple rounds of mature myofiber regeneration. These cells are at-
tractive candidates for Duchenne muscular dystrophy, is a severe type of mus-
cular dystrophy, and related disorders [132] [133] [134]. Previous studies have 
shown that at least some of the muscle satellite cells exhibit the characteristics of 
stem cells, such as self-renewal and differentiation. Transplanting these cells into 
damaged or malnourished muscle could produce permanent disease-resistant 
wild-type copies of genes that can incorporate into existing muscle fibers [132]. 

9. Conclusion 

Over the past decade, researchers have made tremendous progress in under-
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standing stem cell aging and the molecular mechanisms underlying this process 
[34]. Previous studies have also confirmed the extrinsic ingredients, and trans-
plantation trials have identified the intrinsic components that cause an 
age-dependent decline in the number and function of stem cells [130]. This im-
pairment can be attributed to changes in the intrinsic pathway of cells and the 
surrounding environment. Regenerative therapies focus on stem cells and other 
life-prolonging factors in an attempt to reverse aging. Clinical trials must also be 
conducted to determine whether genetically reprogramming stem cells delay se-
nescence and enhance regeneration and whether the application of stem cells in 
aging individuals is ultimately approved. The ex vivo genetic modification of 
stem cells may also provide an effective strategy for rejuvenating older stem cells 
and diseased organs. Improved protocols for the rejuvenation of aging stem cells 
could help to improve the preparation and clinical application of stem cells har-
vested from aging tissues as well as their products.  
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