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Abstract 
We present the usefulness of the diagrammatic approach for analyzing two 
dimensional elastic collision in momentum space. In the mechanics course, 
we have two major purposes of studying the collision problems. One is that 
we have to obtain velocities of the two particles after the collision from initial 
velocities by using conservation laws of momentum and energy. The other is 
that we have to study two ways of looking collisions, i.e. laboratory system 
and center-of-mass system. For those two major purposes, we propose the 
diagrammatic technique. We draw two circles. One is for the center-of-mass 
system and the other is for the laboratory system. Drawing these two circles 
accomplish two major purposes. This diagrammatic technique can help us 
understand the collision problems quantitatively and qualitatively. 
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1. Introduction 

Collisions are of importance in physics. Especially for small world such as atoms 
or nuclei, scattering is the crucial technique to investigate their nature. Before 
studying the scattering theory of quantum mechanics, we had better to get 
familiar with collisions in classical mechanics. 

We have two main themes for studying the collision problems [1] [2]. One is 
that we have to obtain velocities of the two particles after the collision from 
initial velocities by using conservation laws of momentum and energy. Since we 
have three equations from conservation law and four unknowns, one parameter 
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out of four should be fixed according to the given collision problems. The other 
is that we have to study two ways of looking collisions, i.e. laboratory system and 
center-of-mass system. We need to convert between the two systems. 

In order to achieve those two themes, the diagrammatic technique gives the 
powerful tool. For the collisions in one dimension, the mass-momentum 
diagram with mass m along the vertical axis and momentum p represented on 
the horizontal axis is the useful technique [3]. We obtain the whole story of the 
collision in one dimension from the single ( ),m p -diagram. 

When we apply the mass-momentum diagram to the elastic collisions in two 
dimensions, three dimensional space ( ), ,x ym p p  is needed. However, in this 
case, the projection onto the ( ),x yp p -plane is sufficient [4]. For Newtonian 
mechanics [5], we draw a circle in the two dimensional momentum space and 
also draw arrows of the momentum of the colliding particles into the circle. This 
is a way of looking collisions from laboratory system. In this article, we add one 
more circle. This is from the point of view of the center-of-mass system. These 
two circles give all information for two dimensional elastic collision problems. 

This paper is organized in the following way. In Section 2, we recall two 
dimensional elastic collisions with equations. In Section 3, we show the 
diagrammatic approach for two dimensional elastic collision in order. First, we 
draw a circle for the center-of-mass system. Then we add to draw one more 
circle to obtain the momentum after the collision in the laboratory system. In 
Section 4, we investigate the special case where the target particle is at rest before 
the collision. Section 5 is devoted to a conclusion. 

2. Elastic Collision between Two Particles in Two Dimensions 

Let us recall the treatise of the two dimensional elastic collision with equations 
for later use. Figure 1 shows the collisions from the point of view in laboratory 
and center-of-mass systems and also show the notation which we use in this 
article. The projectile A has mass Am  and velocity Av  and the target B has 
mass Bm  and velocity Bv  before the collision. The momenta are given by 

A A Am=p v  and B B Bm=p v . They are known parameters or initial conditions 
of the collision. Usually, the velocities Av  and Bv  are supposed to be in the  

 

 
Figure 1. Left: Collisions in the laboratory system. Right:Collisions in the center-of-mass system. 
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same direction and are set along the x-axis in this article. The velocities after the 
collision are distinguished by the primes. And the asterisk is attached to the 
parameters in the center-of-mass system. 

We have to obtain the four parameters ( ), , ,A Bv v θ φ′ ′  after the collision in the 
laboratory system. However, we have only three equations, i.e. energy 
conservation and two components of momentum conservations. So, we have to 
fix one parameter out of four. We investigate the collision in the following way. 

2.1. Velocities of the Center-of-Mass 

We write down the conservation of momentum for two systems: 

A A B B A A B Bm m m m′ ′+ = +v v v v  for laboratory system,         (1) 

  
A A B B A A B Bm m m m∗ ∗ ∗ ∗′ ′+ = + =v v v v 0  for center-of-mass system.     (2) 

Let V  be the velocity of the center-of-mass. The relations between V  and 
the velocities of the particles in two systems are as follows: 

  , .A A B B
∗ ∗= − = −v v V v v V                     (3) 

Substituting Equation (3) into Equation (2), we obtain 

,A A B B A B

A B A B

m m
m m m m

+ +
= =

+ +
v v p pV

                   
(4) 

which remains the same before and after collision. 

2.2. Velocities and Momenta before Collision  
in Center-of-Mass System 

Substituting Equation (4) into Equation (3), we obtain the velocities in the 
center-of-mass system 

( ) ( )  , ,B A
A A B B A B

A B A B

m m
m m m m

∗ ∗= + − = − −
+ +

v v v v v v
         

(5) 

and the momenta 

( ) ( )  , .A B A B
A A B B A B

A B A B

m m m m
m m m m

∗ ∗= + − = − −
+ +

p v v p v v
         

(6) 

We clearly see that these expressions of the momentum satisfy the relation in 

Equation (2). Note that A B

A B

m m
m m+

 is a reduced mass and A B−v v  ( )A Bv v>  is 

a relative velocity before the collision. 

2.3. Velocities and Momenta after Collision  
in Center-of-Mass System 

We write energy conservations for two systems: 

( ) ( ) ( ) ( )2 2 2 2

2 2 2 2
A B A B

A B A B
m m m m′ ′+ = +v v v v  for laboratory system,   (7) 

( ) ( ) ( ) ( )2 2 2 2  

2 2 2 2
A B A B

A B A B
m m m m∗ ∗ ∗ ∗′ ′+ = +v v v v  for center-of-mass system.  (8) 

https://doi.org/10.4236/wjm.2018.89025


A. Ogura 
 

 

DOI: 10.4236/wjm.2018.89025 346 World Journal of Mechanics 
 

From the conservations of momentum in Equation (2), we obtain the 
following relations: 

  , .A A
B A B A

B B

m m
m m

∗ ∗ ∗ ∗′ ′= − = −v v v v
                  

(9) 

Substituting these relations into Equation (8), we obtain 

, .A A B Bv v v v∗ ∗ ∗ ∗′ ′= =                       (10) 

This means that the velocities (and also momenta) of the two particles stay in 
magnitude before and after the collision in the center-of-mass system. Thus the 
collision simply rotates the velocities. However, the angle of the rotation cannot 
be determined from the conservations of momentum and energy because we 
have four unknowns and only three equations: the energy and the two 
components of momentum conservations. Namely, there is an infinite number 
of possible final states of outgoing particles in an elastic collision in two 
dimensions. Let ∗n  be a unit vector in the direction of the velocity A

∗′v  of the 
projectile A after the collision in the center-of-mass system. The scattering angle 
θ ∗  of the right figure in Figure 1 is related by ( )cos ,sinθ θ∗ ∗ ∗=n . Accordingly, 
the velocities after the collision in the center-of-mass system are written by 

, ,B A
A A B B A B

A B A B

m m
m m m m

∗ ∗ ∗ ∗′ ′= + − = − −
+ +

v v v n v v v n
       

(11) 

and the momenta are given by 

, .A B A B
A A B B A B

A B A B

m m m m
m m m m

∗ ∗ ∗ ∗′ ′= + − = − −
+ +

p v v n p v v n
      

(12) 

Again, these expressions of the momentum satisfy the relation in Equation 
(2). 

2.4. Velocities and Momenta after Collision in Laboratory System 

In order to return to the laboratory system, we must add Equation (11) to the 
velocity of the center-of-mass V  in Equation (4). We obtain velocities after the 
collision in the laboratory system, 

, ,A A B B
∗ ∗′ ′ ′ ′= + = +v v V v v V                    (13) 

and momenta 

( ) ,A B A
A A A A B A B

A B A B

m m mm
m m m m

∗ ∗′ ′= + = + − + +
+ +

p p V v v n p p
     

(14) 

( ).A B B
B B B A B A B

A B A B

m m mm
m m m m

∗ ∗′ ′= + = − − + +
+ +

p p V v v n p p
     

(15) 

Note that the sum of both sides clearly shows the momentum conservation 

A B A B′ ′+ = +p p p p  of Equation (1) in the laboratory system. 
Let ( ),A Ax Ayp p′ ′ ′=p  be the ,x y -components of the momentum of the 

projectile A in Equation (14). We write down explicitly as follows: 
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cos ,A B
Ax A B A

A B

m mp m V
m m

θ ∗′ = − +
+

v v
               

(16) 

sin ,A B
Ay A B

A B

m mp
m m

θ ∗′ = −
+

v v
                  

(17) 

where we note that the velocity V  has the x-component only due to Equation 
(4). From these equations and the relation 2 2cos sin 1θ θ∗ ∗+ = , we obtain 

2 2

1.AyAx A

A B A B
A B A B

A B A B

pp m V
m m m m

m m m m

   
   ′′ −   + =
   − −   + +   

v v v v
          

(18) 

This indicates the circle in momentum space, centered at ( ),0Am V  with its 

radius A B
A B A B

A B

m mp p
m m

∗ ∗= = −
+

v v . These quantities are uniquely determined 

by the initial condition of the collision. 
Let us consider the case where the target particle is at rest before the collision. 

Setting B =v 0  in Equation (18), we obtain 
2 2

1.

A
Ax A

AyA B

B B
A A

A B A B

mp p pm m
m mp p

m m m m

   ′ −   ′+   + =
   
   + +                

(19) 

Moreover, the case of which two particles have equal mass A Bm m=  becomes 
more simple: 

2 2

2 1.

2 2

A
Ax Ay

A A

pp p
p p

   ′ − ′   
+ =   

      
                       

(20) 

These equations of a circle will appear in the next sections. 

3. Diagrammatic Technique 

In this section, we deduce all relations, which we recalled in the former section, 
from the diagram in two dimensional momentum space. 

3.1. Center-of-Mass System 

Firstly, we draw a circle whose radius is A Bp p∗ ∗=  in Equation (6), as depicted in 
Figure 2. This dashed circle centered at O describes the collision in the 
center-of-mass system. We draw dashed arrows of the momenta before the 
collision from Equation (6) 

( )   , ,A B
A A B B A

A B

m m
m m

∗ ∗ ∗= = + − = = −
+

OA p v v OB p p
         

(21) 

and after the collision from Equation (12) 

, ,A B
A A B B A

A B

m m
m m

∗ ∗ ∗ ∗′ ′ ′= = + − = = −
+

OC p v v n OD p p
        

(22) 
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Figure 2. Collision in the center-of-mass system. The figure shows the case that the 

projectile A has mass 3Am =  and velocity 8
3Av =  and the target B has mass 4Am =  

and velocity 1
4Bv = − . The vectors ( )  5, 0A B

∗ ∗= = = − = −OA p OB p  are the momenta of 

incident particles before the collision. The vector A
∗′=OC p  and B

∗′=OD p  are the 

momentum of outgoing particles after collision. The angle COA θ ∗∠ =  cannot be 
determined by the conservation laws only. We fix it according to the given collision 
problem. 

 
where ( )cos ,sinθ θ∗ ∗ ∗=n  or COAθ ∗ = ∠  is determined according to what we 
are asked in the collision problems. Since the scattering angle θ ∗  cannot be 
determined by the conservations of momentum and energy, the point C lies 
anywhere on this circle and the point D is opposite side against the point C on 
the circle. 

3.2. Laboratory System 

Next, as shown in Figure 3, we determine the point E on the px-axis so that 

Am=OE V . We draw another circle centered at E whose radius is the same as 
the dashed circle centered at O. This circle centered at E is appeared in the book 
of Landau and Lifshitz [5], and its equation is written by Equation (18). This 
circle describes the laboratory system as explained below. 

As shown in Figure 3, we draw a broken line from the point C in parallel to 
the px-axis until the broken line intersects with the circle centered at E. We call 
this point of intersection as F. Note that =OC EF  is always satisfied and it 
means COA FEA θ ∗∠ = ∠ = . Then, the vector A′=OF p  shows the momentum 
of the projectile A after the collision in the laboratory system. The tips of 

A′=OF p  is always on the circle centered at E. The angle FOE θ∠ =  is the 
scattered angle of the projectile A in the laboratory system. We note that the 
angle θ ∗  in Figure 2 and the angle θ  in Figure 3 are related each other. Once 
the θ ∗  is given by the collision problems, the θ  is determined according to the 
prescription stated above. And the converse is also true. When the θ  is given in 
the collision problem, we write down the vector A′=OF p  at first. Then, we  
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Figure 3. Circle centered at E describes the collision in the laboratory system. The initial 
condition in Figure 2 shows that 3AOE m V= =  and 4BEG m V= = . The vectors 

A′=OF p  and B′=OH p  indicate the momenta of the projectile and the target after the 
collision in the laboratory system. 

 
draw a broken line from the point F to C. The vector A

∗′=OC p  and the angle 
θ ∗  are the momentum and the scattered angle of the projectile A in the 
center-of-mass system. 

Next, we determine the point G on the px-axis so that Bm=EG V . Then the 
vector B′= =FG OH p  shows the momentum of the target B after the collision. 
The angle GOH FGO φ∠ = ∠ =  is the scattered angle of the target B. The 
vector relation = + = +OG OE EG OF OH  shows the momentum conservation 

A B A B′ ′+ = +p p p p  before and after the collision. 
In contrast with the equations in the previous section, what we need to do are 

the calculation of the radius of the circle and the lengths OE and EG. They are 
uniquely determined from the initial condition of the collision. We fix the angle 
θ  or θ ∗  according to the given collision problems. 

4. 0Bv =  Case 

Let us consider the case where the target B is at rest B =v 0  before the collision. 
In that case, the point G definitely lies on the circle centered at E because of 

= =OC EF EG , i.e. A B Bp p m V∗ ∗= = , which is understood by Equations ((4) 
and (15)). The circle centered at E is described by Equation (19) and is depicted 
in Figure 4. The vector OG  is equal to the momentum Ap  of the projectile A 
before the collision. 

The point E lies inside or outside the dashed circle centered at O, according as 

A Bm m<  and A Bm m> . The corresponding diagrams are shown in Figure 4 
and Figure 5. It is evident from these figures that θ  and φ  can be expressed 
in terms of θ ∗  by 

sinsin sintan ,
cos cos cos

B

AA B

B

m VEF
mOE EF m V m V
m

θθ θ
θ

θ θ θ

∗∗ ∗

∗ ∗
∗

= = =
+ + +

      

(23) 
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Figure 4. The initial conditions 3Am = , 8
3Av =  and 5Bm = , 0Bv =  show  

5OC EF= =  and 1V = . Then, 3AOE m V= =  and 5BEG m V= = . 
 

 

Figure 5. The initial conditions 7Am = , 5Bm = , 12
7Av =  and 0Bv =  show  

5OC EF= =  and 1V = . Then, 7AOE m V= =  and 5BEG m V= = . 
 

sin sin sintan ,
cos 1 cos 1 cos

EF
EG EF

θ θ φ
φ

θ θ φ

∗ ∗ ∗

∗ ∗ ∗= = =
− − +           

(24) 

where we use the relation πθ φ∗ ∗+ = . It is also evident that since the triangle 

EFG∆  is an isosceles triangle, we obtain 
π

2
θ

φ
∗−

= . 

Applying the law of cosine to the triangle OEF∆ :  
( )2 2 2 2 cos πOF OE EF OE EF θ ∗= + − ⋅ ⋅ − , we obtain 

2 2 2 cos .A
A A B A B

A B

vv m m m m
m m

θ ∗′ = + +
+              

(25) 

The same application to the triangle EFG∆  gives 

2 sin .
2

A A
B

A B

m vv
m m

θ ∗

′ =
+                      

(26) 
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If A Bm m> , however, the projectile A can be deflected only through an angle 
not exceeding max FOAθ = ∠  from its original direction, as shown in Figure 6. 
This maximum value of maxθ  corresponds to the position F at which OF is a 
tangent to the circle centered at E. Evidently, 

,====sin
A

B

A

B
max m

m
Vm
Vm

OE
EG

OE
EFθ

             
(27) 

because EF = EG are both the radius of the circle. 
The case A Bm m=  becomes quite simple as shown in Figure 7. The circle 

centered at E is described by Equation (20). The point E lies on the dashed circle 
centered at O, i.e. OA = OE. The py-axis is a tangent to the circle centered at E. It 
is evident from the figure that 2θ θ∗ = . Further, Equations ((25) and (26)) become 

cos , sin .
2 2A A B Av v v vθ θ∗ ∗

′ ′= =
                 

(28) 

 

 
Figure 6. The initial condition is as the same with Figure 5. If A Bm m> , the projectile A 
can be deflected only through an angle not exceeding max FOAθ = ∠  from its original 
direction. 

 

 
Figure 7. The initial conditions 5A Bm m= = , 2Av =  and 0Bv =  show 5EF =  and 

1V = . Then, 5A Bm V OE m V EG= = = = . 
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After the collision, the outgoing particles move at right angles to each other, 

that is 
π
2

θ φ+ = . 

5. Conclusion 

We introduce two circles to analyze the two dimensional elastic collision in 
momentum space. One circle is for the center-of-mass system and the other is 
for the laboratory system. The relation between these two systems is clearly 
understood from these circles. Once we fix the scattered angle of projectile in 
one system, then we deduce all quantities, such as momenta and scattering 
angles of both particles in another system. The scattering problem in the special 
relativistic case is carried out in the next article. 
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