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Abstract 
The eccentric connectivity index and connective eccentricity index are impor-
tant topological indices for chemistry. In this paper, we investigate the eccen-
tric connectivity index and connective eccentricity index of boron-nitrogen 
fullerenes, respectively. And we give computing formulas of eccentric con-
nectivity index and connective eccentricity index of all boron-nitrogen fulle-
renes with regular structure. 
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1. Introduction 

All graphs considered in this paper are simple connected graphs. Let G be a 
graph with vertex set ( )V G  and edge set ( )E G . Let ( )v V G∈ , ( )d v  de-
notes the degree of v. For vertices ( ),u v V G∈ , the distance ( ),d u v  is defined 
as the length of a shortest path between u and v in G. The eccentricity ( )vε  of 
a vertex v is the maximum distance from v to any other vertex. 

The chemical information derived through the topological index has been found 
useful in chemical documentation, isomer discrimination, structure-property cor-
relations, etc. For quite some time there has been rising interest in the field of 
computational chemistry in topological indices. The interest in topological indices 
is mainly related to their use in nonempirical quantitative structure-property rela-
tionships and quantitative structure-activity relationships. Among various in-
dices, the eccentric connectivity index and connective eccentricity index involv-
ing eccentricity have attracted much attention. 

Sharma et al. [1] introduced a distance-based molecular structure descriptor, 
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the eccentric connectivity index (ECI for short) defined as 

( )
( )

( ) ( ).c

v V G
G d v vξ ε

∈

= ∑                      (1) 

The ECI was successfully used for mathematical models of biological activities 
of diverse nature, see [2]-[7] and the references cited therein. 

A novel graph invariant for predicting biological and physical proper-
ties—connective eccentricity index (CEI briefly) was introduced by Gupta et al. 
[8], which was defined as: 

( )
( )

( )
( )

.ce

v V G

d v
G

v
ξ

ε∈

= ∑                       (2) 

Some recent results on the CEI of graphs can be found in [9]-[14]. 
Boron-nitrogen fullerene is a member of the fullerene family, it has been ex-

tensively studied [15] [16] [17]. A boron-nitrogen fullerene is also called 
(4,6)-fullerene graph which is a plane cubic graph whose faces have sizes 4 and 6. 
Let G be a (4,6)-fullerene graph with n vertices. By Euler’s formula, G has exactly  

six faces of size 4 and 4
2
n
−  faces of size 6. 

A (4,6)-fullerene graph is said to be of dispersive structure if has neither three 
squares arranged in a line nor a square-cap. According to the quadrilateral posi-
tional relationship, Wei and Zhang [18] given a classification of all (4,6)-fullerenes 
as follows. 

Lemma 1 [18] Let G be a (4,6)-fullerene graph. Then G can be of one of the 
following five types: 

1) a cube, 
2) a hexagonal prism, 
3) a tubular graph with at least one hexagon-layer, 
4) a (4,6)-fullerene graph of lantern structure, 
5) a (4,6)-fullerene graph of dispersive structure, 

where the resulting graphs see Figure 1. 
In this paper, we aim to investigate the ECI and CEI of a boron-nitrogen ful-

lerene. In next section, we give computing formulas of ECI and CEI of a bo-
ron-nitrogen fullerene. 

2. Computing Formula of ECI and CEI of a (4,6)-Fullerene 

In this section, according the classification of all boron-nitrogen fullerenes in 
Lemma 1, we will give computing formula of CEI of a (4,6)-fullerene. 

Theorem 2 Let G be a (4,6)-fullerene graph. Then 

1) ( )
8 if  is a cube,
9 if  is hexagonal prism.

ce G
G

G
ξ


= 


 

2) ( )
72 if  is a cube,
144 if  is hexagonal prism.

c G
G

G
ξ


= 
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Figure 1. The (4,6)-fullerenes in Lemma 1. 

 
Proof. Let G be a cube. Checking the structure of G, we obtain that the eccen-

tricity of every vertex in G is 3. By (1) and (2), we have  

( )
( )

( )
( ) ( )

3 8,
3

ce

v V G v V G

d v
G

v
ξ

ε∈ ∈

= = =∑ ∑                  (3) 

and 

( )
( )

( ) ( )
( )

3 3 72.c

v V G v V G
G d v vξ ε

∈ ∈

= = × =∑ ∑               (4) 

Similarly, let G be a hexagonal prism. Checking the structure of G, we obtain 
that the eccentricity of every vertex in G is 4. By (1) and (2), we obtain 

( )
( )

( )
( ) ( )

3 9,
4

ce

v V G v V G

d v
G

v
ξ

ε∈ ∈

= = =∑ ∑                 (5) 

and 

( )
( )

( ) ( )
( )

3 4 144.c

v V G v V G
G d v vξ ε

∈ ∈

= = × =∑ ∑             (6) 

□ 
Theorem 3 Let G be a tubular graph, and let the number of hexagon-layer in 

G be 1k ≥ . Then 

( )
4

3

1 618 ;
2 5

k
ce

i
G

k i k
ξ

+

=

= +
+ +∑                 (7) 

( ) 227 129 156.c G k kξ = + +                  (8) 

Proof. Let v be a vertex of G. By the structure of G (see Figure 1), we know 
that the eccentricity of v equal to the distance between v and u (or u’). Thus, the 

eccentricity sequence of G is (
2

2 5,2 5k k+ +


,
6

2 4, , 2 4k k+ +


 ,
6

2 3, , 2 3k k+ +


 ,

 ,
6

4, , 4k k+ +


 ,
6

3, , 3k k+ +


 ). By (1) and (2), we obtain 

( )
( )

( )
( )

ce

v V G

d v
G

v
ξ

ε∈

= ∑                    (9) 
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1 1 1 13 6 2
2 4 2 3 3 2 5k k k k

  = + + + × + ×  + + + +  
          (10) 

4

3

1 618 .
2 5

k

i k i k

+

=

= +
+ +∑                      (11) 

and 

( )
( )

( ) ( )c

v V G
G d v vξ ε

∈

= ∑                     (12) 

( ) ( ) ( ) ( )3 2 2 5 6 3 4 2 4k k k k = + + + + + + + +              (13) 

( )
( ) ( ) ( )3 2 4 2

3 2 2 5 6
2

k k k
k

 + + + +  = + + 
  

           (14) 

227 129 156.k k= + +                      (15) 

This completes the proof.                                         □ 
Theorem 4 Let G be a (4,6)-fullerene graph having lantern structure, and let 

the number of hexagon-layer in G be 1k ≥ , see Figure 1. Then 

( )
3

3

124 ;
k

ce

i
G

k i
ξ

+

=

=
+∑                    (16) 

( ) 236 108 72.c G k kξ = + +                  (17) 

Proof. Checking G, we see that G is symmetry. By the symmetry of G, it is easy 

to obtain that the eccentricity sequence of G is (
8

2 3, , 2 3k k+ +


 , 
8

2 2, , 2 2k k+ +


 , ,
8

4, , 4k k+ +


 ,
8

3, , 3k k+ +


 ). By (1) and (2), we have 

( )
( )

( )
( )
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v V G

d v
G

v
ξ

ε∈

= ∑                     (18) 

1 1 13 8
2 3 2 2 3k k k

  = + + + ×  + + +  
             (19) 

3

3

124 .
k

i k i

+

=
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+∑                       (20) 

and 

( )
( )

( ) ( )c

v V G
G d v vξ ε

∈

= ∑                  (21) 

( ) ( ) ( ) ( )3 8 3 4 2 2 2 3k k k k = + + + + + + + +         (22) 

( ) ( ) ( )3 2 3 1
3 8

2
k k k + + + +  =  

  
             (23) 

236 108 72.k k= + +                   (24) 

The proof of the theorem is now complete.                           □ 

3. Conclusion 

In this note, we give calculation formulas of ECI and CEI of all (4,6)-fullerenes 
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with regular structures, respectively. In the future, we will discuss the calculation 
of ECI and CEI of a (4,6)-fullerene graph of dispersive structure, and try to give 
an algorithm. 
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