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Abstract 
Considering the overnight effect on the stock market, we construct a daily 
volatility measure that is formed by a linear combination of the three com-
ponents, namely overnight volatility, morning realized volatility and after-
noon realized volatility, and obtain the optimal solution in theory. An empir-
ical work is performed for studying the daily volatility structure of Shanghai 
stock index and Shenzhen stock index in China’s stock market by using our 
daily volatility measure. The empirical results show that, the daily volatility 
measure considering the impact of overnight variance and time segment per-
forms better than original volatility measure. 
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1. Introduction 

The modeling and forecasting of volatility is the basis of financial asset portfolio 
allocation, capital asset pricing and risk management, and has always been a hot 
topic in the financial field. With the improvement of high frequency data acces-
sibility and the deepening of the research on high frequency data field, the use of 
high frequency data to estimate and model volatility has become a new trend in 
financial research [1]. Volatility measures based on nonparametric methods and 
using high frequency data are called Realized Volatility (RV) [2] [3]. RV is a 
well-known quantity that is constructed from high-frequency intra-day returns. 
Andersen and Bollerslev [4], Andersen et al. [5], Barndorff-Nielsen and She-
phard [6] pointed out that the realized volatility can be estimated by continuous 
sampling of intra-day returns, and theoretically proved that it is a consistent es-
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timate of the integrated volatility in an asset pricing process. 
With the deepening of research, many scholars have found that the informa-

tion in the non-trading period of stock markets which is the overnight period 
has a very important influence on the volatility (Hansen and Lunde [7] [8]; Tay-
lor [9]; Ahoniemi and Lanne [10]; Oldfield [11]; Tsiakas [12]). The existing lite-
rature on stock market realized volatility has adopted several approaches to 
dealing with the overnight volatility. Hansen and Lunde [7] [8] firstly proposed 
the method of combining realized variance by optimizing the squared return 
weights of trading time and overnight time. Then, Ahoniemi and Lanne [10] ve-
rified the effectiveness of this method through empirical evidence. Christoffersen 
[13] proposed the method of adding the squared return of overnight to the daily 
volatility measure of trading time. Maderitsch [14] considered the impact of 
structural changes of asset prices and improved the volatility measure of Hansen 
and Lunde [7] [8]. In the study of the overnight effect of Chinese stock market 
on volatility, Sun [1] decomposed the realized volatility of trading time into two 
components: continuous path variation and jump, and combined with overnight 
volatility to form a daily volatility measure through the HAR-CJN model. Ma et 
al. [15] added overnight rate of returns as an explanatory variable to the 
high-frequency volatility model to study the impact on model prediction accu-
racy. 

In general, the existing methods lack not only the analysis of the impact of as-
set volatility at different periods of the day, but also the research on the correla-
tion and combination of different intraday volatility. As pointed out by Aho-
niemi and Lanne [10], how to optimize overnight information in the context of 
realized volatility remains an issue that needs further study. As an emerging 
market, the Chinese stock market is in a stage of rapid development and conti-
nuous improvement, which presents a unique pattern of changes. Especially 
from 2014 to 2016, the huge volatility of the Chinese stock market has hig-
hlighted the changeability and vulnerability of the stock market. The study on 
the integration of overnight variance and its impact on stock price volatility can 
enable us to measure the volatility more accurately, deepen our understanding of 
stock market volatility and improve the level of risk management of Chinese 
stock market, thus promoting the stable and healthy development of it. 

2. Realized Volatility and Overnight Effect 
2.1. Realized Volatility 

Let ( ){ }* , 0p t t ≥  represent the logarithmic pricing process of financial assets, 
and its generating mechanism can be expressed as a stochastic differential equa-
tion: 

( ) ( ) ( ) ( )*d d dp t t t t w tµ σ= +                     (1) 

where μ(t) denotes the drift rate, σ(t) denotes the volatility, and w(t) denotes the 
standard Brownian motion. 
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The true volatility of p* on the t-th day can be defined as ( )2
1

d
t

t t
IV t tσ

−
≡ ∫ . 

As the integral of volatility, tIV  is also called the Integrated Volatility of the 
t-th day, and ( ) ( )* * 1tr p t p t≡ − −  is defined as the intra-day return of the t-th 
day. 

Andersen and Bollerslev proposed the definition of Realized Volatility (RV). 
Let M + 1 denotes the number of price observation values at equal intervals of  

the day, that is, ( ) ( )11 , 1 , ,i i ip t p t p t
M

 − − + 
 

 . Then, there are a total of M 

returns in a day, and the intra-day return of the jth observation period is defined 

as , ,
11 1 , 1,2, ,i t j i i

j jr p t p t j M
M M

−   ≡ − + − − + =   
   

 . The realized volatility is 

defined as: 
2

, , ,1
M

i t i t jjRV r
=

≡ ∑ .                          (2) 

It has be proved by Barndorff and Shephard that, without considering the 
jumps of asset prices, according to the Quadratic Variation theory, when 
M →∞ , ,i tRV  converges to the integrated volatility in probability, that is, 

( )2
, 1

lim d
t

i t tM
RV t tσ

−→∞
= ∫ . In other words, if the sampling frequency of intra-day 

returns is high enough, ,i tRV  can be regarded as the consistent estimator of real 
volatility. 

2.2. The Overnight Effect of China’s Stock Market Volatility 

Transactions in the Chinese stock market are concentrated on the Shanghai 
Stock Exchange (SSE) and the Shenzhen Stock Exchange (SZSE). The opening 
hours of each day are from 9:30 to 11:30 and from 13:00 to 15:00, namely, there 
are 4 hours of trading on each day. However, since the asset prices are changing 
all the time, using the price changing information observed in only four hours to 
describe the price changes of the whole day is inaccurate. So it is necessary to 
consider the price changes at the non-trading hours. 

We define the intra-day return as the difference between the logarithm of the 
daily closing price and the logarithm of the previous daily closing price. The 
time of a day corresponds to the closing time of the previous day to the closing 
time of the day. Hence, we can divide the intra-day return into four periods: 

Phase I. Overnight period from 15:00 on the previous day to 9:30 on the day. 
The overnight return of a stock is defined as the difference between the loga-
rithm of the day’s opening price at 9:30 and the logarithm of the previous day’s 
closing price at 15:00, represented by 1tr ; 

Phase II. Opening hours from 9:30 to 11:30. The morning return of a stock 
can be obtained in the same way as calculating the intra-day return, represented 
by 2tr ; 

Phase III. Lunch break from 11:30 to 13:00. The stock’s midday return is de-
fined as the difference between the logarithm of the day’s opening price at 13:00 
and the logarithm of the day’s closing price at 11:30, represented by 3tr ; 

Phase IV. Opening hours from 13:00 to 15:00. The afternoon return of a stock 
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can be obtained in the same way as calculating the intra-day return, represented 
by 4tr . 

The volatilities of overnight and midday returns can be expressed as the 
square of the returns, that is, 2

1tr  and 2
3tr . The volatilities of morning and af-

ternoon returns are represented by realized volatility, that is, 2tRV  and 4tRV . 
The partition results of the four time periods are shown in Figure 1. 

To compare the changes of daily volatility at different periods, we use the 
1-minite high-frequency data of Shanghai Composite Index and Shenzhen 
Component Index from January 2, 2014 to November 2, 2015 for comparative 
analysis, including 429 days of valid data of Shanghai Composite Index and 437 
days of valid data of Shenzhen Component Index. Due to the partial missing and 
abnormal values of 1-minute data of Shanghai Composite Index obtained, in 
order to ensure that the analysis results are in line with the actual situation, we 
firstly preprocess the data by interpolating. To eliminate the influence of micro-
structure noise of high-frequency data, we use high-frequency data at intervals 
of 5, 10, 15, 20 and 30 minutes respectively for analysis. The results show that 
the statistical characteristics of the volatilities of the returns at different time in-
tervals display roughly the same variation pattern. Table 1 and Table 2 respec-
tively show the statistical characteristics of realized volatility obtained at a 
5-minute sampling interval. 

It can be seen from Table 1 and Table 2 that both Shanghai Composite Index 
and Shenzhen Composite Index have large volatilities of the morning returns. 
Volatilities of the afternoon returns are smaller than that of the morning,  
 

 
Figure 1. The decomposition of the daily volatility structure of Chinese stock market. 

 
Table 1. Daily volatility statistical characteristics of Shanghai Composite Index at 5-minute 
sampling interval. 

Statistical Characteristics Mean Variance 

2
1tr  1.30e−04 1.43e−07 

2tRV  1.85e−04 1.02e−07 

2
3tr  4.82e−06 5.95e−10 

4tRV  1.46e−04 7.21e−08 

Source: Data from Shanghai Stock Exchange. 
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Table 2. Daily volatility statistical characteristics of Shenzhen Component Index at 
5-minute sampling interval. 

Statistical Characteristics Mean Variance 

2
1tr  1.13e−04 2.41e−07 

2tRV  1.70e−04 1.02e−07 

2
3tr  1.93e−07 3.00e−12 

4tRV  1.45e−04 7.71e−08 

Source: Data from Shenzhen Stock Exchange. 

 
which is basically consistent with the reality of stock markets. The volatilities of 
the overnight period are slightly less than that of the afternoon, but are in the 
same order of magnitude as the averaged volatilities over the trading period. 
Hence, it can be seen that the overnight effect is obvious and should not be ig-
nored. Because the volatility of midday returns is extremely small compared to 
that of the other three time periods, in the following analysis we choose over-
night volatility, morning realized volatility and afternoon realized volatility as 
the main components of daily volatility. 

3. Research Methods 

The intra-day return of the stock market is defined as the difference between the 
logarithm of the day’s closing price and the logarithm of the previous day’s 
closing price. According to the division of the four time periods in Figure 1, the 
intra-day return of the t-th trading day of the stock market can be defined as 

1 2 3 4t t t t tr r r r r≡ + + + , where 2 4,t tr r  are the morning and afternoon returns of the 
opening hours and the volatility can be expressed by the realized volatility, 
which is the sum of the squares of returns on trading time, that is,  

2 2
2 2 4 41 1,m m

t t i t t ii iRV r RV r− −= =
= =∑ ∑ . And 2 4, , 1, ,t i t ir r i m− − =   respectively  

represent the morning and afternoon returns of m equal time intervals of the 
opening hours. Compared with the four periods of intra-day returns, the implied 
integrated volatility can be divided into four parts, namely,  

1 2 3 4t t t t tIV IV IV IV IV= + + + . 
To simplify writing, we define ( )t tE E IV ⋅ = ⋅   to represent conditional ex-

pectations. The basic hypothesizes discussed below are: 
Assumption I. [ ] , 1, 2,3, 4t it i tE IV IV iδ= = ; 
Assumption II. [ ] 0, 2, 4t i it itE RV IV iω − = = ; 
Assumption III. 2 0, 1,3t i it itE r IV iω − = =  ; 
Assumption IV. ( ), 0, , , 1, 2,3, 4it jtCov IV IV i j i j= ≠ = ; 

where ,i iδ ω  are constants, respectively. 
Assumption I shows that the expected value of the integrated volatility of each 

time period is fixed in proportion to integrated volatility of the whole day. As-
sumption II requires that the conditional deviation rates of the volatilities of the 
morning and afternoon returns are proportional to the integrated volatilities of 
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the corresponding period. Assumption III requires that overnight and midday 
volatilities are also proportional to the integrated volatilities of the correspond-
ing period. Assumption IV means that the integrated volatilities at different pe-
riods are irrelevant. Assumption IV is supposed to simplify the problem, which 
is generally not true in practical problems. 

To give a more accurate description of the volatility in stock market, based on 
the model of Hansen and Lunde, we subdivide the opening hours into morning 
and afternoon and add in volatility of overnight returns. Hence, we define the 
daily volatility measure of the Chinese stock market as a linear combination of 
overnight volatility, morning realized volatility and afternoon realized volatility: 

2
1 1 2 2 4 4t t t tRV r RV RVθ θ θ≡ + +                     (3) 

where ( )1 2 4, ,θ θ θ θ ′≡  is the parameter to be estimated. 
To facilitate this discussion, we define unconditional expectations  

[ ] [ ] [ ]2
1 1 2 2 4 4, , ,t t t tE IV E r E RV E RVµ µ µ µ ≡ ≡ ≡ ≡  . Then we have the follow-

ing conclusions. 
Theorem 1. For all ( )1 2 4, ,θ θ θ θ ′≡  that satisfy 1 1 2 2 4 4θ µ θ µ θ µ µ+ + = , there 

is [ ]t t tE RV IV= . 
Proof of Theorem 1: see Appendix. 
The purpose of the established volatility measure tRV  is to better describe 

integrated volatility tIV , and the difference between them can be measured by 
the mean square error. So this problem turns into the following optimization 
problem. 

[ ]{ }2min t tE RV IV
θ∈Θ

−                       (4) 

where Θ is the value interval of parameter ( )1 2 4, ,θ θ θ θ ′= . 
But in fact, since tIV  is the integral of instantaneous volatility, it is an unob-

servable potential variable. Moreover, the asset price itself is disturbed by the 
micro-structure noise, so we cannot get a more accurate measurement value of 
actual tIV , and other methods need to be considered. Then we give the follow-
ing theorem. 

Theorem 2. For θ ∈Θ , if [ ] 0t t tE RV IV− = , then [ ]{ }2min t tE RV IV
θ∈Θ

−  is 
equivalent to [ ]min tD RV

θ∈Θ
, where [ ]tD RV  is the variance of tRV . 

Proof of Theorem 2: see Appendix. 
From Theorem 2, the original problem can be transformed into an optimiza-

tion problem: 

[ ] ( )2
1 1 2 2 4 4 1 1 2 2 4 4min min . .t t t tD RV D r RV RV s t

θ θ
θ θ θ θ µ θ µ θ µ µ

∈Θ ∈Θ
= + + + + =  

Hence, we have the following conclusions. 
Theorem 3. The solution of the optimization problem  

( )2
1 1 2 2 4 4min t t tD r RV RV

θ
θ θ θ

∈Θ
+ +  1 1 2 2 4 4. .s t θ µ θ µ θ µ µ+ + =  is 

( )1 2 4
1 2 4

ˆ ˆ ˆ; ; 1µ µ µ
θ α θ β θ α β

µ µ µ
= = = − −              (5) 

where 
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33 13 13 23 3312
2 2

1 4 1 4 2 4 1 24 4

33 13 33 3311 11
2 2 2 2 2

1 41 4 1 4 4

23 13 33 13 13 23 13 3311 11 12
2 2 2

2 4 1 4 1 4 1 4 1 2 2 4 1 41 4 1

2 2

2

σ σ σ σ σσ
µ µ µ µ µ µ µ µµ µ

α
σ σ σ σσ σ

µ µµ µ µ µ µ

σ σ σ σ σ σ σ σσ σ σ
µ µ µ µ µ µ µ µ µ µ µ µ µ µµ µ µ

 − + − − 
 = +
 + − + −  

    
− + − + − − + −    

    ×
2
4

13 23 33 13 23 33 13 23 1312 11 12 11 22 12
2 2 2 2 2

1 4 2 4 1 2 1 4 1 2 2 4 1 4 1 2 2 4 1 44 1 1 4 2

2

µ
σ σ σ σ σ σ σ σ σσ σ σ σ σ σ
µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µµ µ µ µ µ

  
  

  
      

+ − − − − + − + − − − +      
         

23 13 33 13 13 23 13 3311 11 12
2 2 2 2

2 4 1 4 1 4 1 4 1 2 2 4 1 41 4 1 4

13 23 33 13 23 33 1312 11 12 11
2 2 2 2

1 4 2 4 1 2 1 4 1 2 2 44 1 1 4

2

2

σ σ σ σ σ σ σ σσ σ σ
µ µ µ µ µ µ µ µ µ µ µ µ µ µµ µ µ µ

β
σ σ σ σ σ σ σσ σ σ σ
µ µ µ µ µ µ µ µ µ µ µ µ µµ µ µ µ

     
− + − + − − + −     

     =
  

+ − − − − + − + −  
  

23 1322 12
2

1 4 1 2 2 4 1 42

σ σσ σ
µ µ µ µ µ µ µµ

  
− − +  

  

 

and ( ) ( ) ( ) ( )2
11 1 22 2 33 4

2
12 1 2, ,, ,,t t t t tD r D R CV D RV ov r RVσσ σ σ≡ ≡ ≡ ≡   

( ) ( )2
13 1 4 23 2 4, , ,t t t tCov r RV Cov RV RVσ σ≡ ≡ . 

In particular, when Assumption IV is true, that is, ( )2
12 1 2, 0t tCov r RVσ ≡ = , 

( ) ( )2
13 1 4 23 2 4, 0, , 0t t t tCov r RV Cov RV RVσ σ≡ = ≡ = , then we have 

1 22 33
1 2 2 2

4 11 22 1 22 33 2 11 33

2 11 33
2 2 2 2

4 11 22 1 22 33 2 11 33

1 1 2 2
4

4

ˆ

ˆ

ˆ ˆˆ

µµ σ σ
θ

µ σ σ µ σ σ µ σ σ
µµ σ σ

θ
µ σ σ µ σ σ µ σ σ

µ θ µ θ µ
θ

µ

=
+ +

=
+ +

− −
=

               (6) 

Proof of Theorem 3: see Appendix. 

4. Empirical Analysis 
4.1. Selection of Sample Data 

The empirical analysis data used in this paper is still 1-minute closing price data 
of China’s stock market index from January 2, 2014 to November 2, 2015. Since 
most studies have confirmed that the 5-minute data can be considered almost 
impervious to the micro-structure noise of high-frequency data, and we have 
analyzed the 5, 10, 15, 20, 30 minutes intervals and find that there is roughly the 
same variation pattern, we mainly analyze Shanghai Composite Index and 
Shenzhen Component Index with a sampling interval of 5 minutes in the fol-
lowing empirical part. After processing the high-frequency data at a sampling 
interval of 5 minutes, 50 pieces of high-frequency data can be recorded every 
trading day. Then we have a total of 21,450 pieces of high-frequency data cover-
ing 429 trading days of Shanghai Composite Index, and 21,850 pieces of 
high-frequency data covering 437 trading days of Shenzhen Component Index. 

4.2. Correlation Analysis of Returns and Volatilities 

In Assumption IV, we assume that the volatilities of different time periods are 
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irrelevant. Since this is a very strong assumption, we need to firstly test the cor-
relation between returns and volatilities in practical applications. 

We conduct an autocorrelation analysis of 5, 10, 15, 20 and 30 minutes return 
series of the two stock indexes. The results show that there is no autocorrelation 
in the series of intraday returns within the above time intervals. Then we con-
duct correlation tests on the series of the overnight volatility 2

1r , the morning 
realized volatility 2RV  and the afternoon realized volatility 4RV . The results 
are shown in Table 3 and Table 4. 

As can be seen from the sample correlation coefficients in Table 3 and Table 
4, the overnight volatility is correlated with both the morning realized volatility 
and the afternoon realized volatility. In this case, the existence of correlation 
cannot be ignored. Hence, we use Equation (5) to calculate the daily volatility. 

4.3. Parameter Estimation and Comparison of Volatility Measures 

Using the result of Theorem 3, we calculate the parameters of 5, 10, 15, 20 and 
30 minutes sampling intervals. As the final results obtained from different inter-
vals do not differ much, we chose the 5-minute interval as the representative for 
the following analysis and explanation. Bring the return series into the formula 
in Theorem 3, we calculate the parameters as shown in Table 5.  

From the formula 2
1 1 2 2 4 4t t t tRV r RV RVθ θ θ= + + , we can get the daily volatility 

measure that we construct (expressed as XRV for convenience of differentia-
tion). We take the square of the intra-day returns 2r  as a reflection of the real 
volatility, and use RV to represent the daily volatility measure which is con-
structed only by using high-frequency data of opening hours and without taking 
the overnight effect into account. We calculate the mean and variance of these  
 
Table 3. Sample correlation coefficients for overnight volatility, morning realized 
volatility and afternoon realized volatility of Shanghai Composite Index. 

Sample Correlation Coefficient 2
1r  2RV  4RV  

2
1r  1.0000   

2RV  0.3675 1.0000  

4RV  0.2319 0.7187 1.0000 

Source: Data from Shanghai Stock Exchange. 

 
Table 4. Sample correlation coefficients for overnight volatility, morning realized 
volatility and afternoon realized volatility of Shenzhen Component Index. 

Sample Correlation Coefficient 2
1r  2RV  4RV  

2
1r  1.0000   

2RV  0.4034 1.0000  

4RV  0.2840 0.6942 1.0000 

Source: Data from Shenzhen Stock Exchange. 
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Table 5. Results of parameters at a 5-minute sampling interval. 

Parameter Shanghai Composite Index Shenzhen Component Index 

1µ  1.13e−04 1.30e−04 

2µ  1.70e−04 1.85e−04 

4µ  1.45e−04 1.46e−04 

11σ  2.41e−07 1.43e−07 

22σ  1.02e−07 1.02e−07 

44σ  7.71e−08 7.21e−08 

12σ  0.3675 0.4034 

14σ  0.2319 0.2840 

24σ  0.7187 0.6942 

1̂θ  0.4163 0.5803 

2̂θ  1.1420 1.0562 

4̂θ  1.2902 1.3006 

 
three volatility measures of Shanghai Composite Index and Shenzhen Compo-
nent Index respectively, and show the statistical characteristics in Table 6. 

It can be seen that the daily volatility measure XRV constructed by us is closer 
to the real volatility value than the realized volatility measure RV which does not 
consider the overnight effect. 

Finally, we use the mean square error (MSE) as the standard to measure the 
error, which is the most commonly used form of loss function in such judgment. 
According to the principle of least square method, the smaller the sum of 
squared residuals, the more consistent the estimated value is with the real value. 
In practical application, MSE is usually used as a measurement index. The 
smaller the expected value of the squared difference between the estimated value 
and the real value, the more accurate the model is. The specific definition is  

( )2

1

1 n
i iiMSE Y Y

n =
= −∑ , and MSEs between the volatility measures and the real 

volatility are shown in Table 7. 
As we can see from Table 7, the mean square errors of the daily volatility 

measure we build (XRV) are less than the corresponding values of the measure 
without considering the overnight variance and time segment (RV). 

4.4. Summary 

Based on the above analysis results, we can draw the conclusion that, the daily 
volatility measure considering the impact of overnight variance and time seg-
ment (XRV) is superior to the realized volatility (RV), and can reflect the real 
situation of volatility more comprehensively. 
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Table 6. Statistical characteristics of volatility measures at a 5-minute sampling interval. 

Stock Index Statistical characteristics Mean Variance 

Shanghai Composite Index 

XRV 4.29e−04 5.81e−07 

RV 3.15e−04 3.07e−07 

r2 3.90e−04 9.17e−07 

Shenzhen Component Index 

XRV 4.62e−04 5.53e−07 

RV 3.36e−04 3.09e−07 

r2 4.57e−04 9.32e−06 

 
Table 7. The mean square error between the volatility measures and the real volatility at a 
5-minute sampling interval. 

Stock Index Volatility Measure MSE 

Shanghai Composite Index 
XRV 7.99e−07 

RV 8.16e−07 

Shenzhen Component Index 
XRV 7.14e−07 

RV 7.77e−07 

5. Conclusions 

Due to the use of more intra-day data, the realized volatility measure based on 
high-frequency return series shows better statistical properties than parametric 
model in characterizing historical volatility. Since the trading hours of stock 
markets only account for a small part of a day, which are divided into two pe-
riods of morning and afternoon, asset prices change continuously. Hence, the 
realized volatility composed of the return series of trading time cannot fully 
characterize the daily volatility. Base on this point, the main work of this paper is 
to establish the optimized realized volatility statistics through the analyzing and 
processing of high-frequency trading data of China’s stock market, and compare 
it with the original measure through mean square error to judge the pros and 
cons of the new volatility measure. The main empirical results show that in 
terms of Shanghai Composite Index and Shenzhen Component Index, the daily 
volatility measure considering the impact of overnight variance and time seg-
ment is superior to realized volatility measure without considering them. 

This paper proposes a daily volatility measure for Chinese stock market, 
which considers the impact of overnight variance and time segment. This ap-
proach is helpful for us to better understand the volatility structure of Chinese 
stock market and give a more accurate measure of volatility. Since the 
high-frequency return series are affected by the microstructure noise, and there 
are jumps in asset prices when it changes continuously, these factors will make 
the realized volatility measure have certain deviations. Therefore, the improve-
ment of volatility measure based on microstructure and price jumps is a further 
work direction in the future. 
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Appendix 

1) Proof of Theorem 1: 
By hypothesis, there is 

[ ] 2
1 1 2 2 4 4

1 2 4
1 1 2 2 4 4
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1 1 2 2 4 4

1 1 1

1 1 1

t t t t t t

t t t
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IV IV IV
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θ θ θ

θ θ θ
ω δ ω δ ω δ
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ω δ ω δ ω δ

 = + + 
     

= + +     
     

      
= + +      
       

 

and by the law of total expectation, we have 

[ ] ( ) 1 2 4
1 1 2 2 4 4

1 1 1
t t tE RV E E RV θ θ θ µ

ω δ ω δ ω δ
      

 = = + +               
 

and 

[ ] 2
1 1 2 2 4 4 1 1 2 2 4 4t t t tE RV E r RV RVθ θ θ θ µ θ µ θ µ µ = + + = + + =   

then we have 

1 2 4
1 1 2 2 4 4

1 1 1 1θ θ θ
ω δ ω δ ω δ
     

+ + =     
     

 

so [ ]t t tE RV IV= . 
2) Proof of Theorem 1: 
We define ( ) [ ]|t tD D IV⋅ = ⋅ , and by conditional expectation formula, 

[ ] [ ] ( ) [ ]22
t t t t t t t t t t tE RV IV D RV IV E RV IV D RV − = − + − =   

Therefore, by the law of total expectation, we can have 

( ) [ ]{ } [ ]{ } [ ]2 2
t t t t t t t tE RV IV E E RV IV E D RV D RV− = − = =  

3) Proof of Theorem 3: 
Consider the minimum variance of the linear combination  

( )1 2 31X X Xα β α β+ + − −  of random variables 1 2 3, ,X X X , that is,  
( ), 1 2 3min 1D X X Xα β α β α β+ + − −   . 

Let  

( ) ( )
( )

( ) ( ) ( )
( ) ( )

1 2 3

2 2
1 2 3

1 2 1 3

2 3

, 1

1

2 , 2 1 ,

2 1 ,

F D X X X

DX DX DX

Cov X X Cov X X

Cov X X

α β α β α β

α β α β

αβ α α β

β α β

= + + − −  
= + + − −

+ + − −

+ − −

 

To simplify the calculation, let 11 1 22 2 33 3, ,c DX c DX c DX≡ ≡ ≡ ,  
( ) ( ) ( )12 1 2 13 1 3 23 2 3, , , , ,c Cov X X c Cov X X c Cov X X≡ ≡ ≡ . Take the partial deriv-

ative with respect to a and b respectively, and set the partial derivative to 0, then 
we have 
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By the condition 1 1 2 2 4 4θ µ θ µ θ µ µ+ + =  and normalizing it, we have  

1 2 4
1 2 4 1µ µ µ
θ θ θ

µ µ µ
+ + = . And let 2

1 1 2 2 3 4
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, ,t t tX r X RV X RVµ µ µ
µ µ µ
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we have 
2 2 2 2 2
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2

23 23
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σ

µ µ
= . Bring them into the above results and we have 

( )1 2 4
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θ α θ β θ α β

µ µ µ
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and we can get α and β. 
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