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Abstract 

In this paper, we have proposed the theory of ( )1U  gravity gauge, and the 
gravity theory has been introduced into quantum field theory. We have fur-
ther given the tensor equation of gravity field in the flat space, and found the 
gravity field equation is the Lorentz covariant and gauge invariant. The gravi-
ty theory can be quantized and can be unified with the electroweak and strong 
interaction at a new gauge group ( ) ( ) ( )1 2 3U SU SU⊗ ⊗ . 
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1. Introduction 

The Einstein’s general theory of gravity (GR) is treated as geometry of curved 
space-time, which appears to provide a successful macroscopic description of all 
known gravitational phenomena; it is of interest to explore alternative theories 
that may provide a more fundamentally appealing description or suggest new 
experiments leading to the discovery of new phenomena [1] [2]. As well known, 
most of the fundamental interactions in nature based on the gauge theory have 
been constructed to be physically sensible due to that they lead to the consistent 
quantum description. The gauge theories are in principle applicable up to arbi-
trarily high energy scales. Thus, it would be natural to seek a gauge theory 
structure for the gravitational interaction in which the general relativity is de-
rived as the low energy limit. Quantum gauge theory of gravity is proposed in 
the framework of quantum field theory, the mathematical structures of GR in 
the first-order formalism and gauge theory appear very similar at classical level 
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and for this reason, in the MacDowell-Mansouri theory, general theory of gravi-
ty was reformulated as a Yang-Mills theory [3]-[8]. 

Developing of a consistent quantum theory of the gravity at very small dis-
tances or high energy scales, has been interested by many physicists in which the 
gravity is strongly played by the rules of the quantum mechanics. In fact, a 
theory of the gravity is to study the space-time. Since well understanding of the 
quantum gravity allows us to deal with the behavior of the space-time at very 
small distances. The main motivations for seeking this are just purely theoretical 
because of the fact that there have not had immediately experimental observa-
tions for the quantum gravitational effects so far. However, some indirect expe-
rimental constraints for Planck-length quantum properties of the space-time 
have been exploited with a growing number of studies [9]-[16]. In Ref. [17], the 
authors have taken into consideration a generalization of gauge theories based 
on the analysis of the structural characteristics of Maxwell theory, which is based 
on few principles related to different orders of commutators between covariant 
derivatives. They have modified theory of gravity, in which the algebra of opera-
tors of covariant derivatives leads to an additional term in the equation of mo-
tion associated with the non-conservation of the energy-momentum tensor. 

In this paper, we have proposed the gauge theory of gravity. In Dirac equation 
and K-G equation, they have introduced the vector gauge field, such as electro-
weak and strong interaction gauge field, which are vector gauge fields, and have 
not introduced the gravity gauge field. In order to introduce the gravity gauge 
field, we should add a term of partial derivative µ ν∂ ∂  in Dirac equation and 
K-G equation. At the ( )1U  gauge transformation, the gravity gauge field 
should be introduced naturally. Otherwise, we give the equation of gravity ten-
sor field at the flat Minkowski spacetime, and further prove the gravity field eq-
uation is the Lorentz covariant and gauge invariant. The gravity theory can be 
quantized and can be unified with the electroweak and strong interaction at a 
new gauge group ( ) ( ) ( )1 2 3U SU SU⊗ ⊗ . 

2. The U(1) Gauge Field of Gravity 

The Einstein gravitational field equation with matter is 

4

1 8π
2v v v

GR g R T
cµ µ µ− = ,                    (1) 

where vTµ  is the energy-momentum tensor, vRµ  is the Ricci tensor, R is the 
Ricci scalar curvature, ( )vg xµ  is the symmetric metric tensor, G is Newton’s 
gravitational constant and c is the speed of light. The energy-momentum tensor 

vTµ  gives the motion and distribution of the matter in spacetime, producing the  

gravitation field, and 1
2v vR g Rµ µ−  is the geometry tensor of Riemannian  

curved spacetime. The important properties of the Einstein gravitational field 
equation are: the distribution and motion of the matter determine the curved 
spacetime structure, and the distribution of matter can be determined by the 
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spacetime structure. 
The gravitational field is the geometry field of spacetime, which is equivalent 

to the spacetime curve. The general theory of gravity can be reinterpreted as a 
field theory over flat Minkowski spacetime, the gravity can be taken as real mat-
ter field, produced by the matter motion and distribution. In the following, we 
shall introduce gravity field in the Minkowski spacetime, which is massless 
spin-2 field. In group theory, the representation of the rotation group and Lo-
rentz group is described by a field with 2 1s +  independent components for a 
particle with spin 0,1,2,s =  . For the massless spin-2 gravity field, it should be 
described by a tensor field ( )xµνφ  of second rank. 

In quantum field theory, the Lagrangean density of real field, complex field 
and Dirac spinor field are: 

( )2 21
2

L mµ
µφ φ φ= ∂ ∂ − ,                       (2) 

2L mµ
µφ φ φ φ+ += ∂ ∂ − ,                        (3) 

( )L i mµ
µψ γ ψ= ∂ − .                         (4) 

At Equations (2), (3) and (4), if the local gauge is invariant, the gauge field 
should be introduced. We need form a gauge covariant derivation Dµ  to re-
place µ∂ , it is 

( )D A xµ µ µ µ∂ → = ∂ + ,                      (5) 

where ( ) ( )a aA x igA x Tµ µ= −  is gauge field. For the electroweak interaction 
theory, it has the ( ) ( )2 1SU U⊗  gauge symmetry, and their gauge fields are the 
linear combination of fields ( )A xµ



 and ( )B xµ , they are 

( )1 21
2

W A iAµ µ µ
− = + ,                      (6) 

( )1 21
2

W A iAµ µ µ
+ = − ,                      (7) 

( )3

2 2

1Z gA g B
g g

µ µ µ′= −
′+

,                  (8) 

3 sin cosA A Bµ µ ω µ ωθ θ= + .                    (9) 

These gauge fields are the vector fields with spin s = 1, and corresponding to 
the particles , ,W W Zµ µ µ

− +  and γ . 
For the strong interaction theory of between quark and gluon, it has the 
( )3SU  gauge symmetry, and the gauge field are eight gluons vector fields 
( )1, 2, ,8aB aµ =  . In quantum gauge theory, the all gauge fields are vector fields 

with spin s = 1, which can only describe electromagnetic interaction, weak inte-
raction and strong interaction, and cannot describe the gravity interaction with 
spin s = 2. Why the quantum gauge theory cannot describe the gravity interac-
tion? From Equation (2) to (4), we can find the differential operator µ∂  ap-
pears alone in the Lagrangean density. When we make the ( )1U  local gauge 
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transformation: 

( ) ( ) ( ) ( )e i xx x xγψ ψ ψ−′→ = ,                   (10) 

( ) ( ) ( ) ( )e i xx x xγψ ψ ψ−′→ = ,                   (11) 

the µ∂  should be make the transformation as Equation (5), it only introduce 
the vector gauge field ( )A xµ . If we add the term µ ν∂ ∂  to Equations (2), (3) 
and (4), the µ∂  and µ ν∂ ∂  should be made the transformations 

( )D A xµ µ µ µ∂ → = ∂ + ,                       (12) 

( )v v v vD ig xµ µ µ µφ∂ ∂ → = ∂ ∂ + ,                   (13) 

where ( )A xµ  is the vector gauge field with spin s = 1, and ( )v xµφ  is the ten-
sor gauge field with spin s = 2, i.e., the gravity gauge field.  

For the Dirac equation 

( ) 0i mµ
µγ ψ∂ − = ,                      (14) 

we add the term µ ν∂ ∂ , it becomes 

0vi m
m

µ µ µ
µ µ

εγ γ γ ψ ∂ − − ∂ ∂ = 
 

,                (15) 

where ε  is the dimensionless constant. Since the gravity is very weak, the con-

tribution of new added term vm
µ µ

µ
ε
γ γ ∂ ∂  should be very small, there is  

2mε  ,                             (16) 

the Lagrangean density of Equation (15) is 

vL i m
m

µ µ µ
µ µ

ε
ψ γ γ γ ψ = ∂ − − ∂ ∂ 
 

,                   (17) 

then 

v
L m i

m
µ µ µ

µ µ
ε

ψ γ ψ γ γ ψ
ψ
∂

= − + ∂ − ∂ ∂
∂

,               (18) 

( )
0L

µ
µψ

∂
∂ =

∂ ∂
,                         (19) 

substituting Equations (18) and (19) into the Lagrangean equation 

( )
0L L

µ
µψ ψ

∂ ∂
− ∂ =

∂ ∂ ∂
,                    (20) 

we can obtain the Equation (15). At the U(1) local gauge transformations (10) 
and (11), in order to make Equation (17) gauge invariant, we should introduce 
the gauge fields Aµ  and µνφ , they are 

D ieAµ µ µ µ∂ → = ∂ + ,                       (21) 

v v v vD igµ µ µ µφ∂ ∂ → = ∂ ∂ + ,                    (22) 

where e and g are the coupling constants, and the Equation (17) becomes 
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v e mL i D m D L L
m

µ µ µ
µ µ

ε
ψ γ γ γ ψ = − − = + 
 

,            (23) 

where 

( )eL i D mµ
µψ γ ψ= − ,                     (24) 

m vL D
m

µ µ
µ

ε
ψγ γ ψ= − ,                     (25) 

at ( )1U  gauge transformations (10) and (11) the Lagrangean density L should 
be changed into L′ , it is 

( ) e mL i D m m D L Lµ µ ν
µ µνψ γ ε γ γ ψ′ ′ ′ ′ ′ ′ ′= − − = + ,           (26) 

where 

( )eL i D mµ
µψ γ ψ′ ′ ′ ′= − ,                    (27) 

v
m vL D

m
µ

µ
ε
ψ γ γ ψ′ ′ ′ ′= − ,                    (28) 

the covariant derivatives Dµ  and Dµν  should be transformed as 

D D ieAµ µ µ µ′ ′→ = ∂ + ,                    (29) 

v v v vD D igµ µ µ µφ′ ′→ = ∂ ∂ + ,                  (30) 

the local gauge invariance demand the Lagrangean density is invariable, i.e., 
L L′= . 

At transformation 

( )1A A A x
eµ µ µ µγ′→ = + ∂ ,                    (31) 

these is 

e eL L′ = ,                            (32) 

then we require 

m mL L′ = ,                          (33) 

i.e., 
v v

v vD Dµ µ
µ µψ γ γ ψ ψγ γ ψ′ ′ ′ = ,                 (34) 

by Equation (34), we can give the gravity gauge transformation at ( )1U  gauge 
group. As 

( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
e e e

e ,

i x i x i x
v v

i x
v v v v v

i x

x x i x i x i x

γ γ γ
µ µ µ

γ
µ µ µ µ µ

ψ ψ γ ψ ψ

γ γ γ γ γ ψ

− − −

−

∂ ∂ = ∂ − ∂ + ∂

= −∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂
(35) 

the Equation (34) becomes 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )

e e

,

i x i xD ig

x x i x i x i x ig

D ig

γ γ
µ ν µν µ ν µ ν µν

µ ν
µ ν ν µ µ ν µ ν µν µν

µ ν µ ν
µν µ ν µν

ψ γ γ ψ ψ γ γ ϕ ψ

ψγ γ γ γ γ γ γ ϕ ψ

ψγ γ ψ ψγ γ ϕ ψ

+ −′ ′ ′ ′= ∂ ∂ +

′= −∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ +

= = ∂ ∂ +

(36) 
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by Equation (36), the gauge transformation of gravity is 

( ) ( ) ( ) ( ) ( )( )1
v x x x i x x

gµ µν ν µ µ ν µ ν µ νφ φ γ γ γ γ γ′ = + ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ ,   (37) 

Multiplying Equation (15) by ( )i m mν µ ν
µ µ νγ ε γ γ∂ + + ∂ ∂  at left, we obtain 

( ) ( )
( )( ) ( )

( ) 2 2

i m m i m m

i m i m m i m

m i m m

µ ρ σ ρ σ ν ρ σ
µ ν ρ σ

µ ν µ ρ σ
µ ν µ ρ σ

ν ρ σ ρ σ ρ σ
ν ρ σ ρ σ ρ σ

γ ε γ γ γ ε γ γ ψ

γ γ ε γ γ γ

ε γ γ γ ε γ γ γ γ ψ

′ ′
′ ′

′ ′
′ ′

′ ′
′ ′

   ∂ + + ∂ ∂ ∂ − − ∂ ∂   
= ∂ + ∂ − − ∂ + ∂ ∂

+ ∂ − ∂ ∂ − ∂ ∂ ∂ ∂ 

 

( )( ) '

2 2

2 2 2

2

2

i m i m i m i m

m

m m

m

µ ν µ ρ σ ν ρ σ
µ ν µ ρ σ ν ρ σ

ρ σ ρ σ ρ σ ρ σ
ρ σ ρ σ ρ σ ρ σ

ρ σ ρ σ ρ σ
ρ σ ρ σ ρ σ

γ γ ε γ γ γ ε γ γ γ

εγ γ εγ γ ε γ γ γ γ ψ

εγ γ ε γ γ γ γ ψ

ψ

′
′ ′

′ ′ ′ ′
′ ′ ′ ′

′ ′
′ ′

= ∂ + ∂ − − ∂ ∂ ∂ + ∂ ∂ ∂
− ∂ ∂ − ∂ ∂ − ∂ ∂ ∂ ∂ 

 = − − ∂ ∂ − ∂ ∂ ∂ ∂ 
 = − 





(38) 

it becomes K-G equation. So, the Equation (15) is a relativistic field equation, 
and we can prove it is Lorentz covariant. 

The Lorentz transformation is 

x xνµ µν′ = Λ ,                        (39) 

and its infinitesimal transformation is 
gµν µν µνωΛ = + ,                      (40) 

where µνω  is a infinitesimal parameter, the complete set of transformations 

µνΛ  are called Lorentz group. At the Lorentz transformation (39), the trans-
formation of Dirac spinor field ( )xψ  is 

( ) ( ) ( )x L xψ ψ′ ′ = Λ ,                    (41) 

where ( ) exp
4
iL µν

µνσ Λ = − Λ 
 

 is the representation of the Lorentz group for 

the spinor field ( )xψ , ( )
2
iµν µ ν ν µσ γ γ γ γ= − , µγ , νγ  are the Dirac matrices,  

and there are the following transformation relations: 

( ) ( ) ( )L L νν σ
σ

ω γ ω ω γ− −= Λ ,                     (42) 

µ
ν µ ν′∂ = ∂ Λ ,                          (43) 

ν
µ ν µ

−′∂ = ∂ Λ ,                         (44) 

making the Lorentz transformation to Equation (15), it is 

( )

( ) ( )( ) ( )

( )

( )
0,

L i m x
m

i L L m L L L L L x
m

i m x
m

i m x
m

ν µ ν
ν µ ν

ν µ ν
ν µ ν

ν µ µ ρ ν σ
µ ν ρ σ µ ν

µ ρ σ
µ ρ ν

εγ γ γ ψ

εγ γ γ ψ

εγ γ γ ψ

εγ γ γ ψ

− − −

− − −

 ∂ − − ∂ ∂ 
 
 = ∂ − − ∂ ∂  
  ′ ′= Λ ∂ − − Λ Λ ∂ ∂  
 ′ ′ ′ ′ ′= ∂ − − ∂ ∂ 
 

=

        (45) 
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It has the same equation form at the Lorentz transformation, i.e., Equation 
(15) is the Lorentz covariant. For the K-G particle of spin s = 0, its field equation 
is 

( )2 0m φ+ = ,                         (46) 

and its Lagrangean density is 

( )2 21L
2

mµ
µϕ ϕ ϕ= ∂ ∂ − ,                    (47) 

In order to describe the gravity interaction, the Equation (46) should be mod-
ified as 

( )2 0m µ ν
µ νλβ β φ+ + ∂ ∂ = ,                    (48) 

where λ  is the dimensionless constant, µβ  and νβ  are four-dimensional 
constant vectors. Since the gravity is very weak, the contribution of the new 
added term µ ν

µ νλβ β ∂ ∂  should be very small, there is 
2mλ  ,                           (49) 

( )2 21L 2
2

mµ µ ν
µ µ νϕ ϕ ϕ λϕβ β ϕ= ∂ ∂ − − ∂ ∂ ,             (50) 

the Lagrangean density (47) should be modified as 

2L m µ ν
µ νϕ λβ β ϕ

ϕ
∂

= − − ∂ ∂
∂

,                   (51) 

then 

( )
L µ

µ µ
µ

φ φ
φ

∂
∂ = ∂ ∂ =

∂ ∂
 ,                    (52) 

substituting Equations (51) and (52) into Lagrangean equation 

L L 0µ
µϕ ϕ

∂ ∂
− ∂ =

∂ ∂∂
.                      (53) 

We can obtain the Equation (48). At U(1) gauge transformations (10) and 
(11), the Equation (50) should be introduced the electromagnetism and gravity 
gauge fields (18) and (19), and the gravity gauge transformation (37). 

3. The Equation of Gravity Field in Minkowski Spacetime 

In Section 2, we introduce gravity field and gravity gauge transformation. In the 
following, we should give the equation of gravity field, which is spin s = 2 mass-
less field. The spin s = 2 massless field µνφ  generated by the energy momentum 
tensor T µν  from a object, particle or a group of particles, they are symmetrical 
tensors 

µν νµφ φ= ,                           (54) 

T Tµν νµ= ,                           (55) 

We construct the following independent tensors for the spin s = 2 massless 
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gravity field µνφ , they are 

, , , , ,g g g gµν µ νλ ν µλ µ ν ρσ µν ρσ µν ρσ
λ λ ρσ ρσ ρ σϕ φ ϕ φ ϕ φ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  ,       (56) 

the general tensor of gravity should be their linear combination, and satisfy equ-
ation 

( )1 2 3 4a a a g a g kTµν µ νλ ν µλ µ ν µν µν ρσ µν
λ λ ρ σϕ ϕ ϕ ϕ ϕ ϕ+ ∂ ∂ + ∂ ∂ + ∂ ∂ + + ∂ ∂ =  , (57) 

where k is the gravitational constant, and g ρσ
ρσφ φ= . By derivative µ∂ , we 

have 

( )1 1 2

3 4 ,

a a a

a g a g k T

µν νλ ν µν ν
µ λ λ µ

µν µν ρσ µν
µ µ ρ σ µ

ϕ ϕ ϕ ϕ

ϕ ϕ

∂ + ∂ + ∂ ∂ ∂ + ∂

+ ∂ + ∂ ∂ ∂ = ∂

  



               (58) 

i.e., 

( ) ( ) ( )1 1 4 2 31 a a a a a k Tµν ν ρσ ν µν
µ ρ σ µϕ ϕ ϕ∂ + + + ∂ ∂ ∂ + + ∂ = ∂  ,        (59) 

the source tensor T µν  is conservative, it is 

0T µν
µ∂ = ,                           (60) 

by Equation (59) and (60), we get 

1 4 2 31, 1,a a a a= − = = − ,                    (61) 

and Equation (57) becomes 

( ) 2 2a a g g kTµν µ νλ ν µλ µ ν µν µν ρσ µν
λ λ ρ σϕ ϕ ϕ ϕ ϕ ϕ− ∂ ∂ + ∂ ∂ + ∂ ∂ − + ∂ ∂ =  , (62) 

take 2 1a = , we obtain 

( ) g g kTµν µ νλ ν µλ µ ν µν µν ρσ µν
λ λ ρ σϕ ϕ ϕ ϕ ϕ ϕ− ∂ ∂ + ∂ ∂ + ∂ ∂ − + ∂ ∂ =  ,   (63) 

if we choose the following gauge condition 

1 0
2

gµν µν
µ φ φ ∂ − = 
 

,                    (64) 

i.e., 
1 1
2 2

gµν µν ν
µ µφ φ φ∂ = ∂ = ∂ ,                  (65) 

then 

1
2

µ νλ µ νλ µ ν
λ λφ φ φ∂ ∂ = ∂ ∂ = ∂ ∂ ,               (66) 

1
2

ν µλ ν µλ ν µ
λ λφ φ φ∂ ∂ = ∂ ∂ = ∂ ∂ ,               (67) 

2 2µ ν µ µν µν µ ν
µϕ ϕ ϕ ϕ∂ ∂ = ∂ ∂ = = ∂ ∂ ,              (68) 

( ) 1 1
2 2

g g g gµν ρσ µν ρσ µν ρ µν
ρ σ ρ σ ρϕ ϕ ϕ ϕ∂ ∂ = ∂ ∂ = ∂ ∂ =  ,        (69) 

substituting Equations (66)-(69) into Equations (63), it becomes 

1
2

g kTµν µν µνϕ ϕ − = 
 
 ,                    (70) 
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defining the new tensor µνΦ  as the gravity field tensor, it is 

1
2

gµν µν µνφ φΦ = − ,                      (71) 

the Equation (64) and (70) become 

kTµν µνΦ = ,                          (72) 

and 

0µν
µ∂ Φ = ,                           (73) 

the Equation (72) is the gravity field equation including source, and the gauge 
condition is (73). In the absence of sources, the free gravity field and the gauge 
condition become 

0µνΦ = ,                           (74) 

and 

0µν
µ∂ Φ = ,                           (75) 

the Lagrangean density of Equation (72) is 

L µν µ
µ µν= ∂ Φ ⋅∂ Φ ,                        (76) 

then 

L µ
µνµν

µ

∂
= ∂ Φ

∂∂ Φ
,                       (77) 

0L

µ µν

∂
=

∂ Φ
,                           (78) 

substituting Equations (77) and (78) into the Lagrangean equation 

0L L
µ µν

µ µν µ

∂ ∂
− ∂ =

∂ Φ ∂∂ Φ
,                     (79) 

we can obtain the free gravity field equation 

0µνΦ = ,                         (80) 

the Equation (80) has the plane wave solution, which is the gravitational wave, it 
is 

( ) ( )
0, i tt e eωµν µν⋅ −Φ = Φ k rr ,                    (81) 

where 0Φ  is the amplitude, ( )ωk  is the wave vector (frequency), and eµν  is 
the second order polarization tensor. The general solution of Equation (80) is 

( ) ( )
0

,
, i t

i
i

t e eωµν µν

µ ν

⋅ −Φ = Φ∑∑ k rr ,                  (82) 

In the Newton gravity, the Newtonian potential ϕ satisfies Poisson equation 
2

04πGϕ ρ∇ = ,                           (83) 

where G is the gravity constant, and 0ρ  is mass density, there is,  
00

0 2

T
c

ρ = ,                           (84) 
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the Equation (83) can be written as 

2 00
2

4πG T
c

ϕ∇ = ,                           (85) 

When 0µ ρ= = , and a object or particle is at rest, the Equation (72) becomes 
2 00 00kT∇ Φ = ,                           (86) 

comparing Equation (85) with (86), we have 
00 ϕΦ = ,                           (87) 

2

4πGk
c

= ,                           (88) 

then the gravity field Equation (72) becomes 

2

4πG T
c

µν µνΦ = ,                        (89) 

with the gauge condition (75), there is 

0µν µν
µ µ∂ Φ = ∂ Φ =  ,                        (90) 

For the closed system, the energy momentum tensor of the whole system sa-
tisfies the conservation law, it is 

0T T
x

µν µν
µµ

∂
= ∂ =

∂
,                       (91) 

The gravity field Equation (89) satisfies the condition of energy momentum 
conservation. 

For a object or particle, its mass m, mass density ρ , velocity uµ , energy 
momentum tensor T u uµν µ νρ= , and its gravity field equation is 

2

4πG u u
c

µν µ νρΦ = ,                       (92) 

when the object or particle is at rest, the velocity component ( )0 1,2,3iu i= = , 
the Equation (89) becomes 

2 00 00
02

4π 4πG T G
c

ρ∇ Φ = = ,                   (93) 

and 
2 0 2 0 2 0i i ij∇ Φ =∇ Φ =∇ Φ = ,                   (94) 

where 0ρ  is the rest mass density of object or particle, the solutions of Equa-
tions (93) and (94) are 

00 0mG
r

Φ = − ,                           (95) 

0 0
1

i i cΦ = Φ = ,                           (96) 

2
ij cΦ = ,                              (97) 

where 1c  and 2c  are the constants, and 00Φ  is the Newtonian gravitational 
potential. In the nonrelativistic limit, the gravity field Equation (89) becomes the 
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Newtonian gravity equation. 
For the spin Dirac field, the total Lagrangean density is  

L i D m D
m

µ µ ν µν µ
µ µν µ µν

ε
ψ γ γ γ ψ = − − + ∂ Φ ⋅∂ Φ 
 

,        (98) 

For the spin s = 0, K-G field, the total Lagrangean density is,  

( )2 21 2
2

L D D m Dµ µ ν µν µ
µ µν µ µνϕ ϕ ϕ λϕβ β ϕ= − − + ∂ Φ ⋅∂ Φ ,     (99) 

The Equations (98) and (99) can be described electroweak interaction, strong 
interaction and gravity interaction for spin s = 1/2 and s = 0 particle and field.  

The free gravity field Equation (80) is a tensor equation, which is Lorentz co-
variant. In the following, we shall prove the Lagrangean density (76) is ( )1U  
gauge invariant.  

At the transformation (37), the gravity field gauge transformation is,  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1
2

1

1 1
2

g

x x x i x x
g

g g x x x i x x
g

µν µν µν

µν ν µ µ ν µ ν µ ν

ρσ σ ρ ρ σ ρ σ ρ σ
µν ρσ

ϕ ϕ

ϕ γ γ γ γ γ

ϕ γ γ γ γ γ

′ ′ ′Φ = −

= + ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂

 
− + ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ 

 

 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

1 1 2
2

1

1 1 2 ,
2

x x x i x x
g

g x x i x x
g

x x x i x x
g

g x x i x x
g

µν ν µ µ ν µ ν µ ν

µ µ
µν µ µ

µν ν µ µ ν µ ν µ ν

µ µ
µν µ µ

ϕ γ γ γ γ γ

ϕ γ γ γ γ

γ γ γ γ γ

γ γ γ γ

= + ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂

 
− + ∂ ∂ + − ∂ ∂ 

 

= Φ + ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂

− ∂ ∂ + − ∂ ∂





  

(100) 
then 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

1 1 1
2 2
,

x x x i x x
g

x x i x x
g

F G

µ µ
µ µν µν ν µ µ ν µ ν µ ν

µ µ
ν µ µ

µ µ
µν µν ν

γ γ γ γ γ

γ γ γ γ

′∂ Φ = ∂ Φ − ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂

 − ∂ ∂ ∂ + − ∂ ∂ 
 

= ∂ Φ + ∂ + ∂



(101) 

where g ρσ
ρσφ φ′ ′= , and 

( ) ( ) ( ) ( ) ( )( )1F x x x i x x
gµν ν µ µ ν µ ν µ νγ γ γ γ γ= − ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ , (102) 

( ) ( ) ( ) ( )1 1 1
2 2

G x x i x x
g

µ µ
µ µγ γ γ γ = − ∂ ∂ + − ∂ ∂ 

 
 ,       (103) 

similarly, we have 

https://doi.org/10.4236/jhepgc.2018.43034


X. Y. Wu et al. 
 

 

DOI: 10.4236/jhepgc.2018.43034 578 Journal of High Energy Physics, Gravitation and Cosmology 

 

F Gµν µν µν ν
µ µ µ′∂ Φ = ∂ Φ + ∂ + ∂ ,             (104) 

the gauge transformation of Lagrangean density is 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,

L

F G F G

F G

F F F F G

G G F G G

µν µ
µ µν

µν µν ν µ µ
µ µ µν µν ν

µν µ µν µ µν
µ µν µ µν µ ν

µν µ µν µ µν
µ µν µ µν µ ν

ν µ ν µ ν
µν µν ν

′ ′ ′= ∂ Φ ⋅∂ Φ

= ∂ Φ + ∂ + ∂ ⋅ ∂ Φ + ∂ + ∂

= ∂ Φ ⋅ ∂ Φ + ∂ Φ ⋅ ∂ + ∂ Φ ⋅∂

+ ∂ ⋅ ∂ Φ + ∂ ⋅ ∂ + ∂ ⋅∂

+ ∂ ⋅ ∂ Φ + ∂ ⋅ ∂ + ∂ ⋅∂

     (105) 

and the variation of action is 

( )
( ) ( )( ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) )
( )

4 4

4

4 4

d d

d

d d .

S L x x

F G

F F F F G

G G F G G x

x L x S

µν µ
µ µν

µν µ µν µ µν
µ µν µ µν µ ν

µν µ µν µ µν
µ µν µ µν µ ν

ν µ ν µ ν
µν µν ν

µν µ
µ µν

δ δ δ

δ

δ δ δ

′ ′ ′ ′= = ∂ Φ ⋅∂ Φ

= ∂ Φ ⋅ ∂ Φ + ∂ Φ ⋅ ∂ + ∂ Φ ⋅∂

+ ∂ ⋅ ∂ Φ + ∂ ⋅ ∂ + ∂ ⋅∂

+ ∂ ⋅ ∂ Φ + ∂ ⋅ ∂ + ∂ ⋅∂

= ∂ Φ ⋅∂ Φ = =

∫ ∫
∫

∫ ∫

(106) 

In Equation (106), the variation is to field µνΦ , and the Lagrangean density 
is equivalent when it adds a term of four-dimension divergence. Since the varia-
tion of action is equivalent before and after the ( )1U  gauge transformation, 
the Lagrangean density of gravity field (76) is ( )1U  gauge invariant. By the 
Lagrangean density of gravity field (76) and the gravity field Equation (89), we 
can quantize the gravitational field with the canonical quantization or path 
integral quantization, which should be studied in the future. 

4. Conclusion 

In this paper, we have proposed the gauge theory of gravity. In Dirac equation 
and K-G equation, they have introduced the vector gauge field, such as electro-
weak and strong interaction gauge field, which are vector gauge fields, and have 
not introduced the gravity gauge field. In order to introduce the gravity gauge 
field, we should add a term of partial derivative µ ν∂ ∂  in Dirac equation and 
K-G equation. At the ( )1U  gauge transformation, the gravity gauge field 
should be introduced naturally. Otherwise, we give the equation of gravity ten-
sor field at the flat Minkowski spacetime, and further prove the gravity field eq-
uation is the Lorentz covariant and gauge invariant. The gravity theory can be 
quantized and can be unified with the electroweak and strong interaction at a 
new gauge group ( ) ( ) ( )1 2 3U SU SU⊗ ⊗ , which should be studied in the fu-
ture. 
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