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Abstract 
Since the first demonstrations of nuclear magnetic resonance (NMR) in con-
densed matter in 1946, the field of NMR has yielded a continuous flow of 
conceptual advances and methodological innovations that continues today. 
Much progress has been made in the utilization of solid-state NMR to illumi-
nate molecular structure and dynamics in systems not controllable by any 
other way. NMR deals with time-dependent perturbations of nuclear spin 
systems and solving the time-dependent Schrodinger equation is a central 
problem in quantum physics in general and solid-state NMR in particular. 
This theoretical perspective outlines the methods used to treat theoretical 
problems in solid-state NMR as well as the recent theoretical development of 
spin dynamics in NMR and physics. The purpose of this review is to unravel 
the versatility of theories in solid-state NMR and to present the recent theo-
retical developments of spin dynamics. 
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1. Introduction 

As front-line theories to control spin dynamics in solid-state nuclear magnetic 
resonance, the average Hamiltonian theory (AHT) and Floquet theory (FLT) 
have assumed great prominence and influence since the development of multiple 
pulse sequences and the inception of magic-angle spinning (MAS) methods in 
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the 1960s [1] [2] [3] [4] [5]. The first endeavor in NMR to tackle with 
time-dependent Hamiltonians was built on the Magnus expansion that generat-
ed in AHT [6]-[12]. The AHT formalism describes how periodic pulse sequences 
can be used to control or transform the symmetry of selected interactions in 
coupled, many-spin systems, enabling the creation of effective Hamiltonians 
with fascinating and useful properties. From its natural formulation, this is the 
most widely used approach which has been applied to almost every kind of situ-
ation, sometimes abusively [13] [14] [15] [16] [17]. 

Floquet theory dissimilar to AHT, is not restricted to stroboscopic observa-
tion, yield a more universal approach for the description of the full time depen-
dence of the response of a periodically time-dependent system [18] [19] [20] 
[21] [22] [23]. Methods developed over the past decade have enabled us to make 
a significant progress in the area of solid-state NMR by introducing an alterna-
tive expansion scheme called Floquet-Magnus expansion (FME) used to solve 
the time-dependent Schrodinger equation which is a central problem in quan-
tum physics in general and solid-state NMR in particular [9] [11] [24]. The FME 
establish the connection between the ME and the Floquet theory, and provides a 
new version of the ME well suited for the Floquet theory for linear ordinary dif-
ferential equations with periodic coefficients [9] [11] [24] [25] [26] [27]. We 
have proved that the ME is a particular case of the FME which yields new aspects 
not present in ME and Floquet theory such as recursive expansion scheme in 
Hilbert space that can facilitate the implementation of new or improvement of 
existing pulse sequences [24] [28]. In the same vein, Madhu and Kurur have re-
cently introduced the Fer expansion (FE) in Solid-State NMR [29] [30]. The Fer 
expansion was formulated by Fer and later revised by Fer [29], Klarsfeld and 
Oteo [31], Casas et al. [32], and Blanes et al. [33]. This expansion employs the 
form of a product of sub-propagators, which appears to be suitable for examina-
tion of time-dependence of the density matrix for each average Hamiltonian at 
different orders. Some papers which outline the comparison of both theories 
(FME and FE) in NMR and physics were recently published in the solid-state 
NMR, chemical physics, and physics [34] [35]. 

2. In the Beginning 

Historical overview of the first observations of NMR: Normally, credit for NMR 
first observation should go to Rabi and co-workers in 1939 who used a beam of 
silver atoms [36]. The noticeable change in the fluxes of beams representing the 
different energy states of the nuclear magnetic moments was the detection of 
transitions. However, the term NMR has come to be used as a convention for 
experiments, which differ from those of Rabi. The experiments set by the con-
vention in respect of NMR are those through the detection of the transitions 
with the energy absorbed from the RF field rather than through changes in the 
particle flux reaching a detector as in the beam experiments. Next, the term 
NMR is commonly reserved for phenomena occurring in bulk matter rather 
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than in a beam of essentially non-interacting atoms. As a result of these two im-
portant conventions, the first observations of NMR are attributed to two inde-
pendent groups: Purcell, Torrey and Pound, working on the east coast of Amer-
ica and Bloch, Hansen and Packard working on the west coast. They published 
their discoveries almost simultaneously in the same volume of Physical Review 
in 1946 [37] [38] [39]. The following is the list of Nobel Price laureates awarded 
in NMR: 
• Otto Stern, USA: Nobel Prize in Physics 1943, “for his contribution to the 

development of molecular ray method and his discovery of the magnetic 
moment of the proton”. 

• Isidor I. Rabi, USA: Nobel Prize in Physics 1944, “for his resonance method 
for recording the magnetic properties of atomic nuclei”. 

• Felix Bloch, USA and Edward M. Purcell, USA: Nobel Prize in Physics 1952, 
“for their discovery of new methods for nuclear magnetic precision 
measurements and discoveries in connection therewith”. 

• Richard R. Ernst, Switzerland: Nobel Prize in Chemistry 1991, “for his 
contributions to the development of the methodology of high resolution 
nuclear magnetic resonance (NMR) spectroscopy”. 

• Kurt Wüthrich, Switzerland: Nobel Prize in Chemistry 2002, “for his 
development of nuclear magnetic resonance spectroscopy for determining 
the three-dimensional structure of biological macromolecules in solution”. 

• Paul C. Lauterbur, USA and Peter Mansfield, United Kingdom: Nobel Prize 
in Physiology or Medicine 2003, “for their discoveries concerning magnetic 
resonance imaging”. 

An important landmark to describe the effect of time-dependent interactions 
and the accompanying improvements was the introduction of average Hamilto-
nian theory in solid-state NMR. Since its formal inception in 1968 by John 
Waugh, the average Hamiltonian theory has become the main tool to study the 
dynamics of spin systems subject to an RF perturbation and the most popular 
theoretical method in NMR. Its popularity stems from its excellently simple 
conceptual structure and computational elegance. AHT is a mathematical for-
malism that allows us to analyze how pulse sequences affect internal spin inte-
ractions. The rise of AHT in solid-state NMR began with the time-reversal expe-
riments in dipolar-coupled spin systems [40]. Rhim and co-workers applieda 
suitable sequence of strong rf fields to a system of dipolar-coupled nuclear spins 
which was made to behave as though the sign of the dipolar Hamiltonian had 
been reversed. The system then appears to develop backward in time, and states 
of non-equilibrium magnetization can be recovered in systems which would su-
perficially appear to have decayed to equilibrium. This behavior is consistent 
with dynamical and the rmodynamical principles, but shows that the spin-tem- 
perature hypothesis must be employed with caution [41] [42] [43]. The AHT is 
the most commonly used method to treat theoretical problems in solid-state 
NMR and have been used sometimes casually [17] [44]. As shown in Figure 1, 
the AHT method explains the average motion of the spin system, the effects of 
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multiple-pulse sequences, and the effects of a time-dependent perturbation ap-
plied to the system. 

The basic understanding of AHT involves considering a time dependent Ha-
miltonian ( )H t  governing the spin system evolution, and describing the effec-
tive evolution by an average Hamiltonian H  within a periodic time ( )T . This 
is satisfied only if ( )H t  is periodic ( )T  and the observation is stroboscopic 
and synchronized with period ( )T . Two major expansions (Baker-Cambell- 
Hausdorff and Magnus) and an exact computation including the diagonalization 
of the time evolution operator defined the average Hamiltonian. This technique 
has been widely used in the NMR literature in the development of multiple pulse 
sequences and in the context of both decoupling and recoupling experiments. 
AHT is especially convenient in the derivation and analysis of pulse sequences 
that incorporate a block of rf irradiation that is repeated many times. The AHT 
set the stage for stroboscopic manipulations of spins and spin interactions by ra-
dio-frequency pulses and also explains how periodic pulses can be used to 
transform the symmetry of selected interactions in coupled, many-spin systems 
considering the average or effective Hamiltonian of the RF pulse train [21]. To-
day, AHT finds itself under increasing pressure of complicated experiments and 
to adapt to ever more challenging problems. If we are not mindful, under these 
pressures may submerge the introduction of Floquet theory [18] [20], Flo-
quet-Magnus expansion [24], and Fer expansion in solid-state NMR [30]. 

3. The Birth of Floquet Theory and Its Introduction to  
Solid-State NMR 

In 1883, M. Gaston Floquet proved a remarkable theorem that asserts the exis-
tence of a periodic unitary transformation that maps a system of normal diffe-
rential equations with periodic coefficients into a system of differential equations 
with constant coefficients [2]. A well-known example of such a procedure is the 
passage to a rotating reference frame (RRF) in the study of a system with di-
pole-dipole interactions in a constant magnetic field and in a circularly polarized 
magnetic field. The Floquet theorem allows writing the solution of the Liouville 
evolution equation. Unfortunately, besides for the example with a RRF, the 

 

 
Figure 1. Basic Picture of average Hamiltonian theory. 
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Floquet Hamiltonian for multi-spin systems cannot be calculated exactly, and 
approximate methods such as AHT should therefore be used [12]. The Floquet 
formalism approach for solving the Schrödinger equation with a Hamiltonian 
representing periodically time-dependent interactions was introduced to spec-
troscopy by Shirley in 1965 [3]. Shirley replaced the Hilbert space finite-di-   
mensional time-dependent Hamiltonian by an infinite-dimensional time-inde- 
pendent Floquet Hamiltonian HF and showed how it can be used to obtain an 
exact solution to the LvN equation [19] [21] [22] [23] [24] [25]. Such an ap-
proach is often convenient, in particular, for describing solid-state NMR expe-
riments, where the Hamiltonian becomes time dependent due to external mani-
pulations such as MAS and/or periodic RF pulse trains. Shirley’s Floquet formal-
ism is also used in atomic and molecular spectroscopy methods [25]. The effec-
tive Hamiltonian derived using Floquet theory can be obtained in various ways. 
The most accurate way is to exactly diagonalise the Floquet Hamiltonian and 
transfer its diagonal form to the Hilbert space, taking into account the diagona-
lisation matrix. However, full diagonalisation can become very cumbersome and 
is rarely required. In most cases perturbation theory on HF can be applied, as 
done by Vega [20] [21]. Block diagonalisation methods, such as the van Vleck 
transformation, are extremely powerful in this case [17]. The resulting operator 
form of the effective Hamiltonian can then be used to design and evaluate the 
performance of NMR experiments. Solid-state NMR experiments are subjected 
to various time dependent perturbations of different frequencies, such as RF 
pulse schemes and MAS. We classify Hamiltonians into single mode, bimodal, 
and multimode depending on the number of distinct frequencies of perturba-
tions to which the spin system is subjected [21]. Shirley’s solution to the 
Schrödinger equation is also valid when the Hamiltonian is modulated by more 
than one periodic process [3]. Thus, Floquet theory provides a general descrip-
tion of many NMR experiments without placing any assumptions on the time 
scales of the perturbations. 

4. The Birth of Floquet-Magnus Expansion and Its  
Introduction to Solid-State NMR 

The Floquet-Magnus expansion was developed nearly a decade and half ago by 
Casas, Oteo, and Ros [11]. This approach is a new version of Magnus expansion 
well suited for Floquet theory of linear ordinary differential equations with pe-
riodic coefficients. Recently, the FME has been employed frequently for the 
treatment of quantum Floquet systems which open new possibilities to control 
quantum systems under periodic driving such as in quantum transport and 
quantum topological phases. The FME is a useful tool to treat a periodically dri-
ven system when the period T of the driving is very small. This approach is prac-
tically useful for the high-frequency driving, in which the higher-order contribu-
tion is not relevant to dynamics at short time scale. However, in the case of finite 
frequencies, the problem is more complicated since, in general, the FME is not 
convergent series expansion in the thermodynamic limit. More discussions on 
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the physical meaning of the FME can be found in the literature. The connection 
between the Magnus expansion and the Floquet theory was established in the 
FME [24]. The FME approach is an alternative approach recently developed by 
Casas and co-workers to solve time-dependent linear differential equation which 
is a central problem in quantum physics in general and solid-state nuclear mag-
netic resonance (SSNMR) in particular [24]. The authors Casas, Oteo, and Ros 
build up a recursive scheme to obtain the terms in the new expansion and give 
an explicit sufficient condition for its convergence. The method and formulae 
were applied to an illustrative example from nuclear magnetic resonance, quan-
tum mechanics, and physics [11]. When making the connection between the 
time-ordered products and the Magnus expansion, Oteo and Ros mentioned 
that the initial value problem originated from the linear homogeneous ordinary 
differential equation (LHODE) of first order [45]. The LHODE plays a pervasive 
role in many branches of mathematics, physics, and engineering with a wide 
range of different mathematical and physical meanings for the variable involved. 
Theoretical problems in solid-state NMR are widely treated with the average 
Hamiltonian theory and the Floquet theory. A variety of magnetic resonance 
phenomena has been described using both theories (AHT and FLT). These theo-
ries have been successful for designing sophisticated pulse sequences and under-
standing of different experiments. For instance, recently, the AHT has been used 
to develop a set of selection rules based on the symmetry of the internal interac-
tions and Euler angles in order to simplify the design of NMR multiple-pulse 
sequences in the presence of sample rotation. This allows the development of 
recoupling and decoupling sequences as well as many other experiments. The 
selection rules reveal which types of interactions can be recoupled by a sequence 
with a given symmetry. Similarly, the FLT has been used to describe multipho-
ton effects in NMR, electron paramagnetic resonance, and nuclear quadrupole 
resonance. The fusion of AHT and FLT is generalized by the Floquet-Magnus 
expansion [1] [9] [24] [46] [47] [48] [49] [50]. The FME has been recently ap-
plied to various problems in solid-state NMR and Physics [51] [52] [53] [54] 
[55]. 

5. The Birth of Fer Expansion and Its Introduction to  
Solid-State NMR 

The intuitive origins of Fer expansion date in the seminal 1958 Fer paper [29]. 
The FE approach is based on a factorization of the evolution operator as an infi-
nite product of exponentials of Lie operators and thus exactly preserves the 
Poincaré integral invariants. This approach is an alternative expansion method 
to solving time-dependent linear differential equations. As already mentioned 
above, the FE was formulated by Fer and later revisited by Fer, Klarsfeld and 
Oteo, Casas et al., and Blanes et al. [29] [30] [31] [32] [33]. These authors illu-
strated some of the salient features of Fer expansion, and applied the method to 
simple cases such as a driven Harmonic oscillator, two-level system, and a gene-

https://doi.org/10.4236/jmp.2018.98103


E. S. Mananga 
 

 

DOI: 10.4236/jmp.2018.98103 1651 Journal of Modern Physics 
 

ralized simple harmonic oscillator. The FE approach was introduced recently to 
the NMR community by Madhu and Kurur via the effect of Bloch-Siegert shift 
and heteronuclear dipolar decoupling [30]. Unlike in Magnus expansion where 
an evaluation of nested commutators and their integrals are required to obtain 
the correction terms of a Hamiltonian, in Fer expansion only an evaluation of 
nested commutators is required [30]. As discussed in the next section, the con-
vergence of Fer expansion is much faster than that of Magnus expansion, which 
lead to the calculation of the infinite number of commutators to be simple in 
most expereiments [30]. Indeed, from the point of view of physical applications, 
the Magnus expansion has been extensively used in a variety of issues, while the 
Fer expansion has been either ignored or misquoted until recently [35]. Both 
approaches are by no means equivalent, since, in general, the exponential oper-
ators do not commute with each other [25] [35]. The FE approach is still in its 
infancy in solid-state NMR and can be considered to be complimentary to the 
Magnus expansion (AHT) [34]. While the efficiency of Fer expansion seems ob-
vious, more work is still required to allow the scheme to overcome difficulties 
such as cases involving non-periodic and non-cyclic cases [30]. 

6. Convergence 

Setting an infinite sequence ∙∙∙( 1 2 3, , ,u u u  ), the thn  partial sum nσ  is the sum 
of the first n terms of the sequence, 

1

n

n l
l

uσ
=

= ∑                                (1) 

A series is convergent if the sequence of its partial sums { }1 2 3, , ,σ σ σ   be-
come closer and closer to a given number when the number of their terms in-
creases. Mathematically speaking, a series converges, if there exists a number p
such that for any arbitrarily small positive number ξ  there is a large integer 
Nsuch that for all n N≥  

n pσ ξ− ≤                           (2) 

If the series is convergent, the unique number p  is called the sum of the se-
ries. The Magnus and some of its equivalent such as Fer expansions have been 
applied to a wide range of problems in time-dependent quantum mechanics. 
Exponential time-dependent perturbation theories such as the Magnus expan-
sion or Fer expansion, have proven useful in the treatment of a variety of prob-
lems in non-relativistic quantum dynamics. Until in the 1980’s, very little was 
known about the convergence of exponential perturbation theory. In the original 
version, Magnus stated its convergence criterion in terms of the eigenvalues of 
the exponent itself. However, several groups have reported that application of 
the Magnus expansion in the Schrodinger representation to some problems of 
spectroscopy interest gave results which were less adequate [56]-[70]. Conver-
gence of the Magnus expansion has also come into question in different applica-
tions. In general, the Magnus series does not converge unless the Hamiltonian is 
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small in a suitable sense. Magnus expansion permits significantly simplifying the 
analysis of the behavior of spin systems in periodic external fields. However, di-
vergence of the Magnus expansion guides to inconsistencies in the spin dynam-
ics of solid-state NMR [8] [56]-[61]. Indeed, the convergence of the Magnus ex-
pansion is generally discussed in terms of a radius of convergence rc. Several re-
sults on the radius of convergence rc in terms of the H amiltonian have been ob-
tained in the literature. Pechukas and Light and Karasev and Mosolova obtained 
a radius rc = log2 = 0.693∙∙∙ [62] [63], whereas Chacon and Fomenko [64] got a 
radius rc= 0.577. Blanes et al. obtained the improved bound radius of rc = 1.086 
[65]. Recently, a new method was developed to enlarge the largest domain of 
convergence of the Magnus expansion (rc = 1.086∙∙∙) previously obtained [66]. 
An analytic estimate of the new domain of convergence found was almost twice 
the preceding one (rc = 2) and this new analytic bound was in agreement with 
the numerical estimate of the convergence radius such as no accuracy was lost in 
the bound [67]. Therefore, there are more than three different convergence es-
timated in the literature of Magnus expansion. These convergence estimates are 
given with their respective proofs in the references therein. The latest improved 
bound rc = π was derived by Moan but in the context of the conventional Mag-
nus expansion for real matrices [68]. This important results was then generalized 
to matrices in the Hilbert space (thus for complex matrices) by Casas [69]. A 
new version of Magnus expansion was reported recently by Butcher et al. [70]. 
The new scheme grows on trees and forests to reorder the terms of Magnus ex-
pansion for more efficient computation. While this scheme did not provide any 
substantial new result to the convergence of the ME, it provides a new mean to 
compute Magnus expansion to the desired order. This ME-type formalism has 
been developed in a more abstract setting of dendriform algebras. This form 
shows that the reordering of the terms in Magnus’ expansion may be 
represented graphically using trees and forests, which may be collected into 
groups according to the order in time for which the solution is valid. 

Recoupling schemes have all been extensively treated with Floquet theory in-
conjunction with the Van Vleck Transformation [17] [21] [23] [71]. The Floquet 
theory approach has also been used successfully to the study of decoupling of 
dipolar interactions. The discussion of the convergence of the Floquet theory 
was presented by Maricq [18]. Maricq first shows the convergence of the effec-
tive Hamiltonian in the mathematical sense. Next he elucidated by example, the 
conditions which must be satisfied in order to truncate the series for P(t) and HF 
after the first few terms. The appropriateness of the FME and FE are well related 
to the problem of convergence. This problem has played a pivotal role in the 
field of solid-state NMR and spin dynamics [8] [12] [25] [35]. FME and FE are 
divergent approaches and the physical nature of their divergences is discussed in 
the following paragraphs. The authors Casas, Oteo, and Ros investigated a suffi-
cient condition for the absolute convergence of the FME in ref. [11], Blanes and 
co-workers studied succinctly the convergence of the Fer expansion by looking 
for conditions on the time dependent Hamiltonian [33]. The authors derived a 
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convergent radius of the Fer expansion to be 0.8604065 and point out that, addi-
tional properties of the time dependent Hamiltonian allow an improvement of 
the result to extend the range of the radius originally given by Fer who used a 
slightly different argument [29]. In a similar vein, Zanna showed that a similar 
result holds for the symmetric Fer expansion by proving that the symmetric Fer 
expansion converges uniformly in the periodic interval [72]. 

This calculated radius, 0.60275ξ = , of the convergence of the symmetric Fer 
expansion by Zanna is smaller than the calculated radius for the classical Fer ex-
pansion [72], 0.8604065ξ = , by Blanes [33]. However, the bounds initiated by 
Zanna are not optimal and could be improved [72]. An important point of the 
FME approach is that the rate of convergence of the FME is faster than the Fer 
expansion in the sense that, for a prescribed precision, one needs more kF s′  
(for Fer expansion) than k s′Λ  (for Floquet-Magnus expansion) even if from 
the computational point of view, the Fer expansion could require more work 
than the FME. The convergence of these approaches is extensively discussed in 
the literature [8] [11] [18] [24] [25] [35] [58] [59] [60] [65] [72]. 

7. Applications of FME and FE in Physics 

Using the FME and FE approaches, many problems can be attacked in other 
fields of physics beyond the scope of NMR. It is important to remember that 
these considered methods have recently found new major areas of applications 
such as topological materials [73]. However, researchers dealing with these new 
applications are not usually acquainted with the achievements of the magnetic 
resonance theory, where those methods were developed more than thirty years 
ago [74] [75]. Researchers repeat the same mistakes that were made when the 
methods of spin dynamics and thermodynamics were developed in the past. 
Even though the FME is a divergent approach in general, its finite truncation 
can give useful information such as on the transient dynamics in periodically 
driven many-body quantum systems [73] [74]. Currently, the use of FME to ob-
tain the effective Hamiltonians for periodically driven systems is a hot topic in 
the investigation of dynamics of classical and quantum systems. Recently, Ku-
wahara and co-workers showed that the finite truncation of the FME can give 
useful information on the transient dynamics [85]. The authors gave a rigorous 
relationship between the FME and general properties of transient quantum dy-
namics. New avenues of exploring FME and FE can also be extended to other 
areas of physics such as particles and high energy physics [25] [35]. These two 
approaches (FME and FE) can be used to solve problems in quantum field 
theory (QFT) and high energy physics, in particular problems similar to the one 
solved or fail to be solved by ME. For instance, 

1) the ME has been used as an alternative to conventional perturbation theory 
for quantum fields to graph rules for functions of the time-evolution operator 
where normal products and Wick theorem were used. This was useful in the 
treatment of infrared divergences for some quantum electrodynamics process 
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such as the scattering of an electron on an external potential or the bremsstrah-
lung of one hard photon [76] [77]. I believe that effective method of approaching 
this problem demands more inspection where FME and FE can play a major 
role; 

2) an extension of the ME has been applied to the context of Con-
nes-Kreimer’s Hopf algebra approach to perturbative renormalization of quan-
tum field theory showing that the generalized MEallows to solve the Bogoli-
ubov-Atkinson recursion [78] [79] [80]. The FME and FE can also be applied in 
this context; 

3) in the field of high energy physics, ME has also found applications such as 
to heavy ion collisions. ME is applied in collision problems when the use of uni-
tary approximation scheme is necessary such as the unitary of the time evolution 
operator imposing some bound on the experimentally observable cross sections 
[80] [81]. FME and FE can also be used in this context as an intuitive method for 
simplifying calculations; 

4) the problem in neutron oscillations which is closely related to solar neutri-
no problem. As neutrinos with different masses propagate with different veloci-
ties, the mixing allows for flavor conversion corresponding to neutrinos oscilla-
tions [82] [83] [84]. Fer’s factorization as a symplectic integrator can, in prin-
ciple, enter in the solution of the evolution operator in one basis. 

The introduction of FME and FE as theoretical approaches to control the spin 
dynamics in the field of nuclear magnetic resonance are new exploratory and 
developmental researches which is a significant addition to the existing theoret-
ical framework of AHT and FT. QFT is the basic mathematical language used to 
describe and analyze the physics of elementary particles. The theory by itself is 
an abstract representation for constructing quantum mechanics models of sub-
atomic particles in particle physics and quasiparticles in condensed matter phys-
ics. The application of the FME and FE approaches as intuitive approaches in 
simplifying calculations to solve some specifics problems in the field of high 
energy physics and QFT such as those outlined in the above paragraph is of ma-
jor interest. It is worth noting that, the FME has the advantage of having the un-
itary character of the evolution operator which is preserved at all orders of ap-
proximation while the FE has an advantage over the ME that only an evaluation 
of nested commutators is required in the calculation of the Hamiltonian [25] 
[35]. 

8. Conclusion 

To summarize, our descriptions for all four theories suggest that the Fer expan-
sion is advantageous over the other three theories (AHT, FLT, and FME) in cal-
culation of higher-order corrections. As explained above, while the AHT and 
FLT are common in solid-state NMR, both the FME and Fer expansion are rela-
tively newcomer although the mathematical formalism has been known for sev-
eral decades [85]. One of the most salient features of the Fer expansion is that 
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the first fifth-order average Hamitonians are sufficient to control an NMR expe-
riment, and they are included in the first correction of the Fer expansion [86]. 
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