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Abstract 
An anisotropic continuum stored energy (CSE), which is essentially composed 
of invariant component groups (ICGs), is postulated to be balanced with its 
stress work done, constructing a partial differential equation (PDE). The ani-
sotropic CSE PDE is generally solved by the Lie group and the ICGs through 
curvatures of elasticity tensor are particularly grouped by differential geome-
try, representing three general deformations: preferred translational deforma-
tions, preferred rotational deformations, and preferred powers of ellipsoidal 
deformations. The anisotropic CSE constitutive models have been curve-fitted 
for uniaxial tension tests of rabbit abdominal skins and porcine liver tissues, 
and biaxial tension and triaxial shear tests of human ventricular myocardial 
tissues. With the newly defined second invariant component, the anisotropic 
CSE constitutive models capture the transverse effects in uniaxial tension de-
formations and the shear coupling effects in triaxial shear deformations. 
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1. Introduction 

Soft biological tissues (SBTs) are recognized as anisotropic hyperelastic materials 
since they are naturally made of fiber reinforcements and a fluid-like matrix for 
supporting reversible finite deformations. Rubber-like materials are often treated 
as isotropic hyperelastic materials. The normalized nominal stress-stretch curves 
in uniaxial tension for SBTs in a fiber direction and rubber-like materials are 
shown in Figure 1. In uniaxial tension tests of SBTs, less stiffening at initial  
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Figure 1. Normalized stress-stretch curves of soft tissue and rubber in uniaxial tension 
tests. 

 
stretches and more stiffening at final stretches have been observed, and the 
stress-stretch curve behaves more linearly at both initial and final stretches, 
making SBTs far more efficient as compared to rubber-like materials. Anisotropic 
constitutive modeling for finite deformations of SBTs requires experimental 
characterizations combined with theoretical predictions. As a common practice, 
theoretical models are fitted with experimental data tested in certain deformation 
modes and the fitted models predict deformations in untested modes. Thus, the 
theoretical development of constitutive models, the optimal design of experi- 
mental tests, and their numerical implementations into finite element methods 
are crucial in analyses and designs associated with SBTs.  

Kinematics, conservation principles, and constitutive relations are the three 
pillars of continuum mechanics. Fundamental continuum theories for modeling 
SBTs as anisotropic hyperelastic materials were presented in the monographs by 
Fung (1993) [1], Holzapfel (2000) [2], and Cowin (2013) [3]. In constitutive 
relations, the second Piola-Kirchhoff stress tensor is generally related to the right 
Cauchy-Green tensor through a stored energy density functional or simply a 
stored energy functional, which needs to be rigorously determined. Thus, the 
determination of an anisotropic CSE functional is indispensable for constitutive 
modeling of anisotropic hyperelastic materials, including SBTs and fiber rein- 
forced polymers. 

A CSE functional is the key to both anisotropic and isotropic constitutive 
modelings for hyperelastic materials. For anisotropic constitutive modelings, 
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strain invariant approaches dominate the established anisotropic models for 
SBTs since material properties must be invariant from all angles of observation. 
This objectivity ensures frame-indifference. Polynomial, power, exponential, and 
other functions of invariant components have been used to construct ICGs. 
Anisotropic constitutive models for SBTs have been reviewed through different 
perspectives by Humphrey (2003) [4], Gasser, Ogden, and Holzapfel (2006) [5], 
Holzapfel and Ogden (2010) [6], Chagnon, Rebouah, and Favier (2015) [7], and 
Lanir (2017) [8]. 

Finite deformations can be measured through the right Cauchy-Green tensor 
[2]  

T ,=C F F                           (1) 

where F  is the deformation gradient tensor. The three invariants of right 
Cauchy-Green tensor, 1I , 2I , and 3I , are defined by  

1 : tr ,I = =C I C                         (2) 

( ) ( )2 2 1
2 3

1tr adj tr tr tr ,
2

I I − = = − = C C C C
             

(3) 

( )33 2
3

1 3 1det tr tr tr tr ,
3 2 2

I  = = − +  
C C C C C

            
(4) 

where I  is the second-order unit tensor and the matrix operators, “:”, “tr”, 
“adj”, and “det”, denote double contraction, trace, adjugate, and determinant 
operations, respectively. 

The adjugate, cofactor, and determinant of C  are related by the following 
equations  

( ) ( )T 1adj cof det ,−= =C C C C                   (5) 

where the superscript T denotes the transpose operator of a matrix. 
The first-order derivatives of invariants are given by  

131 2
1 3,   ,   .

II I I I −∂∂ ∂
= = − =

∂ ∂ ∂
I I C C

C C C                 
(6) 

The second-order derivatives of invariants are given by  
2

1
2 ,I∂
=

∂C


                          
(7) 

2
2
2 ,I∂
= ⊗ −

∂
I I I I

C
�

                      
(8) 

( )
2

1 1 1 13
32 ,

I I − − − −∂
= ⊗ −

∂
C C C C

C
�

                
(9) 

where   is the fourth-order zero tensor. The derivatives of second-order 
symmetric tensors are defined as  

( ) ( )1 ,
2 ik jl il jkijkl δ δ δ δ

∂
= = = +

∂
C I I I I
C

� �
            

(10) 

in which ikδ , for example, is the Kronecker delta and  
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1
1 1.

−
− −∂

= −
∂
C C C
C

�
                      

(11) 

Anisotropic finite deformations can be modeled through invariant components 
of the right Cauchy-Green tensor and structural tensors. According to Spencer 
(1971, 1984) [9] [10], one invariant component in a preferred direction i, 4,iI , 
can be defined by  

( ) ( )4, 0, 0,: : tr ,   1, 2, ,i i i i iI i n= = ⊗ = = �C A C a a CA        (12) 

where iA  is a structural tensor, 0,ia  is a unit vector along a preferred direction 
i in reference configuration, and n is the total number of different preferred 
directions. The detailed definitions of structural tensors and the related theory of 
invariants have been reviewed by Zheng (1994) [11]. 

Polyconvexity provides an alternative way to define invariant components. 
The polyconvex functions, F , adjF , and det F , describe deformations of 
distance, area, and volume elements since they map the corresponding elements 
from reference configuration to current configuration, respectively. Thus, the 
polyconvex functions play an important role in the definition of polyconvex 
invariant components. The invariant component 4,iI  defined in (12) happens 
to be polyconvex. Following Schröder and Neff (2003) [12], another polyconvex 
invariant component in a preferred direction i, 5,iI , can be defined as  

( ) ( ) ( )1
5, 3cof : tr cof tr ,   1, 2, , .i i i iI I i n−= = = =   �C A C A C A

    
(13) 

The polyconvex invariant components, 4,iI  and 5,iI , along with the invariant 

3I , have been selected as the arguments of an anisotropic stored energy functional 
by Itskov, Ehret, and Mavrilas (2006) [13]  

( ) ( )4, 5, 3, , ,   1, 2, , .a a i iI I I i nΨ = Ψ = �
               

(14) 

Soft tissues can mainly be characterized as transversely isotropic and ortho- 
tropic hyperelastic materials. Transverse isotropy represents a material symmetry 
with respect to only one principal direction and the structural tensors can be 
expressed in the reference configuration as  

( )1 0,1 0,1 2 3 1
1,   ,
2

= ⊗ = = −A a a A A I A
              

(15) 

where the principal material direction is denoted by the subscript 1. Orthotropy 
is characterized by symmetry with respect to three mutually orthogonal planes 
and the structural tensors read  

( )0, 0, ,  1, 2,3 .i i i i= ⊗ =A a a                    (16) 

Many influential discoveries in constitutive modeling of SBTs, including the 
structural tensors by Spencer (1971) [9], the exponential strain energy function 
by Fung (1973) [14], the anisotropic constitutive model by Holzapfel, Gasser, 
and Ogden (2000) [15], the extension of polyconvexity to invariant components 
by Schröder and Neff (2003) [12], and the selection of invariant components by 
Itskov, Ehret, and Mavrilas (2006) [13], have been achieved. Existing stored 
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energy functionals for modeling SBTs are usually assumed to be divided into 
three parts: a purely volumetric part, a purely isochoric part due to isotropic 
deformations, and a purely isochoric part due to anisotropic deformations. 
Anisotropic constitutive models are essentially composed of ICGs. The ICGs of 
existing models, however, are phenomenologically determined and invariant 
components are incompletely defined and inconsistently selected. To overcome 
such shortcomings, a physically relevant and mathematically covariant aniso- 
tropic CSE functional is needed for modeling and predicting finite deformations 
of SBTs. 

The CSE functional, originally developed for modeling isotropic polymers by 
Zhao (2016, 2017) [16] [17], will be generalized to model anisotropic hyperelastic 
materials such as SBTs. The main objectives, therefore, are to rigorously 
formulate the anisotropic CSE functional with the ICGs generally grouped by 
the Lie group and particularly grouped by differential geometry, to newly define 
the second invariant component to capture anisotropic transverse effects and 
shear coupling effects, and to accurately fit anisotropic CSE models with 
experimental data for SBTs. 

2. Anisotropic Constitutive Modeling 
2.1. Anisotropic CSE Functional 

An anisotropic CSE functional can be conceptually expressed as  

( ) ( )1, 2, 3, , ,   1, 2, , ,a a i iI I I i nΨ = Ψ = �
              

(17) 

where the range for subscript i, ( )1,2, ,i n= � , is omitted for the rest of the 
equations for simplification and the number of different preferred directions, n 
= 3, is used for both orthotropic and transversely isotropic materials. The first 
invariant component can be expressed as  

( )1, tr ,i iI = CA                         (18) 

and the second invariant component is newly defined as  

( )2
2, 1 1,

1 tr .
2i i iI I I = − C A

                   
(19) 

For convenient subsequent derivations, one can additionally define  

3, 3.iI I=                           (20) 

The first-order derivatives of invariant components with respect to the right 
Cauchy-Green tensor C  are given below  

1, ,i
i

I∂
=

∂
A

C                          
(21) 

( )2,
1 1,

1 ,
2

i
i i i i

I
I I

∂
= + − −

∂
A I CA AC

C                 
(22) 

3, 1
3 .iI

I −∂
=

∂
C

C                          
(23) 
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The second-order derivatives of invariant components with respect to the 
right Cauchy-Green tensor C  have been obtained as  

2
1,
2 ,iI∂
=

∂C


                         
(24) 

( )
2

2,
2

1 ,
2

i
i i i i

I∂
= ⊗ + ⊗ − −

∂
A I I A A I I A

C
� �

           
(25) 

( )
2

3, 1 1 1 1
32 .iI

I − − − −∂
= ⊗ −

∂
C C C C

C
�

               
(26) 

For the anisotropic CSE functional (17), along with the invariant components 
(18) through (20), the second Piola-Kirchhoff stress tensor for anisotropic 
hyperelastic materials, iS , reads  

3
,

1 ,

2 2 .j ia a
i

j j i

I
I=

∂∂Ψ ∂Ψ
= =

∂ ∂ ∂∑S
C C                   

(27) 

Substituting the first order derivatives (21), (22), and (23) into (27)2 yields  

( ) 1
1 1, 3

1, 2, 3

2 2 ,a a a
i i i i i i

i i

I I I
I I I

−∂Ψ ∂Ψ ∂Ψ
= + + − − +

∂ ∂ ∂
S A A I CA AC C

     
(28) 

and the Kirchhoff stress tensor, iτ , can be converted from the second Piola- 
Kirchhoff stress tensor by the following push-forward operation  

T.i i= FS Fτ                          (29) 

For isothermal processes, the general CSE functional for anisotropic hyper- 
elastic materials at finite deformations, aΨ , is postulated to be balanced with its 
stress work done as  

: : ,
2 2a i iΨ = =
C IS τ

                     
(30) 

Substituting (28) into (30)1 or (29) into (30)2, simplifying, and rearranging 
produces the CSE PDE  

1, 2, 3
1, 2, 3

2 3 .a a a
a i i

i i

I I I
I I I

∂Ψ ∂Ψ ∂Ψ
Ψ = + +

∂ ∂ ∂                
(31) 

With Lie group methods, the characteristic system for the PDE is  

1, 2, 3

1, 2, 3

d d d d
,

2 3
i i a

i i a

I I I
I I I

Ψ
= = =

Ψ                    
(32) 

and taking its three first-integrals, 2
1, 2, 1,i i iI Iψ = , 3

2, 3 1,i iI Iψ = , and  

3, 1,i a iIψ = Ψ , the general solution is obtained and written as  

( ) ( )2 3
1, 1 2, 1, 2 3 1, ,a i i i iI f I I f I I Ψ = +                 

(33) 

where 1f  and 2f  are two arbitrary functions and the general solution defines 
a group of anisotropic CSE functionals. 

The general solution (33) has two arbitrary functions to be determined for 
practical applications. For translational and rotational deformations, the first 
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arbitrary function, 1f , is selected as  

( )2 2
1 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, .i i i i i i i i i if I I c c I I c c I I= + = +

         
(34) 

For different powers of ellipsoidal deformations, the inverse power function is 
required. Thus, the second arbitrary function, 2f , is chosen as  

( ) ( ) 4, 4, 4,
3 33 3

2 3 1, 3, 3 1, 3, 1, 3 .i i i
c c c

i i i i if I I c I I c I I
− −= =

            
(35) 

Substituting (34) and (35) into (33) gives the particular solution of the 
anisotropic CSE functional  

4,

4,

1
1,

1, 1, 2, 2, 3, 3
3

,
i

i

c
i

ap i i i i i c

I
c I c I c

I

+

Ψ = + +
                

(36) 

where the four coefficients for a preferred fiber direction i, 1,ic , 2,ic , 3,ic , and 

4,ic , are unknown constitutive constants to be determined by experimental tests 
of anisotropic hyperelastic materials. 

2.2. Anisotropic Elasticity Tensors 

Elasticity tensors are crucial in studying mathematical properties of the 
constitutive relations. The anisotropic fourth-order elasticity tensor in material 
description is defined as  

2 .i
i

∂
=

∂
S
C


                         

(37) 

Substituting (27)2 into (37) and taking derivatives yields the fourth-order 
anisotropic elasticity tensor in material description  

223 3
, ,,

2
1 1 , , ,

4 .j i j ik ia a
i

j k j i k i j i

I II
I I I= =

 ∂ ∂∂∂ Ψ ∂Ψ
= ⊗ + 

∂ ∂ ∂ ∂ ∂ ∂  
∑ ∑ C C C


          

(38) 

Substituting (21) through (26) into (38) yields  

( )
( ) ( )

( ) ( )
( ) ( )

( )

1, 2,

1 1
3, 4,

5, 6, 7,

1 1 1 1
8, 9,

1 1 1 1
10, 11, 12, ,

i i i i i i i

i i i i i i i i

i i i i i i i

i i i i

i i i i i

− −

− − − −

− − − −

= ∆ ⊗ + ∆ ⊗ + ⊗

+ ∆ ⊗ + ⊗ + ∆ ⊗ + ⊗

+ ∆ ⊗ + ∆ ⊗ + ⊗ + ∆ ⊗

+ ∆ ⊗ + ⊗ + ∆ ⊗ + ⊗

+ ∆ ⊗ + ∆ + + ∆

A A A I I A

A B B A A C C A

I I I B B I B B

I C C I C B B C

C C A I I A C C� � �



     

(39) 

where ( )1
2i i i= +B CA AC  and the twelve parameters are defined as  

2 2 2
2

1, 1 12 2
1, 2,1, 2,

4 4 ,a a a
i

i ii i

I I
I II I

∂ Ψ ∂ Ψ ∂ Ψ
∆ = + +

∂ ∂∂ ∂               
(40) 

 

2 2

2, 1, 1 1, 2
1, 2, 2,2,

2 2 ,a a a
i i i

i i ii

I I I
I I II
∂ Ψ ∂ Ψ ∂Ψ

∆ = + +
∂ ∂ ∂∂              

(41) 

2 2 2 2

3, 1 4, 3 3 12
1, 2, 3 1, 2, 32,

4 2 ,  4 2 ,a a a a
i i

i i i ii

I I I I
I I I I I II
∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ

∆ = − − ∆ = +
∂ ∂ ∂ ∂ ∂ ∂∂    

(42) 
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2 2 2
2

5, 1, 6, 1, 7,2 2 2
2, 2, 2,

,  2 ,  4 ,a a a
i i i i i

i i i

I I
I I I

∂ Ψ ∂ Ψ ∂ Ψ
∆ = ∆ = − ∆ =

∂ ∂ ∂          
(43) 

2 2

8, 3 1, 9, 3
2, 3 2, 3

2 ,  4 ,a a
i i i

i i

I I I
I I I I
∂ Ψ ∂ Ψ

∆ = ∆ = −
∂ ∂ ∂ ∂              

(44) 

2
2

10, 3 3 11, 12, 32
3 2, 33

4 4 ,  2 ,  4 .a a a a
i i i

i

I I I
I I II

∂ Ψ ∂Ψ ∂Ψ ∂Ψ
∆ = + ∆ = − ∆ = −

∂ ∂ ∂∂      
(45) 

The fourth-order anisotropic elasticity tensor in spatial description, similar to 
the isotropic elasticity tensor [18], is defined as  

T T

: : .
2 2i i
⊗ ⊗

=
F F F F

 
                  

(46) 

With 3 1I = , the anisotropic elasticity tensors can be further simplified. 

2.3. CSE Models for Different Deformation Modes 

Commonly used experimental tests are uniaxial tension, biaxial tension, and 
triaxial shear tests. Nominal stress and stretch are usually recorded in experi- 
mental tests. With the CSE functional (36), nominal stress as a function of 
stretch can be established by  

( ) ( )1, 2, 3

1, 2, 3

,  , 1, 2,3 .i ia a a
jk i

i jk i jk jk

I I IP j k
I I Iλ λ λ

∂ ∂∂Ψ ∂Ψ ∂Ψ ∂
= + + =
∂ ∂ ∂ ∂ ∂ ∂        

(47) 

The three derivatives of the CSE functional (36) for incompressible SBTs are 
given below  

( ) 4, 2,
1, 3, 4, 1,

1, 2, 32,

1 ,  ,  0.
2

ic ia a a
i i i i

i i i

c
c c c I

I I II
∂Ψ ∂Ψ ∂Ψ

= + + = =
∂ ∂ ∂

        
(48) 

Substituting (48), 1, 2, 3 1i iI I I= = = , and derivatives of invariant components 
with respect to normal stretches into (47) yields the incompressible stress-free 
(ISF) condition in reference configuration  

( )1, 2, 3, 4,2 0.5 2 1 0.i i i ic c c c+ + + =
                 

(49) 

Thus, the CSE constitutive models in three deformation modes can be derived 
based on the equations (47) through (49). 

2.3.1. Uniaxial Tension Mode 
The deformation of uniaxial tension can be modeled as  

,   1, 2,3,i i ix X iλ= =                      (50) 

where 1 2 3, ,X X X  and 1 2 3, ,x x x  denote the Cartesian coordinates of a typical 
particle in reference and current configurations, respectively. With 3 1I = ,  

the tensors for the uniaxial tension mode in (50) are ( ) 1
1 2 1 2diag , , λ λ λ λ − =  F  

and ( ) 22 2
1 2 1 2diag , , λ λ λ λ − =  C . The first principal invariant is obtained as 

( ) 22 2
1 1 2 1 2I λ λ λ λ −= + + . In the longitudinal uniaxial tension for orthotropic ma- 
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terials, the structural tensor is [ ]1 diag 1,0,0=A . The two invariant components 

are 2
1,1 1I λ=  and ( )2 2 2

2,1 1 2 2
1
2

I λ λ λ−= + . Substituting (48), invariant components, 

and their derivatives into (47) yields the longitudinal nominal stress, 1uoP , in 
uniaxial tension tests for orthotropic materials  

( )
( ) 4,1

2
2 12,1 1 2

1 1,1 1 3,1 4,1 1
2 2 2

1 2 2

2 2 1 ,
2

c
uo

c
P c c c

λ λ
λ λ

λ λ λ

+

−
= + + +

+
        

(51) 

and by the same token for [ ]2 diag 0,1,0=A , the transverse nominal stress is 
written as  

( )
( ) 4,2

2
2 12,2 2 1

2 1,2 2 3,2 4,2 2
2 2 2

1 2 1

2 2 1 .
2

c
uo

c
P c c c

λ λ
λ λ

λ λ λ

+

−
= + + +

+
        

(52) 

For transversely isotropic materials, the structural tensors are defined in (15). 
In longitudinal tension tests with cylindrical specimens, [ ]1 diag 1,0,0=A , the 
tensile stretch is 1λ  with isotropic contraction of 2 3λ λ= . With the equation 
(47), the longitudinal nominal stress is given by  

( ) 4,12 12,1
1 1,1 1 3,1 4,1 1

1

2 2 1 ,
2

c
ut

c
P c c cλ λ

λ
+= + + +

             
(53) 

and in transverse tension tests, [ ]2 diag 0.0,0.5,0.5=A , the tensile stretch is 2λ  
with anisotropic contraction and the shortening of fiber 1λ  is not necessarily 
identical to 3λ . The transverse nominal stress is  

( ) ( )
4,22 4 2 2

2,2 2 3 2 2 3
2 1,2 2 3,2 4,2 22 2 2 2

2 3 2 3

0.5
1 .

22

c

ut

c
P c c c

λ λ λ λ λ
λ λ

λ λ λ λ

−

− −

−  +
= + + +  

+ +       
(54) 

With the ISF condition (49), the CSE models (51), (52), (53), and (54) can be 
further simplified for subsequent curve fittings. 

2.3.2. Biaxial Tension Mode 
The deformation of biaxial tension can be generally modeled by  

1 11 1 12 2 2 21 1 22 2 3 3 3,  ,  ,x X X x X X x Xλ λ λ λ λ= + = + =           (55) 

where 12λ  or 21λ  is the amount of shear. The tensors F  and C  for cases in 
(55) are given by  

11 12

21 22

3

  0
  0 ,

0 0 
F

λ λ
λ λ

λ

 
 =  
 
                       

(56) 

2 2
11 21 11 12 22 21

2 2
11 12 22 21 22 12

2
3

0
0 ,

0 0

λ λ λ λ λ λ
λ λ λ λ λ λ

λ

 + +
 

= + + 
 
 

C

            

(57) 

where 3λ  can be determined by incompressible condition  

( ) 1
3 11 22 12 21 .λ λ λ λ λ −= −                     (58) 
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For orthotropic materials with [ ]1 diag 1,0,0=A , 2 2
1,1 11 21I λ λ= + ,  

( )2 2 2 2
2,1 11 21 3 3

1
2

I λ λ λ λ− = + +  , and related derivatives, the longitudinal and trans- 

verse Cauchy normal stresses due to fiber 1 can be obtained as  

( )
( )

( ) ( )

( ) ( ) 4,1

2 2 1 2 2 3
11 3 11 22 3 11 21 11 22 32

11 1,1 11 2,11 22 2 2
11 21 3 11 22 12 21

2 2 2
3,1 4,1 11 11 21

2
2

2 1 ,
c

c c

c c

λ λ λ λ λ λ λ λ λ λ
σ λ

λ λ λ λ λ λ λ

λ λ λ

−+ − +
= +

 + + − 

+ + +
      

(59) 

( )
( )

( ) ( )

1 2 2 3
11 22 3 11 21 11 22 3

22 2,11 22 2 2
11 21 3 11 22 12 21

,
2

c
λ λ λ λ λ λ λ λ

σ
λ λ λ λ λ λ λ

− − +
=

 + + −           

(60) 

and for orthotropic materials with [ ]2 diag 0,1,0=A , 2 2
1,2 22 12I λ λ= + ,  

( )2 2 2 2
2,2 22 12 3 3

1
2

I λ λ λ λ− = + +  , and related derivatives, similarly, the longitudinal 

and transverse Cauchy normal stresses due to fiber 2 turns out to be  

( )
( ) ( )

1 2 2 3
11 22 3 22 12 11 22 3

11 2,22 22 2 2
22 12 3 11 22 12 21

( )
,

2
c λ λ λ λ λ λ λ λ

σ
λ λ λ λ λ λ λ

− − +
=

 + + −           

(61) 

( )
( ) ( )

( ) ( ) 4,2

2 2 1 2 2 3
2 22 3 11 22 3 22 12 11 22 3

22 1,2 22 2,22 22 2 2
22 12 3 11 22 12 21

2 2 2
3,2 4,2 22 22 12

( )
2

2

2 1 .
c

c c

c c

λ λ λ λ λ λ λ λ λ λ
σ λ

λ λ λ λ λ λ λ

λ λ λ

−+ − +
= +

 + + − 

+ + +
     

(62) 

Combining with longitudinal normal stress components ( )11 1σ  and ( )11 2σ  
in (59) and (61) and summing up transverse normal stress components ( )22 1σ  
and ( )22 2σ  in (60) and (62) yields the general CSE models for biaxial tension 
tests of orthotropic materials  

( ) ( )11 11 111 2 ,boσ σ σ= +                      (63) 

and  

( ) ( )22 22 221 2 .boσ σ σ= +                     (64) 

Without shear deformations, 12 21 0λ λ= = , in-plane normal stretches become 
in-plane principal stretches and normal stresses become principal stresses. 
Ignoring both shear deformations and shear coupling effects produces the 
simplified equations. For the structure tensor [ ]1 diag 1,0,0=A , the simplified 
longitudinal Cauchy principal stress for equibiaxial tension tests is  

( )
( ) 4,1

4
2 22,1 12

1 1,1 1 3,1 4,1 1
4 2

1 1

2 2 1 ,
2

c
bo

c
c c c

λ
σ λ λ

λ λ

+

−
= + + +

+
         

(65) 

and for the structure tensor [ ]2 diag 0,1,0=A , the simplified transverse Cauchy 
principal stress is  

( )
( ) 4,2

4
2 22,2 22

2 1,2 2 3,2 4,2 2
4 2
2 2

2 2 1 .
2

c
bo

c
c c c

λ
σ λ λ

λ λ

+

−
= + + +

+
        

(66) 
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With the ISF condition (49), the CSE models (63), (64), (65), and (66) can be 
further simplified in subsequent curve fitting processes. 

2.3.3. Triaxial Shear Mode 
The deformation of triaxial shear can be modeled as  

1 1 12 2 2 2 3 3,  ,  ,x X X x X x Xλ= + = =                 (67) 

where the angle of shear is 1
12tan λ− . The tensors F , C , and 2C  for cases in 

(67) are worked out as  

12 12
2

12 12

1  0 1 0
0 1 0 ,   1 0 ,
0 0 1 0 0 1

λ λ
λ λ

   
   = = +   
   
   

F C

            

(68) 

2 3
12 12 12

2 3 4 2
12 12 12 12

1 2  0
2 3 1  0 ,

0 0  1

λ λ λ
λ λ λ λ
 + +
 

= + + + 
 
 

C

               

(69) 

and with the right Cauchy-Green tensor (68)2 the three principal invariants are 
obtained as 2

1 2 12 3I I λ= = +  and 3 1I = . For orthotropic materials, the structural 
tensor is defined in (16). 

For the longitudinal shear, the structural tensor is [ ]1 diag 1,0,0=A . The two 
invariant components are 1,1 2,1 1I I= = . With all three zero derivatives in (47), 

the longitudinal shear stress component ( )12 1P  is  

( )12 1 0.P =                          (70) 

For the perpendicular shear, the structural tensor is [ ]2 diag 0,1,0=A . The 
two invariant components are 2

1,2 12 1I λ= +  and 2
2,2 12 2 1I λ= + . The two 

derivatives are 1,2 12 122I λ λ∂ ∂ =  and 2,2 12 12I λ λ∂ ∂ = . Substituting the deriva- 
tives (48) for i = 2, the two invariant components 1,2I  and 2,2I , and their 
derivatives into the stress Equation (47) produces the perpendicular shear stress 
component ( )12 2P   

( ) ( ) ( ) 4,22,2 12 2
12 1,2 12 3,2 4,2 12 122 2

12

2 2 1 1 .
2 4

cc
P c c c

λ
λ λ λ

λ
= + + + +

+       
(71) 

For the transverse shear, the structural tensor is [ ]3 diag 0,0,1=A . The two 

invariant components are 1,3 1I = , 2
2,3 12 2 1I λ= + , and their derivatives are  

1,3 12 0I λ∂ ∂ =  and 2,3 12 12I λ λ∂ ∂ = . Substituting the derivatives (48) for i = 3, 

1,3I  and 2,3I , and their derivatives into the stress Equation (47) gives the 

transverse shear stress component ( )12 3P   

( ) 2,3 12
12 3 2

12

.
2 4

c
P

λ

λ
=

+                       
(72) 

Combining shear stress components in longitudinal shear (70), perpendicular 
shear (71), and transverse shear (72) results in the CSE model for triaxial shear 
tests  
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( ) ( ) ( ) 4,22,2 2,3 12 2
12 1,2 12 3,2 4,2 12 122

12

2 2 1 1 .
2 4

c

to

c c
P c c c

λ
λ λ λ

λ

+
= + + + +

+      
(73) 

3. Fitting CSE Models to Testing Data 

A self-developed graphics digitizer with MATLAB has been used to read out 
pairs of stress values and corresponding stretches from stress-stretch curves 
cited in following subsections. 

3.1. Modeling for Rabbit Abdominal Skins in Uniaxial Tension 

Rabbit abdominal skins are usually treated as incompressible orthotropic 
hyperelastic materials and they have been tested in constrained uniaxial tension 
and biaxial tension. In the constrained uniaxial tension tests, the longitudinal 
tension is conducted under the fixed transverse stretch while the transverse 
tension is conducted under the fixed longitudinal stretch by Lanir and Fung 
(1974) [19]. The norminal stress-stretch experimental data in longitudinal and 
transverse directions has been calculated from the corresponding force-stretch 
curves and initial areas for sample 36 provided by Tong and Fung (1976) [20]. 
The uniaxial tension experimental data of rabbit abdominal skins in both 
longitudinal or 1 and transverse or 2 directions have been used to fit the uniaxial 
tension models (51) and (52) and the two sets of constitutive constants have 
been extracted by an iterative least square method. The comparison between the 
CSE model and the uniaxial tension test data of rabbit abdominal skins is shown 
in Figure 2.  

 

 

Figure 2. Comparison between CSE Models and uniaxial tension tests for rabbit abdominal 
skins. 

https://doi.org/10.4236/apm.2018.87037


F. Z. Zhao 
 

 

DOI: 10.4236/apm.2018.87037 643 Advances in Pure Mathematics 
 

3.2. Modeling for Porcine Liver Tissues in Uniaxial Tension  

Porcine liver tissues, composed of liver lobules and connective tissues, are 
transversely isotropic with the principal axis along the direction of the lobule. 
Uniaxial tension and compression tests of porcine liver tissues, using cylindrical 
specimens, have been conducted by Chui et al. (2007) [21]. Uniaxial tension 
experimental data averaging over five porcine liver tissue specimens in both 
longitudinal and transverse directions have been used to fit the uniaxial tension 
models (53) and (54). Two sets of constitutive constants have been solved by an 
iterative least square method. The comparison between the anisotropic CSE 
model and the uniaxial tension test data of porcine liver tissues is shown in 
Figure 3.  

3.3. Modeling for Human Myocardial Tissues in Biaxial Tension 

Heart walls consist of three distinct layers: the endocardium, the myocardium, 
and the epicardium. The ventricular myocardium is the main functional tissue of 
the heart wall. Biaxial loading is closer to the actual loading condition of passive 
ventricular myocardial tissues than uniaxial loading. Biaxial tension tests of 
human passive ventricular myocardial tissues have been conducted by Sommer 
et al. (2015) [22]. The Cauchy stress-stretch equibiaxial tension experimental 
data in the mean-fiber direction and the cross-fiber direction has been averaged 
among 26 specimens, respectively. The averaged equibiaxial tension experimental 
data have been used to fit the biaxial tension models (65) and (66) and the two  

 

 
Figure 3. Comparison between CSE models and uniaxial tension tests for porcine liver 
tissues. 
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sets of constitutive constants for both directions have been obtained by an 
iterative least square method. The comparison between the anisotropic CSE 
models and the averaged equibiaxial tension test data of human passive 
ventricular myocardial tissues is shown in Figure 4. 

3.4. Modeling for Human Myocardial Tissues in Triaxial Shear  

Triaxial shear tests for porcine myocardial tissues demonstrate the orthotropic 
behavior of myocardial tissues by Dokos et al. (2002) [23]. The passive 
myocardial tissue can therefore be modeled as an orthotropic material with three 
orthogonal directions: fiber, sheet, and normal. The fiber refers to muscle fiber, 
the sheet covers a network of collagen fibers, and the normal direction is 
perpendicular to both muscular and collagen fiber directions [24]. The triaxial 
shear tests for human myocardial tissues have also been conducted by Sommer 
et al. (2015) [22]. Human myocardial tissues have also been modeled as 
orthotropic materials with three orthogonal directions: fiber, sheet, and normal. 
The data for triaxial perpendicular shear (TP-Shear) to fiber direction are 
averaged between those of fiber-sheet mode and fiber-normal mode, the data for 
TP-Shear to sheet direction are averaged between those of sheet-fiber mode and 
sheet-normal mode, and the data for TP-Shear to normal direction are averaged 
between those of normal-fiber mode and normal-sheet mode. The triaxial shear 
experimental data of ventricular myocardial tissues in fiber, sheet, and normal 
directions have been used to fit the CSE model for triaxial shear (73) and three 
sets of constitutive constants have been resolved by an iterative least square  

 

 
Figure 4. Comparison between CSE models and biaxial tension tests for human 
myocardium. 
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method. The comparison between the CSE model and the triaxial shear test data 
of human passive myocardial tissues is shown in Figure 5.  

3.5. Constitutive Constants 

In anisotropic CSE constitutive models, four constitutive constants are needed to 
describe anisotropic finite deformations in a preferred direction. Based on the 
ISF condition (49), one of the four constitutive constants can be treated as a 
dependent constant. The first constant, 1,ic , is treated as a dependent constant 
since the last three constants, 2,ic , 3,ic , and 4,ic , are contained in the anisotropic 
elasticity tensors (39) and (46). 

The ISF condition may be applied during extraction of constitutive constants 
for curve fittings of uniaxial tension and biaxial tension tests. There are two 
methods for curve fitting experimental data with the ISF condition. In the first 
method, three unknowns, 2,ic , 3,ic , and 4,ic , are to be solved by the iterative 
least square method and 1,ic  is eliminated from a model by the ISF condition 
(49). In the second method, four unknowns, 1,ic , 2,ic , 3,ic , and 4,ic , are to be 
solved by the iterative least square method and the ISF condition (49) is simply 
subtracted from a model. 

The constitutive constants for modeling rabbit abdominal skins (RAS) and 
porcine liver tissues (PLT) in uniaxial tension, human myocardial tissues (HMT) 
in biaxial tension and triaxial shear are collected in Table 1. Extraction of 
constitutive constants for uniaxial tensions in longitudinal (L) and transverse (T) 
directions, biaxial tensions in the mean-fiber (MF) and the cross-fiber (CF) 

 

 
Figure 5. Comparison between CSE model and triaxial shear tests for human myocardium. 
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Table 1. Constitutive constants for different SBTs.  

Tissue ( )1, kPaic  ( )2, kPaic  ( )3, kPaic  4,ic  

RAS-L 0.65365 −2.61461 1.04×10−14 22.32645 

RAS-T 1.18619 −4.74478 1.17×10−15 37.33812 

PLT-L 0.37569 −1.51038 0.00017619 9.76658 

PLT-T −0.56548 2.23236 0.00046371 14.92939 

HMT-MF 2.51441 −10.89395 0.01232768 15.96013 

HMT-CF 3.62025 −15.35303 0.01485183 13.67864 

HMT-F 9.73903 −76.86300 0.01239317 15.88983 

HMT-S −5.49353 42.90786 0.01404671 12.66059 

HMT-N −5.32124 39.50754 0.02969038 9.65082 

 
directions was conducted by the first method. Extraction of constitutive 
constants for triaxial shear tests in fiber (F), sheet (S), and normal (N) directions 
was conducted directly from the model since the ISF condition is automatically 
satisfied. 

In the triaxial shear model (73), the extracted second constitutive constants, 
however, are the sums of 2,2c  and 2,3c . For the three orthogonal directions of 
fiber, sheet, and normal, they are 2, 35.65530 kPaac = − , 2, 24.23013 kPabc = , 
and 2, 22.52997 kPacc = , respectively. The data for triaxial perpendicular shear 
of fiber are averaged between those of fiber-sheet mode and fiber-normal mode. As 
an example for the fiber direction, we have 2, 2,2fc c=  and ( )2, 2, 2,32s nc c c+ = . 
Similarly, the two other equations can be established for the sheet and normal 
directions. Combining equations together for three orthogonal directions yields  

( )
( )
( )

2, 2, 2, 2,

2, 2, 2, 2,

2, 2, 2, 2,

2

2

2

f s n a

s n f b

n f s c

c c c c

c c c c

c c c c

 + + =
 + + =


+ + =                   

(74) 

Solving linear Equation (74) simultaneously gives  

( )
( )
( )

2, 2, 2, 2,

2, 2, 2, 2,

2, 2, 2, 2,

3 2

3 2

3 2

f a b c

s b c a

n c a b

c c c c

c c c c

c c c c

 = − −
 = − −


= − −                    

(75) 

Note that the values of 2,ac , 2,bc , and 2,cc  are used to plot Figure 5 while 
the values of 2,ic  for triaxial shear tests listed in Table 1 are the final solution of 
equation (75). 

4. Discussion 
4.1. Anisotropic CSE Functional 

In the anisotropic CSE functional, 1,iI  and 2,iI  instead of 4,iI  and 5,iI  are 
named and used albeit 1, 4,i iI I=  since the summation of invariant components 
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1,iI  or 2,iI  results in the corresponding invariant 1I  or 2I   
3 3

1, 1 2, 2
1 1

   and   .i i
i i

I I I I
= =

= =∑ ∑
                  

(76) 

Moreover, the use of 2,iI  defined in (19) rather than 5,iI  in (13) captures 
anisotropic transverse deformations and avoids the unnecessary calculation of 
inverse right Cauchy-Green tensor 1−C . 

In the anisotropic CSE functional (36), the first term, 1, 1,i ic I , represents the 
work done of normal stress and translational deformation. The second term, 

2, 2,i ic I , describes the work done of shear stress and rotational deformation. 
The third term, 4, 4,1 3

3, 1, 3
i ic c

i ic I I+ , captures the work done of stress for finite 
deformations with different anisotropic degrees of ellipsoidal deformations. 

With the fourth-order anisotropic elasticity tensor (38), the most general 
fourth-order elasticity tensor for isotropic hyperelastic materials can be recovered 
by the mappings of i →A I , 1, 1iI I→ , 2, 2iI I→ , …, and aΨ →Ψ   

223 3

2
1 1

4 .j jk

j k j k j

I II
I I I= =

 ∂ ∂ ∂∂ Ψ ∂Ψ
= ⊗ +  ∂ ∂ ∂ ∂ ∂ ∂   
∑ ∑ C C C


            

(77) 

Substituting the first and second order derivatives of invariants (6), (7), (8), 
and (9) into (77), simplifying, and rearranging produces  

( ) ( )
( )

1 1
1 2 3

1 1 1 1
4 5 6

1 1
7 8 ,

δ δ δ

δ δ δ

δ δ

− −

− − − −

− −

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗

+ +

I I I C C I I C C I

C C C C C C C C

C C I I

�

� �        

(78) 

where the eight parameters 1 2 8, , ,δ δ δ�  are defined by  

2 2 2
2

1 1 12 2
1 2 21 2

4 2 ,I I
I I II I

δ
 ∂ Ψ ∂ Ψ ∂ Ψ ∂Ψ

= + + + ∂ ∂ ∂∂ ∂               
(79) 

2 2 2 2

2 1 3 3 3 12
1 2 3 1 2 32

4 ,  4 ,I I I I
I I I I I II

δ δ
  ∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ

= − + = +  ∂ ∂ ∂ ∂ ∂ ∂∂          
(80) 

2 2 2
2

4 5 3 6 3 32 2
2 3 32 3

4 ,  4 ,  4 ,I I I
I I II I

δ δ δ
 ∂ Ψ ∂ Ψ ∂ Ψ ∂Ψ

= = − = + 
∂ ∂ ∂∂ ∂         

(81) 

7 3 8
3 2

4 ,  4 ,I
I I

δ δ
∂Ψ ∂Ψ

= − = −
∂ ∂                   

(82) 

where the isotropic CSE functional is given by  
4

1
1 1 2 2 3

3

.Ic I c I c
I

Ψ = + +
                   

(83) 

The three constitutive constants, 1c , 2c  and 3c  are generally used for 
modeling finite deformations of isotropic hyperelastic materials. The two 
constitutive constants, 2c  and 3c , determine the isotropic elasticity tensor (78) 
with the eight parameters (79) through (82). 
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4.2. Comments on Different Experimental Tests 

In uniaxial tension tests for SBTs, not only does the stress-stretch data in the 
tensile direction need to be captured but also at least one other orthogonal 
stretch must be measured for incompressible SBTs since 1I  needs to be 
evaluated for 2,iI  (19) in the CSE model, and transverse deformation effects on 
longitudinal deformations are indispensable in uniaxial tension tests. The 
transverse deformation effects in modeling SBTs has been elaborated on by 
Latorre, Romero, and Montáns (2016) [25]. With uniaxial tension measurements 
in the 1λ  direction, for example, we also need to capture the corresponding 
transverse stretch 2λ  or 3λ  and use the incompressible condition to determine 
the other stretch 3λ  or 2λ , respectively since 2λ  and 3λ  are generally not 
equivalent due to orthotropy. In constitutive modeling of the transverse uniaxial 
tension test of porcine liver tissues, the tensile stretch is 2λ  and the shortenings 
of fibers and cross-fibers are 1λ  and 3λ , respectively. Considering the aniso- 
tropic compression test results, the anisotropic contraction is simulated with 

( )17.5
1 3 2 21 0.00005λ λ λ λ= + −  and the constitutive constants have been obtained 

and listed in the PLT-T row in Table 1. If the isotropic contraction of 1 3 1λ λ =  
were assumed, the constitutive constants would be 1,2 0.09519 kPa,c = −   

2,2 0.29013 kPa,c =  3,2 0.00182 kPa,c =  and 4,2 11.46719,c =  in which they 
are quite different from the PLT-T row of results in Table 1. Thus, it is essential 
to measure both the longitudinal and transverse stretches in uniaxial tension 
tests for incompressible SBTs. 

In biaxial tension tests, it is very difficult to maintain both uniform force 
distribution and uniform normal deformations. In general, the stress-stretch 
curves in biaxial tension tests from cruciform specimens to square specimens are 
not accurate. For biaxial tension tests of square specimens, the stress as a 
function of stretch is generally overestimated. The overestimation, the correction 
factor, and the inverse finite element method regarding biaxial tension tests have 
been studied by Nolan and McGarry (2016) [26]. In the CSE models for biaxial 
tension tests, shear coupling effects do exist, making curve fittings harder. 
Without simplifications, at least four arguments, 11λ , 22λ , 12λ , and 21λ , have 
to be measured, causing material characterizations to be more complex. 

In triaxial shear tests, according to different orthogonal fiber reinforcement 
orientations, shear deformations have been classified as longitudinal shear, 
perpendicular shear, and transverse shear by Destrade, Horgan, and Murphy 
(2015) [27]. The three orthogonal directions, fiber, sheet, and normal, for 
myocardial tissues generate six deformation modes: fiber-sheet mode, fiber- 
normal mode, sheet-normal mode, sheet-fiber mode, normal-fiber mode, and 
normal-sheet mode. In the CSE model for triaxial shear tests, the longitudinal 
shear does not contribute any anisotropy, only the perpendicular shear elongates 
fiber reinforcements, and the perpendicular shear and transverse shear are 
coupled together. Without shear coupling effects, there would be three different 
experimental curves in the six deformation modes. The triaxial shear tests in six 
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deformation modes for both porcine myocardial tissues by Dokos et al. (2002) 
[23] and human myocardial tissues by Sommer et al. (2015) [22] have produced 
more than three different curves, indicating shear coupling effects as well. 

5. Conclusions 

An anisotropic CSE functional, for isothermal processes, is postulated to be 
balanced with its stress work done, constructing a PDE. The anisotropic CSE 
PDE with respect to the three invariant components, 1,iI , 2,iI , and 3I , is 
generally solved by Lie group methods. A three-term particular solution, which 
is essentially composed of ICGs, is particularly grouped by differential geometry 
to capture the three fundamental deformations. In a preferred direction i, the  

1, 1,i ic I  term monitors translational deformations, the 2, 2,i ic I  term captures  

curvatures of rotational deformations, and the 4, 4,1 3
3, 1, 3

i ic c
i ic I I+  term describes 

curvatures of different powers of ellipsoidal deformations. 
The anisotropic CSE constitutive models for uniaxial tension, biaxial tension, 

and triaxial shear tests have been derived. The constitutive constants have been 
solved by an iterative least square method for the uniaxial tension tests of rabbit 
abdominal skins and porcine liver tissues, the biaxial tension, and the triaxial 
shear tests of human ventricular myocardial tissues. With the newly defined 
second invariant component, the anisotropic CSE models capture the transverse 
effects in uniaxial tension deformations and the coupling effects between the 
perpendicular shear and transverse shear in triaxial shear deformations. 

For anisotropic CSE models, the first constitutive constant, 1,ic , can be 
treated as a dependent constant due to the ISF condition if necessary and the last 
three constitutive constants, 2,ic , 3,ic , and 4,ic , are independent constants, 
defining the anisotropic elasticity tensor. For isotropic CSE models, the three 
constitutive constants, 1c , 2c , and 3c , are needed for modeling finite 
deformations of isotropic hyperelastic materials. The two constitutive constants, 

2c  and 3c , are required for the isotropic elasticity tensor. 
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